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Abstract
Based on a susceptible-infected-susceptible patch model, we study the influence of
dispersal on the disease prevalence of an individual patch and all patches at the endemic
equilibrium. Specifically, we estimate the disease prevalence of each patch and obtain
a weak order-preserving result that correlated the patch reproduction number with
the patch disease prevalence. Then we assume that dispersal rates of the susceptible
and infected populations are proportional and derive the overall disease prevalence,
or equivalently, the total infection size at no dispersal or infinite dispersal as well as
the right derivative of the total infection size at no dispersal. Furthermore, for the two-
patch submodel, two complete classifications of the model parameter space are given:
one addressing when dispersal leads to higher or lower overall disease prevalence than
no dispersal, and the other concerning how the overall disease prevalence varies with
dispersal rate. Numerical simulations are performed to further investigate the effect
of movement on disease prevalence.
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1 Introduction

Infectious diseases pose a serious threat to public health and economic stability around
the globe. The globalization, urbanization, and economic growth have strengthened
both regional and global connectivity to an unprecedented level. However, large human
movement facilitates pathogen spread and hinders disease control and elimination. For
example, the COVID-19 outbreak was first detected in the city of Wuhan in China in
December 2019 and was declared by theWorld Health Organization as a pandemic on
March 11, 2020. As of October 5, 2020, the disease has caused more than 34.8 million
confirmed cases and over 1 million deaths in more than 188 countries and territories
(World Health Organization 2020). To mitigate the disease burden, many countries
have imposed travel restrictions including entry-exit screening, flight cancellations,
and city lockdown.

Mathematical modeling of the spatial-temporal spread of infectious diseases has
attracted considerable attention in the past two decades (Rass and Radcliffe 2003;
Sattenspiel and Lloyd 2009). A large number of spatial epidemic models have been
proposed to describe disease spread through discrete diffusion (Wang 2007), continu-
ous diffusion (Ruan and Wu 2009), and nonlocal diffusion (Yang et al. 2019). Among
these, we refer to Wang and Mulone (2003), Wang and Zhao (2004), Salmani and van
den Driessche (2006), Allen et al. (2007), Cosner et al. (2009), Gao and Ruan (2011,
2012), Tien et al. (2015) andGao (2019) for epidemic patchmodels, Allen et al. (2008),
Peng (2009), Huang et al. (2010), Lou and Zhao (2010), Ge et al. (2015), Wu and Zou
(2016), Cui et al. (2017), Li et al. (2017), Song et al. (2019) for reaction-diffusion
epidemic models, and Kuniya and Wang (2018), Yang et al. (2019), Zhang and Liu
(2019) for nonlocal diffusion epidemic models. Most of these works focus on studying
the effect of diffusion on the dynamic behavior of the model systems and particularly
establishing threshold-type results in terms of the basic reproduction number.

It is important to know whether a disease can spread or not and how it goes in the
long term, but that should not be the whole story. Disease eradication is rather difficult
or even impossible for many infectious diseases. Smallpox is the only human disease
that has been eradicated globally. Thus, reducing disease prevalence to a low level is
usually a more feasible and cost-effective goal. This requires us to explore the impact
of population dispersal on the infection size (i.e., the number of infections) or disease
prevalence (i.e., the proportion of individuals in a given population having a specific
disease or a particular condition). To our knowledge, there are only sporadic numerical
investigations on this topic (Gao 2019; Gao et al. 2019; Hsieh et al. 2007) except one
recent work (Gao 2020). It should be pointed out that the topic is highly related to
a fundamental question in spatial ecology, that is, how does animal dispersal affect
the population abundance and distribution in a heterogenous environment (DeAngelis
et al. 2016b). Since the pioneering work of Freedman and Waltman (1977), extensive
theoretical and experimental works have been done (Arditi et al. 2018; DeAngelis
et al. 2016a; He et al. 2019; Lou 2006; Wang et al. 2020; Zhang et al. 2017, 2015).
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In this paper, we consider a susceptible-infected-susceptible (SIS) patch model

dSi
dt

= −βi
Si Ii
Ni

+ γi Ii + δ
∑

j∈�

Li j S j , i ∈ �,

d Ii
dt

= βi
Si Ii
Ni

− γi Ii + ε
∑

j∈�

Li j I j , i ∈ �,

(1.1)

where � = {1, 2, ..., n}, n ≥ 2. Here Si (t) and Ii (t) denote the number of susceptible
and infected individuals in patch i at time t , respectively, and Ni (t) = Si (t) + Ii (t)
is the total number of individuals in patch i at time t . The parameters βi and γi are
transmission and recovery rates in patch i , respectively; Li j represents the degree of
incoming movement from patch j to patch i for i �= j and −Lii = ∑

j �=i L ji is
the degree of outgoing movement from patch i to all other patches; δ and ε are the
dispersal rates of the susceptible and infected populations (i.e., the dispersal rate is
dependent upon the disease state), respectively. We assume that βi , γi , δ, and ε are all
positive constants, independent of time t .

The model (1.1) was originally proposed and analyzed by Allen et al. (2007) and
later studied from the aspects of asymptotic profiles and global stability of endemic
equilibrium, and the monotonicity of the basic reproduction number with respect to
dispersal rate of the infected populations by Li and Peng (2019), Gao (2019), Gao and
Dong (2020), and Chen et al. (2020). To facilitate the analysis and presentation, the
following assumptions will be required throughout the paper:

(B1) Si (0) ≥ 0 and Ii (0) > 0 for i ∈ �;
(B2) L = (Li j )n×n is essentially nonnegative, irreducible, and

∑
j∈� L ji = 0 holds

for i ∈ �.

Then by assumption (B2) and the Perron–Frobenius theorem,model (1.1) has a unique
disease-free equilibrium E0 = (S01 , . . . , S

0
n , 0, . . . , 0), where S0 = (S01 , . . . , S

0
n ) is

the unique positive solution of

∑

j∈�

Li j S j = 0, i ∈ � and
∑

i∈�

Si = N ,

where N is the total population size over all patches at time t = 0, given by

N :=
∑

i∈�

(Si (0) + Ii (0)).

By assumption (B1), N is positive.
Furthermore, it follows from, e.g., Lemma 3.1 in Gao and Dong (2020), that

(S01 , . . . , S
0
n ) = N (α1, . . . , αn) := N∑

i∈� L∗
i i

(L∗
11, . . . , L

∗
nn),
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where L∗
i i represents the (i, i) cofactor of L and sgn(L∗

i i ) = (−1)n−1. That is,

αi = L∗
i i∑

i∈� L∗
i i

, i ∈ �,

satisfying 0 < αi < 1 for all i ∈ � and
∑

i∈� αi = 1. In particular, if L is symmetric
or line-sum-symmetric (i.e., the sum of elements in each of its rows equals the sum of
elements in the corresponding column), then L∗

11 = · · · = L∗
nn and hence α1 = · · · =

αn = 1/n.
Using the next-generationmatrixmethod (Diekmann et al. 1990; van denDriessche

and Watmough 2002), the basic reproduction number of model (1.1) is defined as
R0 = ρ(FV−1), where

F = diag{β1, . . . , βn} and V = diag{γ1, . . . , γn} − εL.

Obviously, the basic reproduction number of patch i in isolation isR(i)
0 = βi/γi .When

R0 > 1, by constructing an equivalent equilibrium problem, Allen et al. (2007) and
Chen et al. (2020) showed the existence and uniqueness of the endemic equilibrium
with symmetric and asymmetric connectivity matrix L , respectively.

Lemma 1.1 (Lemma 3.12 in Allen et al. (2007) and Theorem 3.3 in Chen et al. (2020))
For model (1.1), ifR0 ≤ 1 then E0 is globally asymptotically stable in R2n+ , whereas
if R0 > 1 then the disease is uniformly persistent and there exists a unique endemic
equilibrium

E∗ = (S∗, I∗) = (S∗
1 , . . . , S

∗
n , I

∗
1 , . . . , I ∗

n ) =
(
κ Š∗

1 , . . . , κ Š
∗
n ,

κ

ε
Ǐ ∗
1 , . . . ,

κ

ε
Ǐ ∗
n

)
,

(1.2)

where

Š∗
i = αi − Ǐ ∗

i

δ
, i ∈ �, and κ = εN

∑
j∈�

(ε Š∗
j + Ǐ ∗

j )
= εN

θ + (1 − θ)
∑
j∈�

Ǐ ∗
j

,

θ := ε/δ ∈ (0,∞), and Ǐ
∗ = ( Ǐ ∗

1 , . . . , Ǐ ∗
n ) is the unique positive solution to

hi ( Ǐ) := Ǐi

(
βi − γi − βi Ǐi

θ(αi − Ǐi ) + Ǐi

)
+ ε

∑

j∈�

Li j Ǐ j = 0, i ∈ �, (1.3)

in the region � = {( Ǐ1, . . . , Ǐn) ∈ R
n+ | 0 ≤ Ǐi ≤ αi , i ∈ �}. Moreover, Ǐ ∗

i is
monotone increasing in parameter θ for all i ∈ �.

In reality, the relative mobility of infected individuals to susceptible individuals, θ ,
is probably below one for human diseases but may be above one for animal diseases
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such as rabies (Ruan and Wu 2009). The following assumption will also be required
throughout the paper to reflect the environmental heterogeneity across the habitat:

(B3) R(i)
0 is nonconstant in i ∈ �.

Otherwise, the reproduction number R0 = R(i)
0 for all i ∈ � and the endemic

equilibrium E∗ = (S0/R0, (1 − 1/R0)S0) are independent of dispersal rates.
Using the theory of monotone dynamical systems (Smith 1995; Zhao 2017), Gao

and Ruan showed that E∗ is globally asymptotically stable if susceptible and infected
individuals disperse at the same rates (Gao and Ruan 2011). Recently Li and Peng
(2019) established the global asymptotic stability of E∗ in the case of constant patch
reproduction number R(i)

0 . Extensive numerical simulations suggest that the global
attractivity of E∗ holds for general model (1.1).

In the next two sections, we will investigate some quantitative properties of E∗,
i.e., how human movement affects the disease prevalence of an individual patch and
all patches at the endemic equilibrium (when it exists), denoted by,

I ∗
i

S∗
i + I ∗

i
and

Tn
N

,

respectively, where Tn = ∑
i∈� I ∗

i denotes the total infection size over all patches.
Since the total population size N is constant, we use total infection size and overall
disease prevalence interchangeably.

In Sect. 4, we completely answer two epidemiologically meaningful questions
for two-patch case: (1) when does dispersal cause higher or lower overall disease
prevalence than no dispersal? (2) when is it detrimental or beneficial to disease control
in terms of overall disease prevalence by implementing or relaxing travel restrictions?
One of the key ingredients in the proofs is to show that the total abundance of infected
population at equilibrium, as a function of the dispersal rate, has at most one local
maximum.

In Sect. 5, numerical simulations are conducted to demonstrate the impact of human
migration on the overall disease prevalence. A brief discussion of the main results and
their implications is given at the end. We extend the main results in Gao (2020) from
a special case (δ = ε) to a general setting with substantial improvements and new
findings.

2 General Results

This section is mainly devoted to the study of the effect of population dispersal on
the disease prevalence of an individual patch. We first present a lemma on the basic
reproduction number R0 which guarantees that if the disease eventually dies out in
every patch for some dispersal rate ε0 ∈ [0,∞) then it remains extinct for ε > ε0.

Lemma 2.1 (Lemma 3.1 in Gao (2020) and Gao and Dong (2020)) For model (1.1),
the basic reproduction number R0(ε) = ρ(FV−1) and the spectral bound s(ε) :=
s(F − V ) = s(F − D + εL) are strictly decreasing and strictly convex in ε ∈ [0,∞)
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if R(i)
0 = βi/γi and βi − γi are, respectively, nonconstant in i ∈ �, and constant

otherwise, where D = diag{γ1, . . . , γn}. Moreover, we have

min
i∈�

R(i)
0 < R0(∞) =

∑

i∈�

βi L
∗
i i

/ ∑

i∈�

γi L
∗
i i < R0(ε) < R0(0) = max

i∈�
R(i)

0 , ∀ε > 0,

where R(i)
0 is nonconstant in i ∈ � and L∗

i i is the (i, i) cofactor of L. In addition, if
R0(0) > 1, then the followings hold:

(a) If R0(∞) < 1, then there exists a unique critical value ε∗ ∈ (0,∞) such that
R0(ε) > 1 for ε < ε∗, R0(ε) = 1 for ε = ε∗, and R0(ε) < 1 for ε > ε∗.

(b) IfR0(∞) ≥ 1, then we have R0(ε) > 1 for all ε ≥ 0.

For convenience, we introduce the following notations:

f̌i ( Ǐi ) = ǧi ( Ǐi ) Ǐi and ǧi ( Ǐi ) = βi − γi − βi Ǐi

θ(αi − Ǐi ) + Ǐi
, i ∈ �.

Like the relation between patch reproduction numbers and multipatch reproduction
number (Gao and Ruan 2011), the disease prevalence over all connected patches is
bounded below and above by the minimum and maximum values of the single patch
disease prevalences.

Proposition 2.2 Formodel (1.1), ifR0 > 1 for some δ > 0 and ε > 0, then the disease
prevalence at the endemic equilibrium E∗ = (S∗, I∗) = (N∗ − I∗, I∗) satisfies

⎛

⎜⎝1 − 1

min
j∈�

R( j)
0

⎞

⎟⎠

+

<
I ∗
i

N∗
i

< 1 − 1

max
j∈�

R( j)
0

, i ∈ �,

where ζ+ = max{ζ, 0}. Furthermore, the same estimate holds for the overall disease
prevalence Tn

N = ∑
i∈�

I ∗
i

/ ∑
i∈�

N∗
i .

Proof It follows from Lemma 1.1 that

S∗
i = κ Š∗

i = εN

θ + (1 − θ)
∑
j∈�

Ǐ ∗
j

· αi − Ǐ ∗
i

δ
= θ(αi − Ǐ ∗

i )

θ + (1 − θ)
∑

j∈� Ǐ ∗
j

N ,

I ∗
i = κ

ε
Ǐ ∗
i = εN

θ + (1 − θ)
∑
j∈�

Ǐ ∗
j

· 1
ε
Ǐ ∗
i = Ǐ ∗

i

θ + (1 − θ)
∑

j∈� Ǐ ∗
j

N .

(2.1)

Thus, the disease prevalence of patch i at the endemic equilibrium E∗ is

I ∗
i

S∗
i + I ∗

i
= Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

, (2.2)
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which is strictly increasing in Ǐ ∗
i ∈ [0, αi ]. Denote

Ī = ( Ī1, . . . , Īn) =
⎛

⎜⎝1 − 1

1 + θ max
i∈�

(R(i)
0 − 1)+

⎞

⎟⎠ (α1, . . . , αn),

I = (I 1, . . . , I n) =
⎛

⎜⎝1 − 1

1 + θ min
i∈�

(R(i)
0 − 1)+

⎞

⎟⎠ (α1, . . . , αn).

Assume thatR(i)
0 > 1 for all i ∈ �. Otherwise, the lower bound of I ∗

i /N∗
i immediately

holds. It follows from

hi ( Ī) = f̌i ( Īi ) ≤ 0 and hi (I) = f̌i (I i ) ≥ 0, i ∈ �

that Ī and I are the upper and lower solutions of (1.3), respectively. By the strong
monotonicity of the system generated by (1.3) and assumption (B3), we know

I 	 Ǐ
∗ 	 Ī . (2.3)

The proof is completed by substituting the estimate (2.3) into (2.2). 
�

We next generalize the weak order-preserving result in Gao (2020) from θ = 1
(i.e., δ = ε) to arbitrary θ > 0 (i.e., ∀ε > 0 and δ > 0) and the proof is postponed to
Appendix A.

Theorem 2.3 For model (1.1), suppose R(1)
0 ≥ · · · ≥ R(n)

0 and R0 > 1 for some
δ > 0 and ε > 0, then the disease prevalence at the unique endemic equilibrium
E∗ = (N∗ − I∗, I∗) satisfies

min
i∈�

I ∗
i

N∗
i

<
I ∗
1

N∗
1

< 1 − 1

R(1)
0

and

(
1 − 1

R(n)
0

)+
<

I ∗
n

N∗
n

< max
i∈�

I ∗
i

N∗
i

.

In particular, for the two-patch case, we have I ∗
1 /N∗

1 > I ∗
2 /N∗

2 , i.e., the disease
prevalence of the high-risk patch is always larger than that of the low-risk patch; for
the three-patch case, we have I ∗

1 /N∗
1 > I ∗

3 /N∗
3 , i.e., the disease prevalence of the

highest-risk patch is always larger than that of the lowest-risk patch.

Remark 2.4 Under the condition of Theorem 2.3, it follows from Proposition 2.2 that

I ∗
1

N∗
1

< 1 − 1

R(1)
0

and

(
1 − 1

R(n)
0

)+
<

I ∗
n

N∗
n
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and hence

f1(I
∗
1 ) = β1 I

∗
1

(
1 − 1

R(1)
0

− I ∗
1

N∗
1

)
> 0 >

∑

j∈�

L1 j I
∗
j ,

fn(I
∗
n ) = βn I

∗
n

(
1 − 1

R(n)
0

− I ∗
n

N∗
n

)
< 0 <

∑

j∈�

Lnj I
∗
j .

Thus, combining with the last part of the proof of Theorem 2.3, an alternative proof
of the above theorem can be given. We will numerically show that the conclusions of
Proposition 2.2 and Theorem 2.3 may fail if the susceptible and infected populations
have different connectivity matrices.

Following Remark 2.4, we can see that

∑

j∈�

Li j N
∗
j =

∑

j∈�

Li j S
∗
j +

∑

j∈�

Li j I
∗
j = (1 − ε/δ)

∑

j∈�

Li j I
∗
j

can be positive or negative if θ = ε/δ �= 1,which suggests that the state-dependent dis-
persal also affects the distribution of hosts. In particular, for two-patch case, dispersal
increases/decreases the population size of the high-risk patch but decreases/increases
that of the low-risk patch if and only if infections reduce/increase host mobility.

Corollary 2.5 For (1.1), suppose R(1)
0 ≥ · · · ≥ R(n)

0 and R0 > 1 for some δ > 0
and ε > 0, then the population distribution at the unique endemic equilibrium E∗ =
(N∗ − I∗, I∗) satisfies

∑

j∈�

L1 j N
∗
j > (=,<) 0 > (=,<)

∑

j∈�

Lnj N
∗
j ,

if and only if θ = ε/δ > (=,<) 1. In particular, for the two-patch case, we have

N∗
1

α1N
> (=,<) 1 > (=,<)

N∗
2

α2N
,

if and only if θ = ε/δ < (=,>) 1, where α1 = L12/(L12 + L21) and α2 = 1 − α1.

It is worth pointing out that results similar to Proposition 2.2, Theorem 2.3, and
Remark 2.4 can be established for the unique positive solution of (1.3). In particular,
we can rewrite (2.3) to give an estimate of Ǐ ∗

i /αi or Ǐ ∗
i which will be used later.

Corollary 2.6 For system of equations (1.3), if R0 > 1 for some ε > 0 and θ > 0,
then the unique positive solution Ǐ

∗ = ( Ǐ ∗
1 , . . . , Ǐ ∗

n ) satisfies

min
j∈�

Ǐ ∗
j (0)

α j
<

Ǐ ∗
i

αi
< max

j∈�

Ǐ ∗
j (0)

α j
, i ∈ �,
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where Ǐ ∗
j (0) =

(
1− 1

1+θ(R( j)
0 −1)+

)
α j , j ∈ �. If, in addition, L is line-sum-symmetric,

then

min
j∈�

Ǐ ∗
j (0) < Ǐ ∗

i < max
j∈�

Ǐ ∗
j (0), i ∈ �.

At the end of this section, we consider the total infection size over all patches at the
positive steady state (when it exists) or the disease-free steady state and its limit as the
dispersal rate δ or ε approaches zero or infinity. In case where the patchy environment
consists of both high-risk and low-risk patches satisfying R(i)

0 > 1 > R( j)
0 for some

i, j ∈ �, the asymptotic profile of the endemic equilibrium E∗ as δ → 0 or ε → 0
was discussed by Allen et al. (2007), Li and Peng (2019), and Chen et al. (2020).

Proposition 2.7 For model (1.1), the total infection size, denoted by Tn(δ, ε), satisfies

Tn(δ, ε) :=
∑

i∈�

I ∗
i (δ, ε) = Ťn(δ, ε)

θ + (1 − θ)Ťn(δ, ε)
N , ∀ε > 0,

where

I ∗
i (δ, ε) = Ǐ ∗

i (δ, ε)

θ + (1 − θ)Ťn(δ, ε)
N and Ťn(δ, ε) :=

∑

i∈�

Ǐ ∗
i (δ, ε) ∈ [0, 1).

In addition, we have

Tn(0+, ε) := lim
δ→0+ Tn(δ, ε) = 1

1 + ∑
i∈�

αi

(R(i)
0 −1)+

N , ∀ε ∈ (0,∞],

Tn(δ, 0+) := lim
ε→0+ Tn(δ, ε) =

(
1 − 1

1 + ∑
i∈�

αi (R(i)
0 − 1)+

)
N , ∀δ ∈ (0,∞],

Tn(∞, ε) := lim
δ→∞ Tn(δ, ε) =

(
1 − 1

1 + ∑
i∈�

Îi

)
N , ∀ε ∈ (0,∞],

Tn(δ,∞) := lim
ε→∞ Tn(δ, ε) = 1

1 + ∑
i∈�

Ŝi
N , ∀δ ∈ (0,∞],

where Tn(0+, ε) = 0 if R(i)
0 ≤ 1 for some i ∈ �, and ( Î1, . . . , În) and (Ŝ1, . . . , Ŝn)

are, respectively, the unique positive solutions to

ε
∑

j∈�

Li j Î j + βi
αi

αi + Îi
Îi − γi Îi = 0, i ∈ �,
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and

δ
∑

j∈�

Li j Ŝ j − βi
αi

αi + Ŝi
Ŝi + γiαi = 0, i ∈ �,

provided that R0(ε) > 1 and R0(∞) > 1.

Proof It follows from (2.1) that

Tn(δ, ε) =
∑

i∈�

I ∗
i (δ, ε) =

∑

i∈�

Ǐ ∗
i (δ, ε)

θ + (1 − θ)
∑
j∈�

Ǐ ∗
j (δ, ε)

N = Ťn(δ, ε)

θ + (1 − θ)Ťn(δ, ε)
N .

We omit the proof of the remaining parts which are similar to these of Lemma 4.1
in Allen et al. (2007), Lemma 3.4 in Chen et al. (2020) and Theorem 3.6 in Gao and
Dong (2020). It suffices to note that no low-risk patch withR(i)

0 < 1 is required. 
�

3 Model with Restrictions

In this section, we further work on the total infection size, or equivalently, the overall
disease prevalence of model (1.1) under two additional assumptions as follows:

(B4) The diffusion coefficients of the susceptible and infected subpopulations are
proportional, i.e., δ = ε/θ with constant θ and variable ε;

(B5) The population distribution by patch at no dispersal obeys the limiting case of
ε → 0+.

The assumption (B4) here is a generalization of (B5) in Gao (2020), and (B5) here
was labeled (B4) in Gao (2020). Under assumption (B4), model (1.1) takes the form

dSi
dt

= −βi
Si Ii
Ni

+ γi Ii + ε

θ

∑

j∈�

Li j S j , i ∈ �,

d Ii
dt

= βi
Si Ii
Ni

− γi Ii + ε
∑

j∈�

Li j I j , i ∈ �.

(3.1)

In correspondence to Proposition 2.7,we get the following result on the total number
of infections for model (3.1) as the diffusion coefficient ε → 0+ or ∞.

Theorem 3.1 For model (3.1), the total infection size, denoted by Tn(ε), satisfies

Tn(ε) :=
∑

i∈�

I ∗
i (ε) = Ťn(ε)

θ + (1 − θ)Ťn(ε)
N , ∀ε > 0,

where

I ∗
i (ε) = Ǐ ∗

i (ε)

θ + (1 − θ)Ťn(ε)
N and Ťn(ε) :=

∑

i∈�

Ǐ ∗
i (ε) ∈ [0, 1).
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In addition, we have

Tn(0) =
∑

i∈�

I ∗
i (0) =

1 − ∑
i∈�

αi

1+θ(R(i)
0 −1)+

θ + (1 − θ)

(
1 − ∑

i∈�

αi

1+θ(R(i)
0 −1)+

)N ,

Tn(∞) =
∑

i∈�

I ∗
i (∞) =

(
1 − 1

R0(∞)

)+
N ,

where

Ǐ ∗
i (0) := lim

ε→0+ Ǐ ∗
i (ε) =

(
1 − 1

1 + θ(R(i)
0 − 1)+

)
αi , i ∈ �,

Ǐ ∗
i (∞) := lim

ε→∞ Ǐ ∗
i (ε) =

(
1 − 1

1 + θ(R0(∞) − 1)+
)
αi , i ∈ �.

Proof The first part directly follows from Proposition 2.7. As ε → 0+, equations
(1.3) become f̌i ( Ǐ ∗

i (0)) = 0 for i ∈ �, which implies that

Ǐ ∗
i (0) = θαi (βi − γi )

θ(βi − γi ) + γi
=

(
1 − γi

θ(βi − γi ) + γi

)
αi =

(
1 − 1

1 + θ(R(i)
0 − 1)

)
αi

ifR(i)
0 > 1 and Ǐ ∗

i (0) = 0 otherwise (Chen et al. 2020; Li and Peng 2019).

Suppose R0(∞) > 1. Then there exists some m = Ťn(∞) ∈ (0, 1] such that

lim
ε→∞( Ǐ ∗

1 (ε), . . . , Ǐ ∗
n (ε)) = m(α1, . . . , αn).

Summing up (1.3) over i ∈ � gives

∑

i∈�

(
βi − γi − βi Ǐ

∗
i

θ(αi − Ǐ∗i ) + Ǐ∗i

)
Ǐ∗i =

∑

i∈�

(
βi − γi − βimαi

θ(αi − mαi ) + mαi

)
mαi = 0,

(3.2)

which implies

∑

i∈�

(βi − γi )αi = m

θ(1 − m) + m

∑

i∈�

βiαi

⇒ m

θ(1 − m) + m
=

∑
i∈�

(βi − γi )αi

∑
i∈�

βiαi
= 1 − 1

R0(∞)
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⇒ Tn(∞) = Ťn(∞)

θ + (1 − θ)Ťn(∞)
N = m

θ + (1 − θ)m
N =

(
1 − 1

R0(∞)

)
N .

The proof is completed by solving m from the above equation. 
�

Remark 3.2 As ε → 0+ and ∞, by (2.1) and (2.2), the disease prevalence and total
population size of patch i at the equilibrium satisfy, respectively,

lim
ε→0+

I ∗
i

S∗
i + I ∗

i
= lim

ε→0+
Ǐ ∗
i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

=
(
1 − 1

R(i)
0

)+
and

lim
ε→∞

I ∗
i

S∗
i + I ∗

i
=

(
1 − 1

R0(∞)

)+
,

and

lim
ε→0+ N∗

i = lim
ε→0+

θαi + (1 − θ) Ǐ ∗
i

θ + (1 − θ)Ťn
N =

(
1 − 1−θ

1+θ
(
R(i)

0 −1
)+

)
αi

∑
i∈�

(
1 − 1−θ

1+θ
(
R(i)

0 −1
)+

)
αi

N and

lim
ε→∞ N∗

i = αi N .

3.1 Tn(0) vs Tn(∞)

We shall make a comparison of Tn(0) and Tn(∞) to see the difference of small and
large dispersal. Note that Tn(∞) is independent of θ but Tn(0) does. Only in this
subsection, to highlight the dependence of Tn(0) and Ťn(0) on θ , we write Tn(0) and
Ťn(0) as Tn(θ) and Ťn(θ) or simply Tn and Ťn for θ ∈ (0,∞), respectively.

Lemma 3.3 Tn(θ) is strictly decreasing in θ as long as R0(0) = max
i∈�

R(i)
0 > 1.

Proof In fact, the derivative of Tn(θ) with respect to θ is

dTn
dθ

= θ dŤn
dθ

− Ťn(θ)(1 − Ťn(θ))

(θ + (1 − θ)Ťn(θ))2
N .
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Denote pi = θ(R(i)
0 − 1)+. Direct calculation yields

θ
dŤn
dθ

− Ťn(θ)(1 − Ťn(θ))

= θ
∑

i∈�

(
R(i)

0 − 1
)+

(
1 + θ

(
R(i)

0 − 1
)+)2 αi −

∑

i∈�

⎛

⎜⎝1 − 1

1 + θ
(
R(i)

0 − 1
)+

⎞

⎟⎠

× αi ·
∑

i∈�

αi

1 + θ
(
R(i)

0 − 1
)+

=
∑

i∈�

pi
(1 + pi )2

αi −
(
1 −

∑

i∈�

αi

1 + pi

)
·
∑

i∈�

αi

1 + pi

=
∑

i∈�

αi

1 + pi
−

∑

i∈�

αi

(1 + pi )2
−

(
1 −

∑

i∈�

αi

1 + pi

)
·
∑

i∈�

αi

1 + pi

=
(

∑

i∈�

αi

1 + pi

)2

−
∑

i∈�

αi

(1 + pi )2
·
∑

i∈�

αi < 0,

which is implied by the Cauchy–Schwarz inequality. 
�

So, we have

lim
θ→∞ Tn(θ) < Tn(θ) < lim

θ→0+ Tn(θ), ∀θ ∈ (0,∞),

where

lim
θ→0+ Tn(θ) =

⎛

⎜⎜⎝1 − 1

1 + ∑
i∈�

αi

(
R(i)

0 − 1
)+

⎞

⎟⎟⎠ N = Tn(δ, 0+),

lim
θ→∞ Tn(θ) = 1

1 + ∑
i∈�

αi(
R(i)

0 −1
)+

N = Tn(0+, ε)

with the understanding that lim
θ→∞ Tn(θ) = 0 if R(i)

0 ≤ 1 for some i ∈ �. Based on

these discussions and Lemma 3.3, we obtain the following result on comparing Tn(θ)

and Tn(∞).

Theorem 3.4 For model (3.1), suppose R0(0) = max
i∈�

R(i)
0 > 1. Then the following

statements hold:
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(a) if lim
θ→∞ Tn(θ) < Tn(∞) < lim

θ→0+ Tn(θ), then there exists a unique θ∗ > 0 such that

Tn(θ) > Tn(∞) for θ ∈ (0, θ∗), Tn(θ) = Tn(∞) for θ = θ∗, and Tn(θ) < Tn(∞)

for θ ∈ (θ∗,∞);
(b) if lim

θ→0+ Tn(θ) ≤ Tn(∞), then Tn(θ) < Tn(∞) for θ ∈ (0,∞);

(c) if lim
θ→∞ Tn(θ) ≥ Tn(∞), then Tn(θ) > Tn(∞) for θ ∈ (0,∞).

In what follows, we compare Tn(θ) and Tn(∞) in some special cases.

Corollary 3.5 For model (3.1), suppose R(i)
0 > 1 for all i ∈ �. Then the following

statements hold:

(a) if βi = β for all i ∈ �, then Tn(θ) < (=,>) Tn(∞) if and only if θ > (=,<) 1;
(b) if γi = γ for all i ∈ �, then Tn(θ) < Tn(∞) for θ ∈ (0,∞);
(c) if βi − γi = c > 0 for all i ∈ �, then Tn(θ) > Tn(∞) for θ ∈ (0,∞).

Proof We give a simple proof by using Theorem 3.4, whereas a direct proof by com-
paring Ťn(θ) and Ťn(∞) and applying the Cauchy–Schwarz inequality is feasible.

Case (a). It suffices to show that lim
θ→1

Tn(θ) = Tn(∞), i.e.,

⎛

⎝1 −
∑

i∈�

αi

R(i)
0

⎞

⎠ N =
(
1 − 1

R0(∞)

)
N ⇔

∑

i∈�

αi

R(i)
0

=
∑

i∈�

γiαi

β
=

∑
i∈�

γiαi

∑
i∈�

βαi
= 1

R0(∞)
.

Case (b). It suffices to show that lim
θ→0+ Tn(θ) = Tn(∞), or equivalently,

1 +
∑

i∈�

αi (R(i)
0 − 1) =

∑

i∈�

αiR(i)
0 =

∑

i∈�

βiαi

γ
=

∑
i∈�

βiαi

∑
i∈�

γαi
= R0(∞).

Case (c). It suffices to show that lim
θ→∞ Tn(θ) = Tn(∞), or equivalently,

(
1 +

∑

i∈�

αi

(R(i)
0 − 1)

) (
1 − 1

R0(∞)

)
=

(
1 +

∑

i∈�

γiαi

c

)⎛

⎜⎝1 −
∑
i∈�

γiαi

∑
i∈�

βiαi

⎞

⎟⎠

=
(
1 +

∑

i∈�

γiαi

c

)
c∑

i∈�

βiαi
=

∑
i∈�

βiαi

c
· c∑
i∈�

βiαi
= 1,

by noting that βi − γi = c and c + γi = βi for all i ∈ �. 
�
Additionally, similar to Remark 3.4 in Gao (2020), if the connectivity matrix L

is line-sum-symmetric, then Tn(θ) ≥ Tn(∞) as one of the sequences {R(i)
0 }i∈� and

{βi + 1−θ
θ

γi }i∈� is nondecreasing and the other is nonincreasing, and Tn(θ) ≤ Tn(∞)
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as both sequences are nondecreasing or nonincreasing. We can see from the above
analysis that the state-dependent dispersal does make a difference to infection size or
disease prevalence.

Remark 3.6 For model (1.1), if δ is a fixed constant, then Tn(δ,∞) may vary with δ,
i.e.,

Tn(δ,∞) = lim
ε→∞ Tn(δ, ε) =

∑

i∈�

I ∗
i (δ,∞) �≡

(
1 − 1

R0(∞)

)+
N .

It is sufficient to consider the case of R0(∞) > 1. Since 0 < Ǐ ∗
i < αi for all i ∈ �,

it follows from (1.3) that

( Ǐ ∗
1 (δ, ε), . . . Ǐ ∗

n (δ, ε)) → k(α1, . . . , αn), as ε → ∞,

for some k ∈ [0, 1]. By using (3.2), we find k = 1 by contradiction and thus Tn(δ,∞)

cannot be solved from (1.2) and (1.3). However, according to Proposition 2.7, we have

Tn(0+,∞) = lim
θ→∞ Tn(θ) = 1

1 + ∑
i∈�

αi

(R(i)
0 −1)+

N .

Meanwhile, Tn(∞,∞) = (1 − 1/R0(∞))N and all patches have the same disease
prevalence. They are generally not the same, e.g., Tn(0+,∞) < Tn(∞,∞) if βi = β

or γi = γ for all i ∈ �, but Tn(0+,∞) = Tn(∞,∞) if βi − γi = c for all i ∈ �.
Hence, Tn(δ,∞) is generally nonconstant in δ ∈ [0,∞].

3.2 Monotonicity of Tn(") for small "

We next compute the right derivative of Tn(ε) with respect to ε at zero to determine
the monotonicity of Tn(ε) under sufficiently small dispersal. It can also enable us to
establish a sufficient condition for the nonmonotonicity of Tn(ε) (Gao 2020).

Theorem 3.7 For model (3.1), if R(i)
0 �= 1 for all i ∈ �, then

T ′
n(0+) = θN

(θ + (1 − θ)Ťn(0))2
Ť ′
n(0+),

where

Ť ′
n(0+) = −

∑

i∈�

⎛

⎝ 1

χi

∑

j∈�

Li j Ǐ
∗
j (0)

⎞

⎠
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and

χi =
{

βi − γi , if R(i)
0 < 1,

−(βi − γi )
γi+θ(βi−γi )

βi
, if R(i)

0 > 1.

Proof Since Tn(ε) can be viewed as a strictly increasing function of Ťn(ε), we only
need to calculate Ť ′

n(0+) to decide the sign of T ′
n(0+).

Suppose R0(0) = max
i∈�

R(i)
0 > 1. Otherwise, Tn(ε) ≡ 0 for ε ≥ 0 and the conclu-

sion immediately holds. Thus, for sufficiently small ε, we have R0(ε) > 1 and there
exists a unique positive solution ( Ǐ ∗

1 , . . . , Ǐ ∗
n ) to the equilibrium equations

Mn( Ǐ
∗
1 , . . . , Ǐ ∗

n )T = 0, (3.3)

where

Mn = F − V − diag

{
β1 Ǐ ∗

1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

, . . . ,
βn Ǐ ∗

n

θ(αn − Ǐ ∗
n ) + Ǐ ∗

n

}
.

Differentiating both sides of (3.3) with respect to ε gives

M̃n

(
d Ǐ ∗

1

dε
, . . . ,

d Ǐ ∗
n

dε

)T

= −
⎛

⎝
∑

j∈�

L1 j Ǐ
∗
j , ...,

∑

j∈�

Lnj Ǐ
∗
j

⎞

⎠
T

, (3.4)

where

M̃n = Mn − diag

{
θβ1α1 Ǐ ∗

1

(θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1 )2
, . . . ,

θβnαn Ǐ ∗
n

(θ(αn − Ǐ ∗
n ) + Ǐ ∗

n )2

}
.

The essential nonnegativity and irreducibility of Mn imply that s(Mn) = 0 and hence
s(M̃n) < s(Mn) = 0 and sgn(|M̃n|) = (−1)n �= 0. So, M̃−1

n exists and it is negative
(see e.g., Corollary 4.3.2 in Smith (1995)). Solving d Ǐ ∗

i /dε from (3.4) gives

(
d Ǐ ∗

1

dε
, . . . ,

d Ǐ ∗
n

dε

)T

= −M̃−1
n

⎛

⎝
∑

j∈�

L1 j Ǐ
∗
j , . . . ,

∑

j∈�

Lnj Ǐ
∗
j

⎞

⎠
T

. (3.5)

As ε → 0+, we have

M̃n → diag(χi ) := diag

(
βi − γi − βi Ǐ

∗
i (0)

θ(αi − Ǐ∗i (0)) + Ǐ∗i (0)
− θβiαi Ǐ

∗
i (0)

(θ(αi − Ǐ∗i (0)) + Ǐ∗i (0))2

)
,

123



Journal of Nonlinear Science            (2021) 31:73 Page 17 of 41    73 

where

χi = βi − γi − βi Ǐ ∗
i (0)

θ(αi − Ǐ ∗
i (0)) + Ǐ ∗

i (0)
− θβiαi Ǐ ∗

i (0)

(θ(αi − Ǐ ∗
i (0)) + Ǐ ∗

i (0))2

= − θβiαi Ǐ ∗
i (0)

(θ(αi − Ǐ ∗
i (0)) + Ǐ ∗

i (0))2
= −θβiαi

Ǐ ∗
i (0)

(
Ǐ ∗
i (0)

θ(αi − Ǐ ∗
i (0)) + Ǐ ∗

i (0)

)2

= − θβiαi(
1 − 1

1+θ(R(i)
0 −1)

)
αi

(
1 − 1

R(i)
0

)2

= −βi (1 + θ(R(i)
0 − 1))

R(i)
0 − 1

(R(i)
0 )2

= −(βi − γi )
γi + θ(βi − γi )

βi
< 0,

ifR(i)
0 > 1, and χi = βi − γi < 0 ifR(i)

0 < 1. 
�

Remark 3.8 For n = 2, if R(1)
0 > R(2)

0 and R0(ε) > 1, then we have L21 Ǐ ∗
1 (ε) −

L12 Ǐ ∗
2 (ε) > 0, or equivalently, L21 I ∗

1 (ε)−L12 I ∗
2 (ε) > 0 due toRemark 2.4. It suffices

to consider the case of ε = 0 withR(1)
0 > R(2)

0 > 1. In fact,

L21 Ǐ
∗
1 (0) − L12 Ǐ

∗
2 (0) = L21

(
1 − 1

1 + θ(R(1)
0 − 1)

)
α1 − L12

(
1 − 1

1 + θ(R(2)
0 − 1)

)
α2

= − L21α1

1 + θ(R(1)
0 − 1)

+ L12α2

1 + θ(R(2)
0 − 1)

= θL21α1(R(1)
0 − R(2)

0 )

(1 + θ(R(1)
0 − 1))(1 + θ(R(2)

0 − 1))
> 0.

4 Two-patch Case

In this section, we present two complete classifications of the model parameter space
in two-patch case: the first classification concerns when dispersal leads to more or less
infections across patches (or equivalently, higher or lower overall disease prevalence)
and the second addresses how the total number of infections (or equivalently, the
overall disease prevalence) varies with dispersal rate. To this end, we consider the
two-patch submodel

dSi
dt

= −βi
Si Ii
Ni

+ γi Ii + ε

θ

2∑

j=1

Li j S j , 1 ≤ i ≤ 2,

d Ii
dt

= βi
Si Ii
Ni

− γi Ii + ε

2∑

j=1

Li j I j , 1 ≤ i ≤ 2.

(4.1)
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The auxiliary system associated to the equivalent equilibrium problem is

d Ǐ1
dt

= Ǐ1

(
β1 − γ1 − β1 Ǐ1

θ(α1 − Ǐ1) + Ǐ1

)
+ ε(−L21 Ǐ1 + L12 Ǐ2),

d Ǐ2
dt

= Ǐ2

(
β2 − γ2 − β2 Ǐ2

θ(α2 − Ǐ2) + Ǐ2

)
+ ε(L21 Ǐ1 − L12 Ǐ2),

(4.2)

where θ = ε/δ > 0 is constant and ( Ǐ1, Ǐ2) ∈ [0, α1] × [0, α2]. Without loss of
generality, we assume that the first patch has higher risk of infection, i.e.,R(1)

0 > R(2)
0 .

4.1 T2(") vs T2(0)

Lemma 4.1 For system (4.2), if 0 < Ť2(ε0) ≤ Ť2(0) for some ε0 > 0, then Ť ′
2(ε0) < 0.

In particular, if Ť ′
2(0+) < 0, then Ť ′

2(ε) < 0 for all ε ∈ (0,∞) as R0(∞) ≥ 1 or
ε ∈ (0, ε∗) as R0(∞) < 1. Here

R0(∞) = β1L12 + β2L21

γ1L12 + γ2L21
and ε∗ = (β1 − γ1)(β2 − γ2)

(β1 − γ1)L12 + (β2 − γ2)L21

is the unique positive solution toR0(ε) = 1 as R0(∞) < 1.

Proof According to (3.5), we have

(
d Ǐ ∗

1

dε
,
d Ǐ ∗

2

dε

)T

= L21 Ǐ ∗
1 − L12 Ǐ ∗

2

|M̃2|

×
⎛

⎜⎝
εL21

Ǐ ∗
1

Ǐ ∗
2

+ θβ2α2 Ǐ ∗
2

(θ(α2− Ǐ ∗
2 )+ Ǐ ∗

2 )2
εL12

εL21 εL12
Ǐ ∗
2

Ǐ ∗
1

+ θβ1α1 Ǐ ∗
1

(θ(α1− Ǐ ∗
1 )+ Ǐ ∗

1 )2

⎞

⎟⎠
(−1

1

)
,

where M̃2 is defined as in the proof of Theorem 3.7 with |M̃2| > 0. It indicates that

|M̃2|
L21 Ǐ

∗
1 − L12 Ǐ

∗
2

Ť ′
2(ε) = |M̃2|

L21 Ǐ
∗
1 − L12 Ǐ

∗
2

2∑

i=1

d

dε

(
Ǐ∗i (ε)

)

=
2∑

i=1

(−1) j

⎛

⎝εLi j − εL ji
Ǐ∗i
Ǐ∗j

−
θβ jα j Ǐ

∗
j

(θ(α j − Ǐ∗j ) + Ǐ∗j )2

⎞

⎠

= θβ1α1 Ǐ
∗
1

(θ(α1 − Ǐ∗1 ) + Ǐ∗1 )2
− θβ2α2 Ǐ

∗
2

(θ(α2 − Ǐ∗2 ) + Ǐ∗2 )2
− ε( Ǐ∗1 + Ǐ∗2 )

Ǐ∗1 Ǐ∗2
(L21 Ǐ

∗
1 − L12 Ǐ

∗
2 ) (4.3)

=
2∑

i=1

(−1) j

⎛

⎝β j − γ j −
β j Ǐ

∗
j

θ(α j − Ǐ∗j ) + Ǐ∗j
−

θβ jα j Ǐ
∗
j

(θ(α j − Ǐ∗j ) + Ǐ∗j )2

⎞

⎠ (4.4)
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=
2∑

i=1

(−1) j

⎛

⎝
−(θ(β j − γ j ) + γ j ) Ǐ

∗
j + (β j − γ j )θα j

θ(α j − Ǐ∗j ) + Ǐ∗j
−

θβ jα j Ǐ
∗
j

(θ(α j − Ǐ∗j ) + Ǐ∗j )2

⎞

⎠

=
2∑

i=1

(−1) j

⎛

⎝−
(θ(β j − γ j ) + γ j ) Ǐ

∗
j

θ(α j − Ǐ∗j ) + Ǐ∗j
+ θα j

θ(α j − Ǐ∗j ) + Ǐ∗j

⎛

⎝β j − γ j −
β j Ǐ

∗
j

θ(α j − Ǐ∗j ) + Ǐ∗j

⎞

⎠

⎞

⎠

(4.5)

=
(

(θ(β1 − γ1) + γ1) Ǐ
∗
1

θ(α1 − Ǐ∗1 ) + Ǐ∗1
− (θ(β2 − γ2) + γ2) Ǐ

∗
2

θ(α2 − Ǐ∗2 ) + Ǐ∗2

)
+

θα1

θ(α1 − Ǐ∗1 ) + Ǐ∗1

(
β1 Ǐ

∗
1

θ(α1 − Ǐ∗1 ) + Ǐ∗1
− (β1 − γ1)

)
+

θα2

θ(α2 − Ǐ∗2 ) + Ǐ∗2

(
(β2 − γ2) − β2 Ǐ

∗
2

θ(α2 − Ǐ∗2 ) + Ǐ∗2

)
, (4.6)

where 1 ≤ j ≤ 2 and j �= i .
Case 1:R(1)

0 > R(2)
0 > 1. If follows from the difference of equilibrium equations

Ǐ ∗
1

(
β1 − γ1 − β1 Ǐ ∗

1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

)
+ ε(−L21 Ǐ

∗
1 + L12 Ǐ

∗
2 ) = 0,

Ǐ ∗
1 (0)

(
β1 − γ1 − β1 Ǐ ∗

1 (0)

θ(α1 − Ǐ ∗
1 (0)) + Ǐ ∗

1 (0)

)
= 0

that

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )

Ǐ ∗
1

= − β1 Ǐ ∗
1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

+ β1 Ǐ ∗
1 (0)

θ(α1 − Ǐ ∗
1 (0)) + Ǐ ∗

1 (0)

= θβ1α1( Ǐ ∗
1 (0) − Ǐ ∗

1 )

(θ(α1 − Ǐ ∗
1 (0)) + Ǐ ∗

1 (0))(θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1 )
= θ(β1 − γ1) + γ1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

( Ǐ ∗
1 (0) − Ǐ ∗

1 )

⇔ Ǐ ∗
1 − Ǐ ∗

1 (0)

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )
= − 1

θ(β1 − γ1) + γ1
· θ(α1 − Ǐ ∗

1 ) + Ǐ ∗
1

Ǐ ∗
1

.

Similarly, we have

Ǐ ∗
2 − Ǐ ∗

2 (0)

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )
= 1

θ(β2 − γ2) + γ2
· θ(α2 − Ǐ ∗

2 ) + Ǐ ∗
2

Ǐ ∗
2

.

The above two equalities give

Ť2(ε) − Ť2(0)

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )
= θ(α2 − Ǐ ∗

2 ) + Ǐ ∗
2

(θ(β2 − γ2) + γ2) Ǐ ∗
2

− θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

(θ(β1 − γ1) + γ1) Ǐ ∗
1

,
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and hence it follows from L21 Ǐ ∗
1 (ε) − L12 Ǐ ∗

2 (ε) > 0 for any ε ≥ 0 that

Ť2(ε) ≤ Ť2(0) ⇔ (θ(β1 − γ1) + γ1) Ǐ ∗
1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

≤ (θ(β2 − γ2) + γ2) Ǐ ∗
2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

, (4.7)

which implies that Ť ′
2(ε) < 0 by applying (4.6) and Remark 2.4 or Corollary 2.6.

Case 2: R(1)
0 > R(2)

0 = 1. Direct calculation yields

Ǐ ∗
2 − Ǐ ∗

2 (0) = Ǐ ∗
2 = 1

β2
· θ(α2 − Ǐ ∗

2 ) + Ǐ ∗
2

Ǐ ∗
2

ε(L21 Ǐ
∗
1 − L12 Ǐ

∗
2 )

and hence

Ť2(ε) − Ť2(0)

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )
= θ(α2 − Ǐ ∗

2 ) + Ǐ ∗
2

β2 Ǐ ∗
2

− θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

(θ(β1 − γ1) + γ1) Ǐ ∗
1

,

which implies that

Ť2(ε) ≤ Ť2(0) ⇔ (θ(β1 − γ1) + γ1) Ǐ ∗
1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

≤ β2 Ǐ ∗
2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

. (4.8)

Similarly, we obtain Ť ′
2(ε) < 0 provided that Ť2(ε) ≤ Ť2(0).

Case 3: R(1)
0 > 1 > R(2)

0 . Direct calculation yields

Ǐ ∗
2

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )
= −

(
β2 − γ2 − β2 Ǐ ∗

2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

)−1

= −
(
ǧ2( Ǐ

∗
2 )

)−1

and hence

Ť2(ε) − Ť2(0)

ε(L21 Ǐ ∗
1 − L12 Ǐ ∗

2 )
= −

(
ǧ2( Ǐ

∗
2 )

)−1 − θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

(θ(β1 − γ1) + γ1) Ǐ ∗
1

,

which implies that

Ť2(ε) ≤ Ť2(0) ⇔ (θ(β1 − γ1) + γ1) Ǐ ∗
1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

≤ −ǧ2( Ǐ
∗
2 ) = γ2 − β2 + β2 Ǐ ∗

2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

.

(4.9)
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On the other hand, it follows from (4.6) and (4.9) that

|M̃2|
L21 Ǐ

∗
1 − L12 Ǐ

∗
2

Ť ′
2(ε) <

(
−ǧ2( Ǐ

∗
2 ) − (θ(β2 − γ2) + γ2) Ǐ

∗
2

θ(α2 − Ǐ∗2 ) + Ǐ∗2

)
+ θα2

θ(α2 − Ǐ∗2 ) + Ǐ∗2
ǧ2( Ǐ

∗
2 )

<

(
γ2 − β2 + (β2 − γ2) Ǐ

∗
2

θ(α2 − Ǐ∗2 ) + Ǐ∗2
− θ(β2 − γ2) Ǐ

∗
2

θ(α2 − Ǐ∗2 ) + Ǐ∗2

)

+ θα2(β2 − γ2)

θ(α2 − Ǐ∗2 ) + Ǐ∗2

=γ2 − β2 + (β2 − γ2)
Ǐ∗2 − θ Ǐ∗2 + θα2

θ(α2 − Ǐ∗2 ) + Ǐ∗2
= 0.

The proof is complete. 
�
Remark 4.2 One can give a simpler proof of the above lemma in the case of R(1)

0 >

R(2)
0 > 1 and θ > 1. In fact, it follows from Ǐ ∗

1 < Ǐ ∗
1 (0) and Ǐ ∗

2 > Ǐ ∗
2 (0) that

θ(β1 − γ1) + γ1 >
θβ1α1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

and θ(β2 − γ2) + γ2 <
θβ2α2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

,

respectively. Thus, if Ť2(ε) ≤ Ť2(0), i.e., (4.7), for some ε > 0 then we have

θβ1α1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

· Ǐ ∗
1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

< (θ(β1 − γ1) + γ1) · Ǐ ∗
1

θ(α1 − Ǐ ∗
1 ) + Ǐ ∗

1

≤(θ(β2 − γ2) + γ2) · Ǐ ∗
2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

<
θβ2α2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

· Ǐ ∗
2

θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2

and hence Ť ′
2(ε) < 0 because of (4.3).

Remark 4.3 It follows from Remark 2.4 and (4.4) that
d Ǐ ∗

1
dε

< 0 for ε ∈ [0,∞) as
R0(∞) ≥ 1 or ε ∈ [0, ε∗) as R0(∞) < 1 < R0(0). Meanwhile, the second part of

(4.4) has the same sign as
d Ǐ ∗

2
dε

and it is strictly increasing in Ǐ ∗
1 . Thus, if

φI := β1 − γ1 − β1 Ǐ ∗
1 (∞)

θ(α1 − Ǐ ∗
1 (∞)) + Ǐ ∗

1 (∞)
− θβ1α1 Ǐ ∗

1 (∞)

(θ(α1 − Ǐ ∗
1 (∞)) + Ǐ ∗

1 (∞))2
≤ 0,

then
d Ǐ ∗

2
dε

> 0 for ε ∈ [0,∞); otherwise there exists a unique ε̄ > 0 such that
d Ǐ ∗

2
dε

> 0

for ε ∈ [0, ε̄), d Ǐ ∗
2

dε
= 0 for ε = ε̄, and

d Ǐ ∗
2

dε
< 0 for ε ∈ (ε̄,∞) as R0(∞) ≥ 1 or

ε ∈ (ε̄, ε∗) as R0(∞) < 1 < R0(0).

The proof of Lemma 4.1 is irrelevant to the relation between (α1, α2) and L , so the
result can be generalized to a more general model. The strict monotonicity of T2(ε)
in terms of Ť2(ε) implies that Lemma 4.1 can be directly transformed to model (4.1).
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Lemma 4.4 Formodel (4.1), if 0 < T2(ε0) ≤ T2(0) for some ε0 > 0, then T ′
2(ε0) < 0.

In particular, if T ′
2(0+) < 0, then T ′

2(ε) < 0 for all ε ∈ (0,∞) as R0(∞) ≥ 1 or
ε ∈ (0, ε∗) as R0(∞) < 1.

Next we give a complete classification of the parameter space for model (4.1)
on whether dispersal is beneficial or detrimental to disease control in terms of total
infection size.

Theorem 4.5 Suppose R(1)
0 > max{R(2)

0 , 1} for model (4.1). Then we have

(a) if T ′
2(0+) ≤ 0, then T2(ε) < T2(0) for ε ∈ (0,∞);

(b) if 0 < T ′
2(0+) ≤ ∞ and T2(0) > T2(∞), then there exists a unique ε̂ > 0 such

that T2(ε) > T2(0) for ε ∈ (0, ε̂), T2(ε) = T2(0) for ε = ε̂, and T2(ε) < T2(0)
for ε ∈ (ε̂,∞);

(c) if T2(0) ≤ T2(∞), then T2(ε) > T2(0) for ε ∈ (0,∞) (and T ′
2(0+) > 0).

Proof By applying Lemma 4.4, we need only consider the cases of T ′
2(0+) = 0 and

∞, or equivalently, Ť ′
2(0+) = 0 and ∞. If Ť ′

2(0+) = 0, i.e., χ1 = χ2, then

(1) R(1)
0 > R(2)

0 > 1. It follows from Theorem 2.3 and χ1 = χ2 that

(θ(β1 − γ1) + γ1)
Ǐ∗1

θ(α1 − Ǐ∗1 ) + Ǐ∗1
< (θ(β1 − γ1) + γ1)

Ǐ∗1 (0)

θ(α1 − Ǐ∗1 (0)) + Ǐ∗1 (0)

=(θ(β2 − γ2) + γ2)
Ǐ∗2 (0)

θ(α2 − Ǐ∗2 (0)) + Ǐ∗2 (0)
< (θ(β2 − γ2) + γ2)

Ǐ∗2
θ(α2 − Ǐ∗2 ) + Ǐ∗2

,

which means that Ť2(ε) < Ť2(0) for ε > 0 by using (4.7).
(2) R(1)

0 > 1 > R(2)
0 . It follows from Theorem 2.3 and χ1 = χ2 that

(θ(β1 − γ1) + γ1)
Ǐ∗1

θ(α1 − Ǐ∗1 ) + Ǐ∗1
< (θ(β1 − γ1) + γ1)

Ǐ∗1 (0)

θ(α1 − Ǐ∗1 (0)) + Ǐ∗1 (0)

=γ2 − β2 < γ2 − β2 + β2 Ǐ
∗
2

θ(α2 − Ǐ∗2 ) + Ǐ∗2
,

which again means that Ť2(ε) < Ť2(0) for ε > 0 by applying (4.9).

If T ′
2(0+) = ∞, i.e., R(2)

0 = 1, then Ť2(ε) > Ť2(0) holds for 0 < ε 	 1 by using
(4.8). 
�

The following comparison result of T2(0) and T2(∞) somewhat generalizes Corol-
lary 3.5 when only two patches are concerned. We also decide the sign of T ′

2(0+)

afterwards. These are crucial for applying Theorem 4.5.

Proposition 4.6 Suppose R(1)
0 > max{R(2)

0 , 1} for model (4.1). Then the following
statements concerning the relation between T2(0) and T2(∞) hold as θ ∈ (0,∞):

(a) ifR(1)
0 > R(2)

0 ≥ 1, then
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(i) if γ1 < γ2 and β1 − γ1 > β2 − γ2, then sgn(T2(∞) − T2(0)) = sgn(θ − θ∗
a )

where θ∗
a = γ2−γ1

(β1−γ1)−(β2−γ2)
> 0;

(ii) if γ1 ≥ γ2, then T2(0) < T2(∞);
(iii) if β1 − γ1 ≤ β2 − γ2, then T2(0) > T2(∞);

(b) ifR(1)
0 > R0(∞) > 1 > R(2)

0 , then

(i) if � := (β1 − γ1)(γ1 − γ2)α1 − (γ2 − β2)γ1 ≥ 0, then T2(∞) > T2(0);
(ii) if � < 0, then sgn(T2(∞) − T2(0)) = sgn(θ − θ∗

b ) where θ∗
b =

(γ2−β2)γ1−(β1−γ1)(γ1−γ2)α1
(β1−γ1)(β1α1+β2α2−γ1α1−γ2α2)

;

(c) ifR(1)
0 > 1 ≥ R0(∞) > R(2)

0 , then T2(0) > T2(∞) = 0.

Proof Using T2(0) and T2(∞) from Theorem 3.1, direct calculation yields

(a) ifR(1)
0 > R(2)

0 ≥ 1, then

T2(∞) − T2(0) = α1α2(β1γ2 − β2γ1)(θ(β1 − γ1 − β2 + γ2) + (γ1 − γ2))

(β1α1 + β2α2)(β1α1(θ(β2 − γ2) + γ2) + β2α2(θ(β1 − γ1) + γ1))
N ;

(b) ifR(1)
0 > R0(∞) > 1 > R(2)

0 , then

T2(∞) − T2(0) = α2(θ(β1 − γ1)(β1α1 + β2α2 − γ1α1 − γ2α2) + �)

(β1α1 + β2α2)(β1α1 + (θ(β1 − γ1) + γ1)α2)
N

with � = (β1 − γ1)(γ1 − γ2)α1 − (γ2 − β2)γ1;
(c) ifR(1)

0 > 1 ≥ R0(∞) > R(2)
0 , then

T2(∞) − T2(0) = −T2(0) = − (β1 − γ1)α1

β1α1 + (θ(β1 − γ1) + γ1)α2
N < 0.

The proof is completed by noting that the numerator of T2(∞) − T2(0) is either a
constant or a linear function of θ and the denominator of T2(∞) − T2(0) is always
positive. 
�
Proposition 4.7 Suppose R(1)

0 > max{R(2)
0 , 1} for model (4.1). Then the following

statements concerning the sign of T ′
2(0+) hold as θ ∈ (0,∞):

(a) ifR(1)
0 > R(2)

0 > 1, then

(i) if �0 := γ1

(
1 − γ1

β1

)
− γ2

(
1 − γ2

β2

)
≥ 0, then T ′

2(0+) > 0 (and �1 :=
(β1−γ1)

2

β1
− (β2−γ2)

2

β2
> 0). Particularly, T ′

2(0+) > 0 if γ1 ≥ γ2;

(ii) if�0 < 0 and�1 > 0, then sgn(T ′
2(0+)) = sgn(θ −θ∗

0a)where θ∗
0a = −�0

�1
>

0;
(iii) if �1 ≤ 0, then T ′

2(0+) < 0 (and �0 < 0);

(b) ifR(1)
0 > 1 > R(2)

0 , then

(i) if �0 := γ1

(
1 − γ1

β1

)
− (γ2 − β2) ≥ 0, then T ′

2(0+) > 0;
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(ii) if�0 < 0, then sgn(T ′
2(0+)) = sgn(θ−θ∗

0b)where θ∗
0b = β1(γ2−β2)−γ1(β1−γ1)

(β1−γ1)2
>

0;

(c) ifR(1)
0 > 1 = R(2)

0 , then T ′
2(0+) = +∞ > 0.

Proof Using Theorem 3.7, ifR(1)
0 > max{R(2)

0 , 1} and R(2)
0 �= 1 then

sgn(T ′
2(0+)) = sgn(Ť ′

2(0+)) = sgn

(
χ2 − χ1

χ1χ2
(L21 Ǐ

∗
1 (0) − L12 Ǐ

∗
2 (0))

)

= sgn

(
χ2 − χ1

χ1χ2

)
= sgn(χ2 − χ1),

where χi = βi − γi < 0 if R(i)
0 < 1 and −(βi − γi )

γi+θ(βi−γi )
βi

< 0 if R(i)
0 > 1.

Therefore,

(a) for R(1)
0 > R(2)

0 > 1,

χ2 − χ1 =
(

(β1 − γ1)
2

β1
− (β2 − γ2)

2

β2

)
θ + γ1

(
1 − γ1

β1

)
− γ2

(
1 − γ2

β2

)

= �1θ + �0.

(b-c) for R(1)
0 > 1 ≥ R(2)

0 ,

χ2 − χ1 = (β1 − γ1)
2

β1
θ + γ1

(
1 − γ1

β1

)
− (γ2 − β2) = (β1 − γ1)

2

β1
θ + �0.

The proof is completed by noting that χ2 − χ1 is a linear function of θ . 
�

In terms of the signs of T ′
2(0+) and T2(∞) − T2(0), and the values of single and

multi-patch reproduction numbers, R(i)
0 and R0(∞), a more detailed classification

of the relation between T2(ε) and T2(0) similar to Theorem 4.3 in Gao (2020) can
be given. In particular, we now have a clearer understanding of the relation between
T2(ε) and T2(0) under the special conditions listed in Corollary 3.5.

4.2 Monotonicity of T2(")

To identify the shape of T2(ε), it is necessary to know its change trend or monotonicity
for small and large dispersal rates. The former is discussed in Proposition 4.7 while
the latter is considered below.

Remark 4.8 For model (4.1) with R(1)
0 > R(2)

0 and R0(∞) = β1α1+β2α2
γ1α1+γ2α2

≥ 1, the
monotonicity of T2(ε) for sufficiently large ε can be determined by (4.4) and Theorem
3.1. Indeed, substituting Ǐ ∗

i by Ǐ ∗
i (∞) for i = 1, 2 into (4.4) gives
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T
′
2(∞) :=

2∑

i=1

(−1) j
(

αi
β jγi − βiγ j

βiαi + β jα j
− (βi − γi )αi + (β j − γ j )α j

βiαi + β jα j

· β j
(θ(βi − γi ) + γi )αi + (θ(β j − γ j ) + γ j )α j

βiαi + β jα j

)

= β2γ1 − β1γ2

β1α1 + β2α2
+

(
1 − 1

R0(∞)

)(
θ + (1 − θ)

1

R0(∞)

)
(β1 − β2),

which has the same sign as T ′
2(ε) for large enough ε as long as T′

2(∞) �= 0. Clearly,

(a) if β1 > β2 and θ > θ∗∞ := 1
β1−β2

· β1γ2−β2γ1
γ1α1+γ2α2

· R0(∞)

(R0(∞)−1)2
− 1

R0(∞)−1 , then

T
′
2(∞) > 0;

(b) if β1 > β2 and θ = θ∗∞ > 0, then T
′
2(∞) = 0;

(c) if β1 ≤ β2 or 0 < θ < θ∗∞, then T
′
2(∞) < 0.

In particular, T ′
2(ε) < 0 for ε � 1 as β1 ≤ β2 or R0(∞) = 1.

Lemma 4.9 For system (4.2), if Ť ′
2(ε0) = 0 and R0(ε0) > 1 for some ε0 > 0, then

Ť ′′
2 (ε0) < 0, i.e., any nontrivial critical point (the corresponding critical value is

nonzero) of Ť2(ε) on R+ corresponds to a local maximum. Furthermore, Ť2(ε) has
at most one nontrivial critical point ε0 ∈ R+ and T ′

2(ε) < 0 for all ε ∈ (ε0,∞) as
R0(∞) ≥ 1 or ε ∈ (ε0, ε

∗) as R0(∞) < 1.

Proof IfR0(ε) > 1, then differentiating the equilibrium equations

Ǐ ∗
i

(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

)
+ ε

2∑

j=1

Li j Ǐ
∗
j = 0, 1 ≤ i ≤ 2,

with respect to ε yields

( Ǐ ∗
i )′

(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

− θβiαi Ǐ ∗
i

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

)
+ ε

2∑

j=1

Li j ( Ǐ
∗
j )

′

+
2∑

j=1

Li j Ǐ
∗
j = 0.

(4.10)

Summing (4.10) over i gives

2∑

i=1

( Ǐ ∗
i )′

(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

− θβiαi Ǐ ∗
i

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

)
= 0. (4.11)
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It follows from Ť ′
2(ε0) = 0, i.e., ( Ǐ ∗

1 )′(ε0) = −( Ǐ ∗
2 )′(ε0), that ( Ǐ ∗

1 )′(ε0) = ( Ǐ ∗
2 )′(ε0) =

0 or

βi − γi − βi Ǐ ∗
i (ε0)

θ(αi − Ǐ ∗
i (ε0)) + Ǐ ∗

i (ε0)
− θβiαi Ǐ ∗

i (ε0)

(θ(αi − Ǐ ∗
i (ε0)) + Ǐ ∗

i (ε0))2
:= η < 0, i = 1, 2.

(4.12)

In the former case, equations (4.10) imply that L21 Ǐ ∗
1 (ε0) − L12 Ǐ ∗

2 (ε0) = 0, which
contradictsRemark 3.8. Thus, (4.12) holds and the negativity ofη follows fromRemark
4.3. Differentiating (4.11) in ε yields

2∑

i=1

( Ǐ ∗
i )′′

(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

− θβiαi Ǐ ∗
i

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

)

=
2∑

i=1

(( Ǐ ∗
i )′)2

( θβiαi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2
+ θβiαi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i ) − 2(1 − θ) Ǐ ∗
i

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )3

)

=
2∑

i=1

(( Ǐ ∗
i )′)2θβiαi

2θαi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )3
> 0,

which indicates that at ε = ε0 we have

2∑

i=1

( Ǐ ∗
i )′′(ε0)η = ηŤ ′′

2 (ε0) > 0 ⇒ Ť ′′
2 (ε0) < 0.

The remaining part can be shown by contradiction and the differentiable continuity of
T2(ε) on (0,∞) as R0(∞) ≥ 1 or (0, ε∗) as R0(∞) < 1. 
�

Lemma 4.10 For model (4.1), if T ′
2(ε0) = 0 and R0(ε0) > 1 for some ε0 > 0, then

T ′′
2 (ε0) < 0, i.e., any nontrivial critical point of T2(ε) on R+ corresponds to a local

maximum. Furthermore, T2(ε) has at most one nontrivial critical point ε0 ∈ R+ and
T ′
2(ε) < 0 for all ε ∈ (ε0,∞) as R0(∞) ≥ 1 or ε ∈ (ε0, ε

∗) asR0(∞) < 1.

Proof The first and second derivatives of

Tn(ε) = Ťn(ε)

θ + (1 − θ)Ťn(ε)
N

with respect to ε are

T ′
n(ε) = θN

(θ + (1 − θ)Ťn(ε))2
Ť ′
n(ε)
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and

T ′′
n (ε) = θN

(θ + (1 − θ)Ťn(ε))3

(
(θ + (1 − θ)Ťn(ε))Ť

′′
n (ε) − 2(1 − θ)(Ť ′

n(ε))
2
)

,

respectively. So, if T ′
2(ε0) = 0 for some ε0 > 0, then Ť ′

2(ε0) = 0. It follows from
Lemma 4.9 that Ť ′′

2 (ε0) < 0 and hence T ′′
2 (ε0) < 0. This completes the proof. 
�

Lemma 4.11 For model (4.1), if R0(∞) > 1 and T
′
2(∞) = 0, then T ′

2(ε) > 0 for all
ε ∈ [0,∞).

Proof Denote p = α1 + α2/2 and σ ∈ R+. We introduce an axillary system

d Ǐ1
dt

= Ǐ1
(
β̃1 − γ̃1 − β̃1 Ǐ1

θ(α1 − Ǐ1) + Ǐ1

)
+ ε(−L21 Ǐ1 + L12 Ǐ2),

d Ǐ2
dt

= Ǐ2
(
β̃2 − γ̃2 − β̃2 Ǐ2

θ(α2 − Ǐ2) + Ǐ2

)
+ ε(L21 Ǐ1 − L12 Ǐ2),

(4.13)

where

β̃i = βi + σ, i = 1, 2, γ̃1 = γ1 + p

α1R0(∞)
σ, and γ̃2 = γ2 + 1 − p

α2R0(∞)
σ.

Let Ť2σ (ε) be the sum of Ǐ1 and Ǐ2 at the unique positive equilibrium of system (4.13)
and T

′
2σ (∞) the limit of (4.6) as ε → ∞ associated to system (4.13). Note that

Ť20(ε) = Ť2(ε) and T′
20(∞) = T

′
2(∞). The limiting reproduction number as ε → ∞

associated to system (4.13) is the same as that of system (4.2), i.e.,

Rσ (∞) := β̃1α1 + β̃2α2

γ̃1α1 + γ̃2α2
= β1α1 + β2α2 + σ

γ1α1 + γ2α2 + σ/R0(∞)

= β1α1 + β2α2 + σ

(γ1α1 + γ2α2)(1 + σ/(β1α1 + β2α2))
= β1α1 + β2α2

γ1α1 + γ2α2
= R0(∞) > 1.

A straightforward but tedious computation gives

T
′
2σ (∞) := β̃2γ̃1 − β̃1γ̃2

β̃1α1 + β̃2α2
+

(
1 − 1

Rσ (∞)

)(
θ + (1 − θ)

1

Rσ (∞)

)
(β̃1 − β̃2)

= β̃2γ̃1 − β̃1γ̃2

β̃1α1 + β̃2α2
+

(
1 − 1

R0(∞)

)(
θ + (1 − θ)

1

R0(∞)

)
(β1 − β2)

= β2γ1 − β1γ2

β1α1 + β2α2
+ 1

α1α2R0(∞)
(p − α1)σ − β2γ1 − β1γ2

β1α1 + β2α2

= 1

α1α2R0(∞)
(p − α1)σ = 1

2α1R0(∞)
σ > 0
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for any σ > 0, where the second and third equalities are due to Rσ (∞) = R0(∞)

and T
′
2(∞) = 0. So it follows from Lemmas 4.1 and 4.9 that Ť ′

2σ (ε) > 0 for any
ε ≥ 0 and σ > 0. By the smoothness of Ť2σ (ε) in σ ∈ R+, we known Ť2σ (ε) is
uniformly convergent to Ť20(ε) = Ť2(ε) as σ → 0+ for ε in every bounded set on
R+. The monotonicity of Ť2σ (ε) in ε implies that Ť2(ε) is nondecreasing in ε, i.e.,
Ť ′
2(ε) ≥ 0 for any ε ≥ 0. Again by applying Lemma 4.9, we have Ť ′

2(ε) > 0 and
hence T ′

2(ε) > 0 on R+. 
�
A combination of Lemmas 2.1, 4.4, 4.10 and 4.11, and Remark 4.8 produce the

following theorem which means that T2(ε) is either constant (if and only if R(1)
0 =

R(2)
0 or R0(0) ≤ 1), or strictly decreasing, or strictly increasing, or initially strictly

increasing then strictly decreasing with respect to diffusion coefficient ε.

Theorem 4.12 Suppose R(1)
0 > max{R(2)

0 , 1} for model (4.1). Then we have

(a) if T ′
2(0+) ≤ 0, then T ′

2(ε) < 0 for all ε ∈ (0,∞) as R0(∞) ≥ 1 (or (0, ε∗) and
T ′
2(ε) = 0 for ε ∈ (ε∗,∞) asR0(∞) < 1);

(b) if 0 < T ′
2(0+) ≤ ∞ and R0(∞) < 1, then there exists ε1 ∈ (0, ε∗) such that

T ′
2(ε) > 0 for ε ∈ (0, ε1), T ′

2(ε) = 0 for ε = ε1, T ′
2(ε) < 0 for ε ∈ (ε1, ε

∗), and
T ′
2(ε) = 0 for ε ∈ (ε∗,∞);

(c) if 0 < T ′
2(0+) ≤ ∞, R0(∞) ≥ 1 and T

′
2(∞) ≥ 0, then T ′

2(ε) > 0 for all
ε ∈ (0,∞);

(d) if 0 < T ′
2(0+) ≤ ∞, R0(∞) ≥ 1 and T

′
2(∞) < 0, then there exist ε2 > 0

such that T ′
2(ε) > 0 for ε ∈ (0, ε2), T ′

2(ε) = 0 for ε = ε2, and T ′
2(ε) < 0 for

ε ∈ (ε2,∞).

We can see that the shape of T2(ε) is completely determined by the signs of
R0(∞)−1, T ′

2(0+) andT′
2(∞). It is noteworthy thatT′

2(∞) ≥ 0 impliesR0(∞) > 1,
T ′
2(0+) > 0 and T2(∞) > T2(0) provided that R0(∞) ≥ 1. An alternative way for

clarification of the shape of T2(ε) can be given in terms of sgn(T2(∞) − T2(0)).
In what follows, we present some results on how population dispersal affects the

disease prevalence, the population size and the infection size of the high-risk patch.
The proof can be found in Appendix B.

Proposition 4.13 Suppose R(1)
0 > R(2)

0 and R0(ε) > 1 for model (4.1). Then

(a) the difference of the disease prevalences of patches 1 and 2 satisfies d
dε

(
I ∗
1

N∗
1

− I ∗
2

N∗
2

)

< 0;
(b) the disease prevalence in patch 1 satisfies d

dε

(
I ∗
1

N∗
1

)
< 0;

(c) (i) if 0 < θ < 1, then the total population size of patch 1 satisfies
dN∗

1
dε

< 0;

(ii) if θ = 1, then
dN∗

1
dε

≡ 0 and N∗
1 (ε) ≡ α1N for ε ∈ [0,∞);

(iii) if θ > 1, then
dN∗

1
dε

> 0;
(d) if 0 < θ ≤ 1, or θ > 1 and T ′

2(0+) ≤ 0, then the infection size in patch 1 satisfies
d I ∗

1
dε

< 0;
(e) the population sizes of the susceptible and the infectious in patches 1 and 2 satisfy

d
dε

(
I ∗
1

α1
− I ∗

2
α2

)
< 0 and d

dε

(
S∗
1

α1
− S∗

2
α2

)
> 0, respectively.
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Remark 4.14 When only two patches are considered and 0 < θ ≤ 1, increasing
dispersal is good for the high-risk patch in reducing its infection size and disease
prevalence, but can be harmful to the whole patchy environment. The condition in
part (d) can probably be weakened through a delicate analysis. However, under some
parameter setting, we find that I ∗

1 (ε) may not be decreasing for sufficiently small or

large ε once
d I ∗

1
dε

(0+) > 0 or I ∗
1 (0) < I ∗

1 (∞) holds (e.g., β1 = 4, β2 = 2, γ1 = γ2 =
1, L12 = L21 = 1 and θ = 4), respectively. By Corollary 2.5 and Remark 3.2, it is
not surprising that N∗

1 (ε) changes its monotonicity with respect to ε as θ varies from
less than one to greater than one. It is easy to see that I ∗

2 /N∗
2 may constantly increase

or initially increase then decrease with respect to ε, whereas I ∗
2 can be decreasing,

increasing or nonmonotone in ε (e.g., R0(∞) < 1).

Remark 4.15 The disease persistence/extinction and the total infection size as ε → ∞,
characterized by (1−1/R0(∞))+N , are independent of θ = ε/δ, the relativemobility
of infected population to susceptible population, but the total infection size is affected
by θ when ε is finite.More specifically, the infection-caused change inmobility affects
T ′
2(0+), T2(∞) − T2(0) and T′

2(∞), and hence the sign pattern of T2(ε) − T2(0) and
the change pattern of T2(ε). In addition, the population size of a given patch and its
change pattern also depend on θ if the disease can persist.

Remark 4.16 The methods here can be applied to two-patch models with logistic
growth for a single species, introduced by Freedman and Waltman (1977) in 1977 to
study the effect of dispersal on total population abundance. Since then, many related
theoretical and experimental works have been done; see (Arditi et al. 2018; DeAngelis
et al. 2016a; He et al. 2019; Lou 2006; Wang et al. 2020; Zhang et al. 2017, 2015)
and the references therein for more details. We will further address this ecological
question and its applications to two competing species models in a forthcoming work
(Gao and Lou 2021).

5 Numerical Simulations

We will use a numerical approach to further explore the impact of the movement of
susceptible and infected populations on the local and global disease prevalence, I ∗

i /N∗
i

and Tn/N , respectively. For simplicity, the total population size across patches is fixed
at one, i.e., N = 1, such that the overall disease prevalence and the total infection size
have the same quantity. The ranges of parameters used below are chosen for illustrative
purpose only and may not necessarily be epidemiologically realistic.

Example 5.1 (T2 versus δ and ε) For model (1.1) with two patches, we make four
contour plots of the total infection size T2(δ, ε) under different parameter settings
in Fig. 1. In all four scenarios, both patches are sources with patch 1 having higher
infection risk, i.e.,R(1)

0 > R(2)
0 > 1. Figure 1a and b shows that T2 can simultaneously

increase and decrease with respect to δ and ε, the dispersal rates of susceptible and
infected populations, respectively. Moreover, near y-axis in Fig. 1a and x-axis in
Fig. 1b, T2 is increasing in δ but decreasing in ε. Figure 1c and d illustrates the
nonmonotonic dependence of T2 in terms of δ and ε, respectively. So even though Ť2
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Fig. 1 The contour plots of T2 versus δ and ε under four parameter settings: a β1 = 0.3, γ1 = 0.11, β2 =
0.1, γ2 = 0.05, L12 = 0.2, L21 = 0.3; b β1 = 0.15, γ1 = 0.05, β2 = 0.4, γ2 = 0.2, L12 = 0.2, L21 =
0.2; c β1 = 0.11, γ1 = 0.071, β2 = 0.15, γ2 = 0.109, L12 = 0.2, L21 = 0.1; d β1 = 0.14, γ1 =
0.1, β2 = 0.06, γ2 = 0.057, L12 = 0.03, L21 = 0.18

is increasing in θ = ε/δ for fixed ε (i.e., decreasing in δ), T2(δ, ε) can increasingly,
or decreasingly, or nonmonotonically depend on δ and ε. However, for a source-sink
patchy environment, i.e.,R(1)

0 > 1 > R(2)
0 , the endemic equilibrium E∗ approaches a

limiting disease-free equilibrium as δ → 0+, so we have T2(0+, ε) = 0 and T2(δ, ε)
must strictly decrease in δ near zero (Allen et al. 2007; Chen et al. 2020). We can
see from Fig. 1 that T2(δ, ε) still changes significantly in ε or δ for large δ or ε. This
suggests that T2(∞, ε) and T2(δ,∞) are nonconstant which agrees with Remark 3.6.

In Fig. 1, all points on a ray passing through the origin in the interior of the first
quadrant have the same slope θ = ε/δ. Thus, T2(ε) is strictly increasing in ε in Fig.
1a, strictly decreasing in ε in Fig. 1b and c, and initially increasing then decreasing
in ε for small and medium θ but strictly increasing in ε for large θ in Fig. 1d. The
dependence of Tn on δ and ε becomes more complicated and some properties of the
two-patch submodel like Lemmas 4.4 and 4.10 may fail for model (1.1) with three
or more patches (Gao 2020). It should be noted that the threshold quantity R0 is
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(a) (b)

Fig. 2 The curves of (T2(∞) − T2(ε))ε against ε (in logarithmic scale) with θ = 0.2 (blue solid), 1 (red
dashed), and 5 (black dotted) for a source–source and b source–sink patchy environment. See main text for
parameter settings (Color figure online)

independent of δ but strictly decreasing in ε for the model with an arbitrary number
of patches.

Example 5.2 (rate of convergence for Tn(ε) → Tn(∞) as ε → ∞) For model
(3.1) with R0(∞) > 1, it follows from Theorem 3.1 that Tn(ε) → Tn(∞) =
(1− 1/R0(∞))N as ε → ∞. It is biologically meaningful and mathematically inter-
esting to examine how fast the convergence speed is. Consider the two-patch submodel
(4.2) with the parameter setting: β1 = 0.3, γ1 = 0.15, β2 = 0.25, γ2 = 0.2, L12 =
0.05, L21 = 0.1, which gives R(1)

0 = 2 > R0(∞) = 1.45 > R(2)
0 = 1.25 and

T2(∞) = 0.31. The dependence ofW2(ε) := (T2(∞)−T2(ε))ε in ε for θ = 0.2, 1, 5
are illustrated in Fig. 2a. Clearly, W2(ε) converges to a constant as ε → ∞, which
suggests that T2(ε) = T2(∞) + O(1/ε). The limit of W2(ε) varies with θ and for
fixed ε larger W2(ε) in θ corresponds to smaller T2(ε). Using the same parameter
set except that β2 = 0.15 so that R(1)

0 = 2 > R0(∞) = 1.09 > R(2)
0 = 0.75 and

T2(∞) = 0.083. Now patch 2 changes from a source patch to a sink patch, but the
function W2(ε) remains convergent as ε → ∞ (see Fig. 2b).

Moreover, for 2-, 3- and 4-patch cases, we use the Latin hypercube sampling
(LHS) method to randomly generate 104 parameter sets with βi , γi , Li j ∈ (0, 1] and
θ ∈ (0, 5] and obtain 5007, 5082, and 5037 qualified scenarios whose corresponding
R0(∞) > 1, respectively. We calculate the relative change of Wn(ε) from ε = 105 to
106 for each qualified scenario,

Wn(106) − Wn(105)

Wn(105)
= Wn(106)

Wn(105)
− 1,

and find that the average and maximum values are 2.94 × 10−5 and 6.22 × 10−3,
4.31 × 10−3 and 1.83, 2.46 × 10−3 and 0.54 for n = 2, 3, 4, respectively. These
simulation results strongly suggest that

Tn(ε) = Tn(∞) + O(1/ε), or equivalently, Ťn(ε) = Ťn(∞) + O(1/ε),

123



   73 Page 32 of 41 Journal of Nonlinear Science            (2021) 31:73 

as ε → ∞ provided that n ≥ 2 and R0(∞) > 1. Furthermore, we numerically find
that even I ∗

i (ε) = I ∗
i (∞) + O(1/ε) holds as ε → ∞ for each i ∈ � provided that

n ≥ 2 and R0(∞) > 1. We leave the rigorous proof of this observation for a future
work. It is worth mentioning that R0(ε) = R0(∞) + O(1/ε) also holds as ε → ∞
(Tien et al. 2015).

Example 5.3 (failure of order preservation) The conclusion that the disease prevalence
of each patch in connection is between the maximum and minimum of the set of the
disease prevalences of each isolated patch may fail if the connectivity matrices for
susceptible and infectious populations, respectively, denoted by L and K , are different.
Namely, consider a generalized model as follows

dSi
dt

= −βi
Si Ii
Ni

+ γi Ii + ε
∑

j∈�

Li j S j , i ∈ �,

d Ii
dt

= βi
Si Ii
Ni

− γi Ii + ε
∑

j∈�

Ki j I j , i ∈ �

(5.1)

with nonnegative initial condition satisfying

∑
i∈�

(Si (0) + Ii (0)) := N > 0 and
∑

i∈�
Ii (0) > 0.

For the two-patch case, we choose the following parameter set

β1 = 0.4, γ1 = 0.28, β2 = 0.4, γ2 = 0.3, L12 = 0.5, L21 = 0.1, K12 = 0.1, K21 = 0.5.

The disease prevalences of patch 1, patch 2, and both patches at the endemic equilib-
rium versus the diffusion coefficient ε are plotted in Fig. 3a. When the two patches are
isolated, the disease prevalences of patches 1 and 2 are 0.3 and 0.25, respectively. As
the dispersal rate increases, the disease prevalence of patch 1 is constantly decreasing
while that of patch 2 is initially increasing then decreasing. For larger dispersal rate, the
disease prevalence of patch 1 is less than that of patch 2 (low-risk patch) in isolation,
the disease prevalence of patch 2 exceeds that of patch 1 (high-risk patch) in isolation,
and the overall disease prevalence is below the minimum of the disease prevalences
of the two isolated patches. Figure 3b is illustrated by using the same parameter set
except that the connectivity matrices L and K are changed to their respective trans-
poses. The disease prevalence of the high-risk patch becomes even larger while that
of the low-risk patch becomes even smaller when population dispersal presents. The
choices of L and K make less susceptible individuals but more infected individuals
move from low-risk patch to high-risk patch, which results in an even higher disease
prevalence for the high-risk patch.
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(a) (b)

Fig. 3 The disease prevalences of patch 1 (blue solid), patch 2 (red dashed) and both patches (black dotted)
versus diffusion coefficient for (5.1) in two scenarios. See main text for parameter settings (Color figure
online)

6 Discussion

In most theoretical studies on spatial epidemic models, the central objective is to
explore the influence of human movement on the disease dynamics. Usually a sharp
threshold result between disease persistence and extinction can be gained in terms of
the basic reproduction number. When a disease is endemic in a discrete or continuous
space, it is important to know how population dispersal affects the local and global
disease prevalence at the endemic equilibrium or other attractors. Although the repro-
duction number can determine whether an emerging infectious disease can spread
in a population or not, it can hardly measure the endemic level in most cases. This
motivates us to study the quantitative property of the positive steady state. It appears
there are rather few analytical studies in this topic (Gao 2020).

In the current paper, based on an SIS patch model, we first gave an estimate of
the disease prevalence of each connected patch with respect to those of all isolated
patches and established a weak order-preserving result associated with patch disease
prevalence and patch reproduction number. Dispersal reduces the disease prevalence
of the highest-risk patch but promotes that of the lowest-risk patch. In case of two
patches, high-risk patch still has high disease prevalence in the presence of human
migration. Then we studied the total infection size, or equivalently, the overall disease
prevalence in case the dispersal rate of the susceptible population is proportional to that
of the infected population. The total infection sizes at no dispersal and infinite dispersal
were calculated and compared. In particular, if the recovery rate is unanimous then fast
dispersal leads to more infections than slow dispersal. Furthermore, for the two-patch
submodel, we completely answered the questions of when dispersal causes more or
less infections and how the total number of infections changes with dispersal rate.
Finally, three numerical examples were given to investigate the relationship between
the total infection size and dispersal rates, the convergence speed of the total infection
size Tn(ε) as ε → ∞, and the occurrence of non-order-preserving phenomenon,
respectively. The strict monotonicity of R0(ε) in ε implies that R0(0) and R0(∞)

are the supremum and infimum of R0(ε), respectively. However, the two-patch case
indicates that Tn(ε) can at least increase, or decrease, or initially increase then decrease
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in ε. Thus, Tn(0) and Tn(∞) could be the supremum, infimum or neither of Tn(ε).
The inconsistence between the basic reproduction number and the overall disease
prevalence with respect to dispersal rates indicates that public agencies should not
focus solely on reducing the basic reproduction number in the fight against infectious
diseases.

We extensively generalized and improved the results of our recent work (Gao 2020)
from the very special case of θ = 1 to the general case of θ > 0. The infection-
caused change in mobility for the infected people impacts population distribution,
total infection size, and its distribution and change pattern. For the two-patch submodel
with any positive constant θ , it is no longer easy, if not impossible, to use the graphical
method to classify the model parameter space on when dispersal results in more or
less infections than no dispersal (Arditi et al. 2018; Gao 2020). The approach used
in proving Lemma 4.1 is quite skillful in factoring Ť ′

2(ε) and deriving Ť2(ε) − Ť2(0).
Importantly, in Lemma 4.10 we showed that any nontrivial critical point of T2(ε)
must be a local maximum point. The relation between T2(ε) and T2(0) is wholly
governed by the signs of T ′

2(0+) and T2(∞) − T2(0), while the shape of T2(ε) is
completely determined by the signs of R0(∞) − 1, T ′

2(0+) and T
′
2(∞). Here the

terms T2(0), T ′
2(0+) and T′

2(∞) are dependent of θ (Proposition 4.6, Proposition 4.7
and Remark 4.8). One application of this finding is that it enables us to have a much
better understanding of dispersal on total population abundance for the two-patch
logistic model (Arditi et al. 2018; Freedman and Waltman 1977; Gao and Lou 2021).

When vital dynamics are incorporated into model (1.1) (Wang and Mulone 2003),
we get

dSi
dt

= μi Ni − μi Si − βi
Si Ii
Ni

+ γi Ii + δ
∑

j∈�

Li j S j , i ∈ �,

d Ii
dt

= βi
Si Ii
Ni

− (μi + γi )Ii + ε
∑

j∈�

Li j I j , i ∈ �,

where μi is the birth rate and death rate of the population in patch i . The main results
in this paper remain valid since a result similar to Lemma 1.1 on the existence and
uniqueness of the endemic equilibrium asR0 > 1 can be similarly proved. This study
is also applicable to an SIS patch model with different contact rates ci and kci but
equal dispersal rates for the susceptible and infectious populations.

There is still room for improvement. Itwill be nice to compute the derivative of Tn(ε)
with respect to large ε for n ≥ 3 and determine its sign to see the change trend of Tn(ε)
for large dispersal. The observation on the rate of convergence for Tn(ε) as ε → ∞
desires a rigorous proof (DeAngelis et al. 2016a; Lou 2006). What happens to Tn(ε) if
there are three or more patches? A detailed study of the dependence of Tn on δ, ε and
Li j is helpful to evaluate the effectiveness of border screening and travel restrictions,
especially during the ongoing COVID-19 pandemic. The global asymptotic stability
of the unique endemic equilibrium is generally unknown (Gao and Ruan 2011; Li and
Peng 2019). We are interested in generalizing the current work in various ways, e.g.,
by considering complicated vital dynamics (Wang and Zhao 2004), state-dependent
connectivity matrices (Gao and Ruan 2011), temporal variations (Gao et al. 2014),
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different model structures (Cosner et al. 2009; Gao and Ruan 2012; Salmani and van
den Driessche 2006), and continuous or nonlocal diffusion (Allen et al. 2008; Lou and
Zhao 2010; Yang et al. 2019).
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Appendix A: Proof of Theorem 2.3

Proof We only prove the first part while the second part can be shown similarly.
Suppose not, then there exists some δ0 > 0 and ε0 > 0 such that I ∗

1 /N∗
1 = min

i∈�
I ∗
i /N∗

i .

Claim 1: I ∗
1 /N∗

1 = · · · = I ∗
n /N∗

n if and only ifR(1)
0 = · · · = R(n)

0 . Suppose I ∗
i /N∗

i =
τ ∈ (0, 1) for all i ∈ �, then

∑

j∈�

Li j I
∗
j =

∑

j∈�

Li jτN
∗
j = τ

⎛

⎝
∑

j∈�

Li j S
∗
j +

∑

j∈�

Li j I
∗
j

⎞

⎠

implies that

∑

j∈�

Li j S
∗
j = 1 − τ

τ

∑

j∈�

Li j I
∗
j

and hence

0 = δ
∑

j∈�

Li j S
∗
j + ε

∑

j∈�

Li j I
∗
j =

(
δ
1 − τ

τ
+ ε

) ∑

j∈�

Li j I
∗
j .

Thus, we have

∑

j∈�

Li j I
∗
j = 0 ⇒ fi (I

∗
i ) := βi

(
1 − I ∗

i

N∗
i

)
I ∗
i − γi I

∗
i = 0 ⇒ I ∗

i

N∗
i

= 1 − 1

R(i)
0

= τ

and hence R(i)
0 = 1/(1 − τ) for all i ∈ �. On the other hand, if R(1)

0 = · · · = R(n)
0 ,

then R0 = R(1)
0 > 1 and the unique endemic equilibrium E∗ = (S∗, I∗) of system

(1.1) satisfies

S∗
i = 1

R0
αi N and I ∗

i =
(
1 − 1

R0

)
αi N , i ∈ �.

So, I ∗
i /N∗

i = 1 − 1/R0 for i ∈ �.
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Claim 2: fi (I ∗
i ) �≡ 0 for i ∈ �. Suppose not, then

fi (I
∗
i ) = 0 ⇔

∑

j∈�

Li j I
∗
j = 0 ⇔

∑

j∈�

Li j S
∗
j = 0, i ∈ �

implies that I ∗
i /N∗

i is constant in i ∈ �, which is impossible by Claim 1.
Claim 3: If fk(I ∗

k ) > 0 for some k ∈ � then f1(I ∗
1 ) > 0. Indeed, it follows that

f1(I ∗
1 )

γ1 I ∗
1

= β1

γ1
· S∗

1

N∗
1

− 1 ≥ βk

γk
· S∗

k

N∗
k

− 1 = fk(I ∗
k )

γk I ∗
k

> 0

due toR(1)
0 = β1

γ1
≥ R(k)

0 = βk
γk

and
I ∗
1

N∗
1

≤ I ∗
k

N∗
k
.

It follows from the above claims and the fact

∑

i∈�

⎛

⎝ fi (I
∗
i ) + ε

∑

j∈�

Li j I
∗
j

⎞

⎠ =
∑

i∈�

fi (I
∗
i ) = 0

that there exist k, l ∈ � such that fk(I ∗
k ) > 0 and fl(I ∗

l ) < 0. In particular, f1(I ∗
1 ) > 0.

On the other hand, we have

∑

j∈�

L1 j I
∗
j ≥

∑

j∈�

L1 j
I ∗
1

N∗
1
N∗

j = I ∗
1

N∗
1

∑

j∈�

L1 j N
∗
j

⇒
(
1 − I ∗

1

N∗
1

) ∑

j∈�

L1 j I
∗
j ≥ I ∗

1

N∗
1

∑

j∈�

L1 j S
∗
j = I ∗

1

N∗
1

(
−ε

δ

) ∑

j∈�

L1 j I
∗
j

⇒
∑

j∈�

L1 j I
∗
j ≥ 0.

So the left-hand side of the equilibrium equation for I ∗
1 is positive, a contradiction. 
�

Appendix B: Proof of Proposition 4.13

Proof (a) Suppose R0(ε) > 1 for some ε > 0. It follows from (4.4) that

d

dε

(
2∑

i=1

(−1) j
I ∗
i

N∗
i

)

= d

dε

(
2∑

i=1

(−1) j
Ǐ ∗
i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

)
=

2∑

i=1

(−1) j
θαi ( Ǐ ∗

i )′

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

=
2∑

i=1

(−1) j
θαi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2
· L21 Ǐ ∗

1 − L12 Ǐ ∗
2

|M̃2|
· (−1) j
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×
(

εLi j − εL ji
Ǐ ∗
i

Ǐ ∗
j

− θβ jα j Ǐ ∗
j

(θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )
2

)

= L21 Ǐ ∗
1 − L12 Ǐ ∗

2

|M̃2|
2∑

i=1

θαi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

×
(

β j − γ j − β j Ǐ ∗
j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

− θβ jα j Ǐ ∗
j

(θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )
2

)
,

where 1 ≤ j ≤ 2 and j �= i . Thus, using (4.5), ifR(2)
0 ≥ 1 − 1/θ then

2∑

i=1

αi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

(
β j − γ j − β j Ǐ ∗

j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

− θβ jα j Ǐ ∗
j

(θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )
2

)

=
2∑

i=1

αi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

(
− (θ(β j − γ j ) + γ j ) Ǐ ∗

j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

+ θα j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

ǧ j ( Ǐ
∗
j )

)

<

2∑

i=1

αi

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2
· θα j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

ǧ j ( Ǐ
∗
j ) < 0,

by noting that

2∑

j=1

(θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )

(
β j − γ j − β j Ǐ ∗

j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

)

=
2∑

j=1

(θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )
ε(Li j Ǐ ∗

j − L ji Ǐ ∗
i )

Ǐ ∗
j

=ε(L21 Ǐ
∗
1 − L12 Ǐ

∗
2 )

(
θα1

Ǐ ∗
1

− θα2

Ǐ ∗
2

)
= θε(L21 Ǐ

∗
1 − L12 Ǐ

∗
2 )

α1 Ǐ ∗
2 − α2 Ǐ ∗

1

Ǐ ∗
1 Ǐ

∗
2

= − θε

(L12 + L21) Ǐ ∗
1 Ǐ

∗
2

(L21 Ǐ
∗
1 − L12 Ǐ

∗
2 )2 < 0.

(B.1)

On the other hand, if θ > 1/2 then the conclusion follows from

2∑

i=1

αi (θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )
2

(
β j − γ j − β j Ǐ ∗

j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

− θβ jα j Ǐ ∗
j

(θ(α j − Ǐ ∗
j ) + Ǐ ∗

j )
2

)

<

2∑

i=1

αi (θα j + (1 − θ) Ǐ ∗
j )

2

(
β j − γ j − β j Ǐ ∗

j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

)

=
2∑

i=1

(θ2α1α2α j + (1 − θ)2αi ( Ǐ
∗
j )

2)

(
β j − γ j − β j Ǐ ∗

j

θ(α j − Ǐ ∗
j ) + Ǐ ∗

j

)
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=
2∑

i=1

(θ2α1α2α j + (1 − θ)2αi ( Ǐ
∗
j )

2)
ε(Li j Ǐ ∗

j − L ji Ǐ ∗
i )

Ǐ ∗
j

= ε(L21 Ǐ
∗
1 − L12 Ǐ

∗
2 )

(
θ2α1α2

(
α1

Ǐ ∗
1

− α2

Ǐ ∗
2

)
+ (1 − θ)2(α2 Ǐ

∗
1 − α1 Ǐ

∗
2 )

)

= ε(L21 Ǐ
∗
1 − L12 Ǐ

∗
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(
α1

Ǐ ∗
1

− α2

Ǐ ∗
2

)
Ǐ ∗
1 Ǐ

∗
2

(
θ2

α1α2

Ǐ ∗
1 Ǐ

∗
2

− (1 − θ)2

)
< 0,

where the first equality is due to f̌1( Ǐ ∗
1 ) + f̌2( Ǐ ∗

2 ) = 0.

(b) It immediately follows from the calculation of d
dε

(
I ∗
1

N∗
1

)
in part (a).

(c) By (2.1), a straightforward calculation gives

dN∗
1

dε
= d

dε
(S∗

1 + I ∗
1 ) = d

dε

(
θα1 + (1 − θ) Ǐ ∗

1

θ + (1 − θ)Ť2
N

)

= (θ(α2 − Ǐ ∗
2 ) + Ǐ ∗

2 )( Ǐ ∗
1 )′ − (θ(α1 − Ǐ ∗
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1 )( Ǐ ∗

2 )′

(θ + (1 − θ)Ť2)2
(1 − θ)N .

So, it remains to prove the negativity of

(θ(α2 − Ǐ∗2 ) + Ǐ∗2 )( Ǐ∗1 )′ − (θ(α1 − Ǐ∗1 ) + Ǐ∗1 )( Ǐ∗2 )′) =
2∑

i=1

(−1)i (θ(αi − Ǐ∗i ) + Ǐ∗i )( Ǐ∗j )′
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∗
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∗
2
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(−1)i

(
ǧi ( Ǐ

∗
i ) − θβiαi Ǐ

∗
i

(θ(αi − Ǐ∗i ) + Ǐ∗i )2

)
,

which is guaranteed by

2∑

i=1

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )

(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

− θβiαi Ǐ ∗
i

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

)

<

2∑

i=1

(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )

(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
i ) + Ǐ ∗

i

)
< 0.

The second inequality is due to (B.1).
(d) Direct calculation yields

d I ∗
1

dε
= d

dε

(
Ǐ ∗
1

θ + (1 − θ)Ť2
N

)
= θ( Ǐ ∗

1 )′ + (1 − θ)(( Ǐ ∗
1 )′ Ǐ ∗

2 − Ǐ ∗
1 ( Ǐ ∗

2 )′)
(θ + (1 − θ)Ť2)2

N

<
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So, if 0 < θ ≤ 1 then it suffices to determine the sign of

|M̃2|
L21 Ǐ ∗

1 − L12 Ǐ ∗
2

(( Ǐ ∗
1 )′ Ǐ ∗

2 − Ǐ ∗
1 ( Ǐ ∗
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j )
′

=
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(
βi − γi − βi Ǐ ∗

i

θ(αi − Ǐ ∗
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i

− θβiαi Ǐ ∗
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(θ(αi − Ǐ ∗
i ) + Ǐ ∗

i )2

)

<
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i

(
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i
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i ) + Ǐ ∗

i
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=

2∑

i=1

ε(Li j Ǐ
∗
j − L ji Ǐ

∗
i ) = 0,

where 1 ≤ j ≤ 2 and j �= i . This can also be directly proved by applying parts (b) and

(c) due to
I ∗
1

N∗
1
N∗
1 = I ∗

1 . Meanwhile, it follows from the proof of part (c) and Lemma

4.1 that the inequality

θ( Ǐ ∗
1 )′ + (1 − θ)(( Ǐ ∗

1 )′ Ǐ ∗
2 − Ǐ ∗

1 ( Ǐ ∗
2 )′)

= ( Ǐ ∗
1 )′(θ(α2− Ǐ ∗

2 )+ Ǐ ∗
2 )−( Ǐ ∗
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1 )

+θα1( Ǐ
∗
1 + Ǐ ∗
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′
2(ε) ≤ 0

holds whenever T ′
2(0+) ≤ 0.

(e) It follows from ε(L21 I ∗
1 − L12 I ∗

2 ) + δ(L21S∗
1 − L12S∗

2 ) = 0 that

L21N
∗
1 − L12N

∗
2 = (L21 + L12)N

∗
1 − L12N =(L21S

∗
1 − L12S

∗
2 )+(L21 I

∗
1 − L12 I

∗
2 )

= (1 − θ)(L21 I
∗
1 − L12 I

∗
2 ) = (1 − 1/θ)(L21S

∗
1 − L12S

∗
2 ).

Thus, we can draw the conclusion by applying parts (a) and (c) for θ =1 and θ �=1. 
�
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