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NONLINEAR DIFFUSION PROBLEMS WITH FREE BOUNDARIES:
CONVERGENCE, TRANSITION SPEED, AND ZERO NUMBER

ARGUMENTS∗
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Abstract. This paper continues the investigation of [Du and Lou, J. Eur. Math. Soc. (JEMS),
arXiv:1301.5373, 2013], where the long-time behavior of positive solutions to a nonlinear diffusion
equation of the form ut = uxx + f(u) for x over a varying interval (g(t), h(t)) was examined. Here
x = g(t) and x = h(t) are free boundaries evolving according to g′(t) = −μux(t, g(t)), h′(t) =
−μux(t, h(t)), and u(t, g(t)) = u(t, h(t)) = 0. We answer several intriguing questions left open in
that investigation. First we prove the conjectured convergence result for the general case that f is
C1 and f(0) = 0. Second, for bistable and combustion types of f , we determine the asymptotic
propagation speed of h(t) and g(t) in the transition case. More presicely, we show that when the
transition case happens, for bistable type of f there exists a uniquely determined c1 > 0 such that
limt→∞ h(t)/ ln t = limt→∞ −g(t)/ ln t = c1, and for combustion type of f , there exists a uniquely
determined c2 > 0 such that limt→∞ h(t)/

√
t = limt→∞ −g(t)/

√
t = c2. Our approach is based on

the zero number arguments of Matano and Angenent and on the construction of delicate upper and
lower solutions.
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1. Introduction. We continue the work of Du and Lou [5] on certain nonlinear
diffusion equations with free boundaries in space dimension 1. We are particularly
interested in the long-time dynamical behavior of the problem for monostale, bistable
and combustion types of nonlinearities. We answer several intriguing questions left
open in [5] and so complete a rather general theory for the one space dimension case
of this type of nonlinear free boundary problems.

Our nonlinear diffusion problem has the following form:

(1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = uxx + f(u), g(t) < x < h(t), t > 0,
u(t, g(t)) = u(t, h(t)) = 0, t > 0,
g′(t) = −μux(t, g(t)), t > 0,
h′(t) = −μux(t, h(t)), t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

where x = g(t) and x = h(t) are the moving boundaries to be determined together
with u(t, x), μ is a given positive constant, and f : [0,∞) → R is a C1 function
satisfying

(1.2) f(0) = 0.
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3556 YIHONG DU, BENDONG LOU, AND MAOLIN ZHOU

The initial function u0 belongs to X (h0) for some h0 > 0, where

(1.3)
X (h0) :=

{
φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0,

φ′(h0) < 0, φ(x) > 0 in (−h0, h0)
}
.

Under these general conditions, (1.1) has a unique locally defined classical solu-
tion, which is globally defined if u(t, x) stays finite for every t > 0. In particular the
solution is globally defined if there exists C > 0 such that u(t, x) ≤ C whenever it is
defined. Such an a priori bound of the solution is guaranteed if we assume further that
f(u) ≤ 0 for all large u, say, for u ≥ M with some M > 0. Moreover, g′(t) < 0 and
h′(t) > 0 as long as they are defined. Therefore, in the case that (u, g, h) is defined
for all t > 0, g∞ := limt→∞ g(t) and h∞ := limt→∞ h(t) are well-defined.

The first main result of [5] is the following convergence theorem for a general
nonlinear term, namely, f is C1 satisfying f(0) = 0.

Theorem A. Under the above assumptions on f , suppose that (u, g, h) is a
solution of (1.1) that is defined for all t > 0, and u(t, x) stays bounded, namely,

u(t, x) ≤ C for all t > 0, x ∈ [g(t), h(t)] and some C > 0.

Then (g∞, h∞) is either a finite interval or (g∞, h∞) = R
1. Moreover, if (g∞, h∞) is

a finite interval, then limt→∞ maxx∈[g(t),h(t)] u(t, x) = 0, and if (g∞, h∞) = R
1, then

either limt→∞ u(t, x) is a nonnegative constant solution of

(1.4) vxx + f(v) = 0, x ∈ R
1

or

(1.5) u(t, x)− v(x + γ(t)) → 0 as t → ∞,

where v is an evenly decreasing positive solution of (1.4), γ : [0,∞) → [−h0, h0] is a
continuous function, and the convergence of u as t → ∞ is uniform over any bounded
interval of x.

Here we say v(x) is evenly decreasing if v is an even function and v′(x) < 0 for
x > 0.

When (1.5) holds, it is conjectured in [5] that limt→∞ γ(t) exists. Our first theo-
rem in this paper gives a positive answer to this conjecture.

Theorem 1.1. If (1.5) holds in Theorem A, then limt→∞ γ(t) = x0 for some
x0 ∈ [−h0, h0]. Therefore we have

u(t, x)− v(x+ x0) → 0 as t → ∞.

For monostable, bistable, and combustion types of f(u) (to be recalled in detail
below), [5] examined the long-time behavior of (u, g, h). If f(u) is monostable, it is
shown that there is a spreading-vanishing dichotomy.

Theorem B. Suppose that f(u) is monostable. Then the solution (u, g, h) is
defined globally and as t → ∞, either

(i) Spreading: (g∞, h∞) = R
1 and limt→∞ u(t, x) = 1 locally uniformly in R

1;
or

(ii) Vanishing: (g∞, h∞) is a finite interval with length no bigger than π/
√
f ′(0)

and limt→∞ maxg(t)≤x≤h(t) u(t, x) = 0.
In contrast, for bistable and combustion types of f(u), a trichotomy holds.
Theorem C. If f(u) is bistable, then the solution (u, g, h) is defined globally and

as t → ∞, eitherD
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NONLINEAR DIFFUSION PROBLEMS WITH FREE BOUNDARIES 3557

(i) Spreading: (g∞, h∞) = R
1 and limt→∞ u(t, x) = 1 locally uniformly in R

1;
or

(ii) Vanishing: (g∞, h∞) is a finite interval and limt→∞ maxg(t)≤x≤h(t) u(t, x) =
0; or

(iii) Transition: (g∞, h∞) = R
1 and there exists a continuous function γ : [0,∞)

→ [−h0, h0] such that1

lim
t→∞ |u(t, x)− V (x+ γ(t))| = 0 locally uniformly in R

1,

where V is the unique ground state, that is, the unique positive solution to

v′′ + f(v) = 0 (x ∈ R
1), v′(0) = 0, v(−∞) = v(+∞) = 0.

Theorem D. If f(u) is of combustion type, then the solution (u, g, h) is defined
globally and as t → ∞, either

(i) Spreading: (g∞, h∞) = R
1 and limt→∞ u(t, x) = 1 locally uniformly in R

1;
or

(ii) Vanishing: (g∞, h∞) is a finite interval and limt→∞ maxg(t)≤x≤h(t) u(t, x) =
0; or

(iii) Transition: (g∞, h∞) = R
1 and limt→∞ u(t, x) = θ locally uniformly in R

1,
where θ is the largest zero of f(u) in (0, 1).

If we take the initial function of the form u0 = σφ for some φ ∈ X (h0), it is
shown in [5] that in Theorems C and D, there exists σ∗ = σ∗(h0, φ) ∈ (0,∞] such
that vanishing happens when 0 < σ < σ∗, spreading happens when σ > σ∗, and
transition happens when σ = σ∗.

When spreading happens, the following result of [5] gives a first estimate of the
spreading speed.

Theorem E. Suppose that f(u) is of monostable, bistable, or combustion type.
Then the problem

(1.6)

{
qzz − cqz + f(q) = 0 for z ∈ (0,∞),
q(0) = 0, μqz(0) = c, q(∞) = 1, q(z) > 0 for z > 0,

has a unique solution pair (c, q) = (c∗, q∗), and c∗ > 0, (q∗)′(z) > 0. Moreover, if
spreading happens in Theorem B, C, or D, then

lim
t→∞

h(t)

t
= lim

t→∞
−g(t)

t
= c∗.

What is missing from [5] is an estimate of the propagation speed of h(t) and
g(t) in the transition cases of Theorems C and D. This turns out to be a difficult
mathematical question, especially for the combustion case. Our second main result in
this paper gives a first estimate of the propagation speed for these transition cases.

In order to state these estimates precisely, we recall that f is called bistable if
f ∈ C1 and it satisfies

(1.7) f(0) = f(θ) = f(1) = 0, f(u)

⎧⎨
⎩

< 0 in (0, θ),
> 0 in (θ, 1),
< 0 in (1,∞)

1By Theorem 1.1, the conclusion here can now be improved to: There exists x0 ∈ [−h0, h0] such
that u(t, x)− V (x+ x0) → 0 in L∞

loc(R
1) as t → ∞.
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3558 YIHONG DU, BENDONG LOU, AND MAOLIN ZHOU

for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0, and

(1.8)

∫ 1

0

f(s)ds > 0.

We say f is of combustion type if f ∈ C1 and it satisfies

(1.9) f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in (1,∞)

for some θ ∈ (0, 1), and there exists a small δ > 0 such that f(u) is nondecreasing in
(θ, θ + δ).

Theorem 1.2. Suppose additionally2

(1.10) f ∈ C1+α([0, δ]) for some small δ > 0 and some α ∈ (0, 1).

Then in the transition case of Theorem C, we have

h(t),−g(t) = λ0 ln t+O(1) with λ0 = [−f ′(0)]−1/2,

and in the transition case of Theorem D, we have

h(t),−g(t) = 2ξ0
√
t [1 + o(1)],

where ξ0 > 0 is uniquely determined by

(1.11) 2ξ0e
ξ20

∫ ξ0

0

e−s2ds = μθ.

Free boundary problems of the form (1.1) were first studied in [4] for the special
case f(u) = au − bu2. When f(u) ≡ 0, (1.1) reduces to the classical Stefan problem
describing the melting of ice in contact with water (in a simplified one space dimension
setting). In such a situation, u(t, x) represents the temperature of water, and the
free boundaries are the ice-water interphases. Problem (1.1) with a nonlinear f(u)
may arise if one considers the situation that water is replaced by a heat conductive
and chemically reactive liquid, where f(u) governs the reaction. The study of [4],
however, was motivated by investigation of the spreading of a new or invasive species,
where the free boundaries x = g(t) and x = h(t) represent the spreading fronts of
the species whose density is u(t, x). Together with [5], the current paper provides a
rather complete understanding of the dynamics of (1.1) in one space dimension. The
high space dimension versions of (1.1) were considered in [2, 3, 7, 9], but the theory
for this more challenging situation is not as complete yet compared with the theory
for the one space dimension case established in [5] and here.

One main ingredient in our approach here is the zero number arguments of
Matano and Angenent. The zero number argument was first introduced by Matano
[13] to prove some important convergence results for nonlinear parabolic equations
over bounded spatial intervals, and it was further developed by Angenent [1] and
others. It has proven to be a very powerful tool for treating parabolic equations in
one space dimension, with several new applications found recently (see, for example,
[5, 6, 10, 14, 15]). Our application of the zero number argument here (especially in
section 4) provides one more example, but with a rather different nature.

2In the combustion case, f(u) ≡ 0 in [0, θ], and hence (1.10) is automatically satisfied.
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We would like to remark that the estimate in Theorem E for the spreading speed
has been sharpened recently. In [8] it is proved that when spreading happens in
Theorem B, C, or D, there exist h0, g0 ∈ R

1 (depending on f and the initial conditions)
such that, as t → ∞,

|h(t)− c∗t− h0| → 0, |g(t) + c∗t+ g0| → 0, h′(t) → c∗, g′(t) → −c∗

and

max
0≤x≤h(t)

|u(t, x)− q∗(h(t)− x)| → 0, max
g(t)≤x≤0

|u(t, x)− q∗(x− g(t))| → 0.

However, it appears unlikely that the techniques in this paper can be modified to
prove similar sharper result for the transition case.

The rest of this paper is organized as follows. In section 2, we prove Theorem
1.1 by using and extending the zero number argument of Angenent [1]. In section 3,
we prove Theorem 1.2 for the bistable case by constructing suitable upper and lower
solutions. Section 4 is technically the most challenging part of the paper, where we
prove Theorem 1.2 for the combustion case; here we make use of the zero number
arguments again to handle several key steps of the proof.

2. Zero number arguments and convergence. In this section we make use
of the zero number arguments to prove Theorem 1.1. The following lemma is an easy
consequence of the proofs of Theorems C and D of Angenent [1], which is the starting
point of our zero number arguments.

Lemma 2.1. Let u : [0, T ]× [0, 1] → R
1 be a bounded classical solution of

(2.1) ut = a(t, x)uxx + b(t, x)ux + c(t, x)u

with boundary conditions

u(t, 0) = l0(t), u(t, 1) = l1(t),

where l0, l1 ∈ C1([0, T ]), and each function is either identically zero or never zero for
t ∈ [0, T ]. Suppose that

a, 1/a, at, ax, axx, b, bt, bx, c ∈ L∞, and u(0, ·) 	≡ 0 when l0 = l1 ≡ 0.

Then for each t ∈ (0, T ], the number of zeros of u(t, ·) in [0, 1] is finite, which will be
denoted by z(t). Moreover, z(t) is nonincreasing in t for t ∈ (0, T ], and if for some
t0 ∈ (0, T ] the function u(t0, ·) has a degenerate zero x0 ∈ [0, 1], then z(t1) > z(t2)
for all t1, t2 ∈ (0, T ] satisfying t1 < t0 < t2.

For convenience of applications later we give a variant of Lemma 2.1.
Lemma 2.2. Let ξ(t) < η(t) be two continuous functions for t ∈ (t0, t1). If u(t, x)

is a continuous function for t ∈ (t0, t1) and x ∈ [ξ(t), η(t)], and satisfies (2.1) in the
classical sense for such (t, x), with

u(t, ξ(t)) 	= 0, u(t, η(t)) 	= 0 for t ∈ (t0, t1),

then for each t ∈ (t0, t1), the number of zeros of u(t, ·) in [ξ(t), η(t)] is finite, which
we denote by Z(t). Moreover Z(t) is nonincreasing in t for t ∈ (t0, t1), and if for
some s ∈ (t0, t1) the function u(s, ·) has a degenerate zero x0 ∈ (ξ(s), η(s)), then
Z(s1) > Z(s2) for all s1, s2 satisfying t0 < s1 < s < s2 < t1.
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Proof. For any given t∗ ∈ (t0, t1), we can find ε > 0 and δ > 0 small such that
u(t, x) 	= 0 for t ∈ It∗ := [t∗−δ, t∗+δ] ⊂ (t0, t1) and x ∈ [ξ(t), ξ(t∗)+ε]∪[η(t∗)−ε, η(t)].
Hence we may apply Lemma 2.1 with [0, T ]× [0, 1] replaced by [t∗−δ, t∗+δ]× [ξ(t∗)+
ε, η(t∗) − ε] to see that the conclusions for Z(t) hold for t ∈ It∗ . Since any compact
subinterval of (t0, t1) can be covered by finitely many such It∗ , we see that Z(t) has
the required properties over any compact subinterval of (t0, t1). It follows that Z(t)
has the required properties for t ∈ (t0, t1).

Next we make use of Lemma 2.2 and a result of Fernandez [11] to prove Theorem
1.1. We first prove a zero number conclusion. Let (u, g, h) be a solution of (1.1) that
is defined for all t > 0. Denote k(t) := min{h(t),−g(t)} and

w(t, x) := u(t, x)− u(t,−x), x ∈ I(t) := [−k(t), k(t)], t > 0.

Let Z(t) be the number of zeros of the function w(t, ·) in the closed interval I(t). We
notice that w satisfies

wt = wxx + c(t, x)w for x ∈ (−k(t), k(t)), t > 0,

with c(t, x) := [f(u(t, x)) − f(u(t,−x))]/w(t, x) when w(t, x) 	= 0 and c(t, x) = 0
otherwise.

Lemma 2.3. Suppose that k(t) 	≡ K(t) := max{h(t),−g(t)} for t ∈ (0,+∞).
Then either

(i) w(t, x) ≡ 0 for all large t, or
(ii) there exists t0 > 0 such that Z(t) is finite and nonincreasing in t for t > t0,

and if w(s, ·) has a degenerate zero in the interior of I(s) for some s > t0,
then Z(s1) > Z(s2) for any s1 and s2 satisfying t0 < s1 < s < s2.

Lemma 2.3 will follow from Lemma 2.2 and the following result.
Lemma 2.4. Suppose that 0 < t0 < t1 < +∞ and

k(t) < K(t) for t ∈ [t0, t1), k(t1) = K(t1).

Then either
(i) k(t) ≡ K(t) and w(t, x) ≡ 0 for t ≥ t1, or
(ii) there exists s0 ∈ (t0, t1) and s1 > t1 such that k(t) < K(t) for t ∈ (t1, s1],

and Z(t) has the properties described in Lemma 2.3(ii) for t ∈ (t0, s1], with

Z(t) ≡ Z(s0) ≥ Z(t1) for t ∈ [s0, t1),(2.2)

Z(t) ≡ Z(s1) ≤ Z(t1)− 2 for t ∈ (t1, s1].

Proof. Suppose that alternative (i) does not happen. We show that the conclu-
sions in (ii) hold.

By Lemma 2.2, Z(t) has the properties described in case (ii) of Lemma 2.3 for
t ∈ (t0, t1); namely, it is finite and nonincreasing for t ∈ (t0, t1), and each time a
degenerate zero appears for w(t, ·) the value of Z(t) is decreased by at least 1. These
facts imply that in the interval (t0, t1) there can exist at most finitely many values
of t such that w(t, ·) has a degenerate zero. Thus we can find s0 ∈ (t0, t1) such that
for t ∈ [s0, t1), w(t, ·) has only nondegenerate zeros in I(t). Clearly w(t, 0) = 0 so
x = 0 is always a zero of w(t, ·). Due to the nondegeneracy, the zeros of w(t, ·), with
t ∈ [s0, t1), can be expressed as smooth curves:

x = γ1(t), . . . , x = γm(t), with −k(t) < γi(t) < γi+1(t) < k(t) for i = 1, . . . ,m− 1.
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For each i ∈ {1, . . . ,m}, we now examine the limit of γi(t) as t ↗ t1. Clearly

xj := lim inft↗t1 γj(t) ≥ −k(t1) and x∗
j := lim supt↗t1 γj(t) ≤ k(t1).

If xj < x∗
j , then it is easily seen that w(t1, x) ≡ 0 for x ∈ [xj , x

∗
j ]. We may now apply

Theorem 2 of [11] to w over the region [t1 − ε, t1]× [−k(t1 − ε), k(t1 − ε)], with ε > 0
sufficiently small, to conclude that w(t1, x) ≡ 0 for x ∈ [−k(t1 − ε), k(t1 − ε)]. Letting
ε → 0 we deduce w(t1, x) ≡ 0 for x ∈ [−k(t1), k(t1)]. This implies that u(t1, x) is even
in x. Since g(t1) = −h(t1) and u(t1, g(t1)) = u(t1, h(t1)) = 0, by the uniqueness of the
solution to the free boundary problem (1.1) (with initial time t1) we deduce that u(t, ·)
is even, and g(t) = −h(t) for all t ≥ t1. But this contradicts our assumption that case
(i) does not happen. Therefore xj := limt↗t1 γj(t) exists for every j ∈ {1, . . . ,m}.

Claim 1. x1 = −k(t1) and xm = k(t1).
We prove only xm = k(t1); the proof for x1 = −k(t1) is done similarly. Arguing

indirectly we assume that xm < k(t1). Then in the region Am := {(t, x) : γm(t) <
x < k(t), s0 < t ≤ t1}, by the maximum principle, we have w(t, x) > 0. Since
w(t1, k(t1)) = 0, we can apply the Hopf boundary lemma (see, e.g., Lemma 2.6 of [12])
to deduce that wx(t1, k(t1)) < 0. It follows that ux(t1, k(t1)) + ux(t1,−k(t1)) < 0.
Since k(t1) = h(t1) = −g(t1), we thus obtain

h′(t1) = −μux(t1, h(t1)) > μux(t1, g(t1)) = −g′(t1).

On the other hand, from −g(t) < h(t) for t ∈ [s0, t1) and h(t1) = −g(t1) we deduce
h′(t1) ≤ −g′(t1). This contradiction completes our proof of Claim 1.

Claim 2. If xi < xi+1, then w(t1, x) 	= 0 for x ∈ (xi, xi+1).
This follows directly from the strong maximum principle applied to the region

Ai := {(t, x) : γi(t) < x < γi+1(t), s0 ≤ t ≤ t1}.
From Claims 1 and 2, we immediately see that Z(t1) ≤ m = Z(t) for t ∈ [s0, t1).

Let −k(t1) = z1 < z2 < · · · < zn = k(t1) denote all the zeros of w(t1, ·) in I(t1) (with
n ≤ m).

Claim 3. Denote z∗ = (zn−1 + zn)/2. There exists ε > 0 such that w(t, x) 	= 0 for
t ∈ (t1, t1 + ε) and x ∈ [z∗, k(t)].

Clearly w(t1, z
∗) 	= 0. For definiteness, we assume that w(t1, z

∗) > 0. Hence
by continuity there exists ε > 0 such that w(t, z∗) > 0 for t ∈ [t1, t1 + ε]. We now
consider u(t, x) and v(t, x) := u(t,−x). Since u(t1, x) > v(t1, x) for x ∈ [z∗, k(t1)), and
u(t, z∗) > v(t, z∗) for t ∈ [t1, t1 + ε], and h(t1) = −g(t1), we find that the comparison
principle (see, e.g., Lemma 2.2 of [5]) can be used to deduce that −g(t) ≤ h(t) for
t ∈ (t1, t1 + ε] and v(t, x) ≤ u(t, x) for t ∈ (t1, t1 + ε] and x ∈ [z∗,−g(t)]. We may
use the strong maximum principle to deduce that v(t, x) < u(t, x) for t ∈ (t1, t1 + ε)
and x ∈ [z∗,−g(t)). We can further show that −g(t) < h(t) for t ∈ (t1, t1 + ε], since
if −g(t∗) = h(t∗) = x∗ for some t∗ ∈ (t1, t1 + ε], then necessarily w(t∗, x∗) = 0 and we
can apply the Hopf lemma to deduce wx(t

∗, x∗) < 0, which implies −g′(t∗) < h′(t∗),
a contradiction. Thus we have k(t) = −g(t) for t ∈ (t1, t1 + ε) and w(t, k(t)) > 0 for
such t. Hence w(t, x) > 0 in {(t, x) : z∗ ≤ x ≤ k(t), t1 ≤ t ≤ t1 + ε} \ {(t1, k(t1))}.

Claim 4. There exists s1 > t1 such that Z(t1)− 2 ≥ p := Z(t) for t ∈ (t1, s1].
By Claim 3 we have w(t,−k(t)) = −w(t, k(t)) 	= 0 for t ∈ (t1, t1 + ε]. Moreover,

we can find ε1 > 0 very small and a continuous function k̃(t) defined over J :=
[t1 − ε1, t1 + ε] such that

k̃(t) < k(t) and w(t, k̃(t)) 	= 0 in J, w(t, x) 	= 0 for x ∈ [k̃(t), k(t)], t ∈ (t1, t1 + ε].
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Since Z(t1) is finite, this allows us to apply Lemma 2.2 to conclude that there exists
s1 ∈ (t1, t1 + ε] such that w(t, ·) has no degenerate zeros in I(t) when t ∈ (t1, s1].
Let γ̃1(t) < γ̃2(t) < · · · < γ̃p(t) be the nondegenerate zeros of w(t, ·) in I(t) with t ∈
(t1, s1]. Then x = γ̃i(t) (i = 1, . . . , p) are smooth curves. Moreover, z̃i := limt↘t1 γ̃i(t)
exists for each i ∈ {1, . . . , p}, for otherwise w(t1, ·) would be identically zero over some
interval of x, contradicting what is known about w(t1, ·). Furthermore, z̃i < z̃i+1 for
i ∈ {1, . . . , p − 1}, since otherwise we may apply the maximum principle over the
region Ãi := {(t, x) : γ̃i(t) < x < γ̃i+1(t), t1 ≤ t ≤ s1} to deduce that w ≡ 0 in Ãi.
Finally from (2.3) we know that none of these curves {(t, γ̃i(t))} ⊂ R

2 can connect
to the point (t1,−k(t1)) or (t1, k(t1)). Thus z̃1 < z̃2 < · · · < z̃p are different zeros of
w(t1, ·) in I(t1) \ {−k(t1), k(t1)}. It follows immediately that p ≤ n − 2. Claim 4 is
proved.

We have now proved (2.2), which shows that Z(t) has the properties described
in Lemma 2.3(ii) for t ∈ [s0, s1]. We already know that Z(t) has these properties for
t ∈ (t0, t1). Therefore it has these properties for all t ∈ (t0, s1].

Proof of Lemma 2.3. Since k(t) 	≡ K(t) in (0,∞), we can find t0 > 0 such
that k(t0) < K(t0). Therefore there exists t1 ∈ (t0,+∞] such that k(t) < K(t) for
t ∈ [t0, t1) and k(t1) = K(t1) when t1 is finite. Without loss of generality we assume
that k(t0) = −g(t0) and K(t0) = h(t0). Then necessarily k(t) = −g(t) < h(t) = K(t)
for all t ∈ [t0, t1). It follows that w(t,−k(t)) < 0 < w(t, k(t)) for t ∈ [t0, t1). Hence
we can apply Lemma 2.2 to see that Z(t) has the required properties for t ∈ (t0, t1).

Suppose that case (i) does not happen. We prove that (ii) holds. If t1 = +∞,
then the proof is complete. Suppose next that t1 < +∞. By Lemma 2.4 there exists
s1 > t1 such that k(t) < K(t) for t ∈ (t1, s1] and Z(t) has the required properties for
t ∈ (t0, s1], with

Z(t) ≡ Z(s1) ≤ Z(t1)− 2 for t ∈ (t1, s1].

If t1 is the last zero of K(t)− k(t), then w(t,−k(t)) = −w(t, k(t)) 	= 0 for t > t1,
and we can use Lemma 2.2 to conclude that Z(t) has the required properties for
t > t1. Thus in this case Z(t) has the required properties for all t > t0, and the proof
is complete.

If t1 is not the last zero of K(t) − k(t), then there exists t2 > s1, which is the
first zero of K(t)−k(t) after t1. We may now apply Lemma 2.4 with {t0, t1} replaced
by {s1, t2} to conclude that there exists s2 > t2 such that Z(t) has the required
properties for t ∈ (t1, s2] with

Z(t) ≡ Z(s2) ≤ Z(t2)− 2 ≤ Z(t1)− 4 for t ∈ (t2, s2].

Since we already know that Z(t) has the required properties for t ∈ (t0, s1], we find
that Z(t) has the required properties for all t ∈ (t0, s2].

If t2 is the last zero of K(t) − k(t), then as before we easily see that Z(t) has
the required properties for all t > t0. Otherwise we can repeat the analysis to find
s3 > t3 > s2 such that t3 is the first zero of K(t) − k(t) after t2, and Z(t) has the
required properties for t ∈ (t0, s3] with

Z(t) ≡ Z(s3) ≤ Z(t3)− 2 ≤ Z(t2)− 4 ≤ Z(t1)− 6 for t ∈ (t3, s3].

Since Z(t1) is finite, the above process can continue only finitely many steps, say,
K(t) − k(t) has consecutive zeros t1 < t2 < · · · < tk, tk being the last zero of
K(t)− k(t), Z(tk) ≤ Z(t1) − 2k, and Z(t) has the required properties for all t > t0.
The proof is complete.
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Proof of Theorem 1.1. Suppose by way of contradiction that limt→∞ γ(t) does
not exist. Then

(2.4) −h0 ≤ lim inf
t→∞ γ(t) < lim sup

t→∞
γ(t) ≤ h0.

By standard parabolic regularity we have

‖u(t, · − γ(t))− v(·)‖C2(J) → 0 as t → ∞,

where J := [−3h0, 3h0]. So there exists T1 > 0 such that for t > T1, u(t, ·) has exactly
one maximum point x(t) ≈ −γ(t) on J , and x(t) is a continuous function of t. Fix

x0 ∈ (− lim sup
t→∞

γ(t),− lim inf
t→∞ γ(t)).

By our assumption (2.4), x(t) − x0 changes sign infinitely many times as t goes to
infinity. Therefore there is a sequence tk → +∞ such that x(tk) = x0.

We now define ũ(t, x) = u(t, x0 + x), g̃(t) = g(t)− x0, and h̃(t) = h(t) − x0. By
perturbing x0 if necessary we can always guarantee that

k̃(t) := min{h̃(t),−g̃(t)} 	≡ K̃(t) := max{h̃(t),−g̃(t)}.

We may apply Lemma 2.3 to (ũ, g̃, h̃) to obtain the conclusions in case (ii) there for
the zero number Z̃(t) of w̃(t, ·) := ũ(t, ·) − ũ(t,−·) over Ĩ(t) := [−k̃(t), k̃(t)]. Note
that due to (2.4), case (i) never happens to w̃.

Now, at each time t1 > T1 such that x(t1) = x0, we have

w̃(t1, 0) = w̃x(t1, 0) = 0.

In other words, 0 is a degenerate zero of w̃(t1, ·) in the interior of Ĩ(t1). However, the
properties of Z̃(t) imply that only finitely many such t1 can exist. This contradiction
finishes the proof.

3. Transition speed of the free boundary in the bistable case. In this
section, we prove Theorem 1.2 for the bistable case.

Theorem 3.1. Assume Theorem C(iii) holds and f satisfies (1.10). Then

−g(t), h(t) = λ0 ln t+O(1) with λ0 = [−f ′(0)]−1/2.

Proof. We consider only the estimate for h(t), as that for −g(t) is similar. We
will prove the estimate by constructing suitable upper and lower solutions. Let V (x)
be as in Theorem C. Since V (x) is even, and V ′(x) < 0 for x > 0, and V (+∞) = 0,
for each m > 0 and t > m/V (0), there exists a unique ξ(t) = ξm(t) ∈ (0,+∞) such
that

V (ξ(t)) = m/t.

Moreover, ξ(t) is a C2 function satisfying ξ′(t) > 0 and ξ(+∞) = +∞.
For clarity we divide the proof below into three steps.
Step 1: We show the following asymptotic behavior of ξ(t): As t → ∞,

(3.1) ξ′(t) =
λ0

t
[1 + o(1)], ξ(t) = λ0 ln t+O(1).
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3564 YIHONG DU, BENDONG LOU, AND MAOLIN ZHOU

Multiplying V ′′ + f(V ) = 0 by V ′ and integrating in (−∞, x) we obtain

V ′2(x) = F (V (x)), where F (u) := −2
∫ u

0
f(s)ds.

Therefore

V ′(ξ(t)) = −
√
F
(m
t

)
= −

√
1

2
F ′′(0)

(m
t

)2

+ o

[(m
t

)2
]

= −[−f ′(0)]1/2[1 + o(1)]
m

t
as t → ∞.

Differentiating V (ξ(t)) = m
t with respect to t we deduce

ξ′(t) = −m

t2
[V ′(ξ(t))]−1 =

1

t
[1 + o(1)][−f ′(0)]−1/2 =

λ0

t
[1 + o(1)] as t → ∞.

This proves the first part of (3.1). To show the second part, we use V ′(x)2 = F (V (x))
again to obtain

x =

∫ V (0)

V (x)

ds√
F (s)

= −λ0 ln
V (x)

V (0)
+

∫ V (0)

V (x)

( 1√
F (s)

− λ0

s

)
ds

= −λ0 ln
V (x)

V (0)
+A0 + o(1) as x → +∞,

where

A0 =

∫ V (0)

0

( 1√
F (s)

− λ0

s

)
ds is finite due to (1.10).

It follows that

V (x) = Ae−λ−1
0 x[1 + o(1)] as x → +∞ with A = V (0)eλ

−1
0 A0 .

Therefore

ξ(t) = V −1
(m
t

)
= λ0 ln t− λ0 ln

m

A
+ o(1) as t → +∞,

which implies the second part of (3.1).
Step 2: We obtain a lower bound for h(t). By Theorem 1.1, there exists x0 ∈

[−h0, h0] such that

lim
t→∞ u(t, x) = V (x+ x0) locally uniformly in x ∈ R

1.

We now define (V , h) by{
h(t) = ξ(t) − x0 − 1, t > m/V (0),

V (t, x) = V (x+ x0 + 1)− m
t , x ∈ (0, h(t)), t > m/V (0).

Clearly V (t, h(t)) = V (ξ(t))− m
t = 0. We will show that by choosing m > 0, M0 > 0,

and T > 0 properly, (V , h) satisfies

h(t) ≤ h(t+ T ) and V (t, x) ≤ u(t+ T, x) for M0 ≤ x ≤ h(t) and all large t.
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Since f is a bistable nonlinearity, there exists ρ ∈ (0, θ) such that f(s) < 0 and
f ′(s) < 1

2f
′(0) for s ∈ (0, ρ). Choose T1 > 0 such that for t > T1, h(t) > M0 :=

V −1(ρ)− x0 − 1 and hence V (h(t) + x0 +1) < ρ. Then for x ∈ [M0, h(t)] and t > T1,
we have

h(t) > M0, V (x+ x0 + 1) ≤ ρ, f(V (x+ x0 + 1))− f(V (t, x)) < 1
2f

′(0)mt .

We next show that for sufficiently large t and x ∈ [M0, h(t)),

(3.2) V t − V xx − f(V ) ≤ 0,

(3.3) h′(t) ≤ −μV x(t, h(t)).

Indeed, for t > T2 := max{− 2
f ′(0) , T1} and x ∈ [M0, h(t)), we have, with V =

V (x+ x0 + 1),

V t − V xx − f(V ) =
m

t2
+ f(V )− f(V ) <

m

t2
+

1

2
f ′(0)

m

t
< 0.

This proves (3.2).
We now prove (3.3). By our estimates in Step 1, clearly

V x(t, h(t)) = V ′(ξ(t))

= −[−f ′(0)]1/2[1 + o(1)]
m

t
as t → ∞

and

h′(t) = ξ′(t) =
λ0

t
[1 + o(1)] as t → ∞.

Thus (3.3) holds for all large t, say, t > T3 ≥ T2, provided that m is chosen such that

μ[−f ′(0)]1/2m > λ0, i.e., m > λ2
0/μ.

We fix m as above and now compare V (t,M0) with u(t,M0). Clearly

lim
t→∞ u(t,M0) = V (M0 + x0) > V (M0 + x0 + 1) = lim

t→∞ V (t,M0).

Therefore we can find a time T4 > T3 such that

(3.4) V (t+ T4,M0) < u(s+ T4,M0) for all t, s > 0.

Moreover, since V (T4, x) = V (x + x0 + 1)− m
T4

< V (x+ x0)− m
T4
, and since

lim
t→∞h(t) = +∞, lim

t→∞u(t, x) = V (x + x0) locally uniformly for x ∈ R
1,

there exists T5 > T4 such that

(3.5) h(T4) < h(T5), V (T4, x) ≤ u(T5, x) for x ∈ [M0, h(T4)].

Combining (3.2), (3.3), (3.4), and (3.5), we see that upon using the comparison prin-
ciple, for x ∈ [M0, h(t+ T4)] and t > 0, we have

h(t+ T5) ≥ h(t+ T4), u(t+ T5, x) ≥ V (t+ T4, x).
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In view of (3.1), the above inequality for h(t+ T5) clearly implies that

h(t) ≥ λ0 ln t−M1 for all large t and some M1 > 0.

Step 3: We obtain an upper bound for h(t). To complete the proof, it remains to
show an estimate of the form

(3.6) h(t) ≤ λ0 ln t+M2 for all large t and some M2 > 0.

We will accomplish this by constructing suitable upper solutions.
Define (V̄ , h̄) by⎧⎪⎨

⎪⎩
h̄(t) = ξm1(t) +

2
3λ0 − x0 + 1, t > m1/V (0),

V̄ (t, x) = V (x+ x0 − 1) + m1

t , x ∈ [0, h̄(t)− 2
3λ0], t > m1/V (0),

V̄ (t, x) = 3
λ0

m1

t (h̄(t)− x), x ∈ [h̄(t)− 2
3λ0, h̄(t)], t > m1/V (0),

where m1 :=
λ2
0

4μ . We are going to show that there exists M0 > 0, T7 > T6 > 0 such
that

V̄t − V̄xx − f(V̄ ) ≥ 0 for x ∈
[
M0, h̄(t)− 2

3
λ0

)
, t > T7,(3.7)

V̄t − V̄xx − f(V̄ ) ≥ 0 for x ∈
(
h̄(t)− 2

3
λ0, h̄(t)

)
, t > T7,(3.8)

lim
x→[h̄(t)− 2

3λ0]+
V̄x(t, x) ≤ lim

x→[h̄(t)− 2
3λ0]−

V̄x(t, x) for t > T7,(3.9)

h̄′(t) ≥ −μV̄x(t, h̄(t)) and V̄ (t, h̄(t)) = 0 for t > T7,(3.10)

V̄ (t+ T7,M
0) ≥ u(t+ T6,M

0) for t ≥ 0,(3.11)

h̄(T7) > h(T6) and V̄ (T7, x) ≥ u(T6, x) for x ∈ [M0, h(T6)].(3.12)

If (3.7) through to (3.12) hold, then we can apply the comparison principle3 to deduce
that

h̄(t+ T7) ≥ h(t+ T6), V̄ (t+ T7, x) ≥ u(t+ T6, x) for x ∈ [M0, h(t+ T6)] and t > 0.

Applying (3.1) to ξm1(t) and using the definition of h̄, we immediately obtain (3.6),
as wanted.

Next we prove (3.7)–(3.12) one by one, starting with (3.7). We choose M0 > 0
large so that for all large t and x ∈ [M0, h̄(t) − 2

3λ0], V (x + x0 − 1) + m1

t is small
enough so that, with V standing for V (x+ x0 − 1),

f(V )− f
(
V +

m1

t

)
> −1

2
f ′(0)

m1

t
.

3Note that although V̄x(t, x) may have a jumping discontinuity at x = h̄(t)− 2
3
λ0, (3.9) ensures

that the comparison principle for weak solutions can be used.
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Then for such t and x,

V̄t − V̄xx − f(V̄ ) = −m1

t2
+ f(V )− f

(
V +

m1

t

)
≥ −m1

t2
− 1

2
f ′(0)

m1

t
> 0.

This proves (3.7).
To prove (3.8), we note that, for x ∈ [h̄(t)− 2

3λ0, h̄(t)] and large t,

V̄xx = 0, f(V̄ (t, x)) ≤ 0,

and by direct calculation and (3.1),

V̄t = − 3

λ0

m1

t2
(h̄(t)− x) +

3

λ0

m1

t
h̄′(t)

≥ − 3

λ0

m1

t2
2

3
λ0 +

3

λ0

m1

t

λ0

t
[1 + o(1)]

= −2
m1

t2
+ 3

m1

t2
[1 + o(1)] > 0.

Hence (3.8) holds.
Clearly (3.9) follows from

lim
x→[h̄(t)− 2

3λ0]+
V̄x(t, x) = − 3

λ0

m1

t

and

lim
x→[h̄(t)− 2

3λ0]−
V̄x(t, x) = V ′(ξm1 (t)) = − 1

λ0

m1

t
[1 + o(1)] as t → ∞.

By definition, V̄ (t, h̄(t)) = 0. By direct calculation and the choice of m1 we have

−μV̄x(t, h̄(t)) =
3μ

λ0

m1

t
=

3

4

λ0

t
.

By (3.1),

h̄′(t) = ξ′m1
(t) =

λ0

t
[1 + o(1)] as t → ∞.

Therefore (3.10) holds for all large t.
Finally the inequalities in (3.11) and (3.12) are easy consequences of the facts

that

lim
t→∞ h̄(t) = +∞, lim

t→∞ V̄ (t, x) = V (x+ x0 − 1) > V (x+ x0) = lim
t→∞u(t, x)

uniformly for x in any compact subset of [M0,+∞).
The proof of the theorem is now complete.

4. Transition speed of the free boundary in the combustion case. In this
section we prove Theorem 1.2 for the combustion case. So throughout this section,
we always assume that f is of combustion type. Our proof is rather involved. For
clarity, we divide our analysis into several subsections.
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3568 YIHONG DU, BENDONG LOU, AND MAOLIN ZHOU

4.1. A key lemma. To stress the dependence of the unique solution (u(t, x),
h(t), g(t)) of (1.1) on the initial function u0, we will write

u(t, x) = u(t, x;u0), h(t) = h(t;u0), g(t) = g(t;u0).

For convenience, we always think of u0(x) as defined for all x ∈ R
1, with value zero

outside its supporting set. Moreover, in this subsection, we drop the assumption that
the supporting set of u0 is symmetric about x = 0, which was assumed in (1.1) for
convenience.

Lemma 4.1. Given any two compactly supported initial functions {φi}i=1,2 of
(1.1) such that

lim
t→∞u(t, x;φi) = θ locally uniformly in R

1,

there exists a constant M > 0 such that

|h(t;φ1)− h(t;φ2)| ≤ M, |g(t;φ1)− g(t;φ2)| ≤ M for t > 0.

Proof. By Lemma 2.8 of [5], 1
2 [g(t;φi) + h(t;φi)] is contained in the supporting

set of φi for all t > 0. Therefore it suffices to show |h(t;φ1) − h(t;φ2)| ≤ M for all
t > 0. We will prove only

(4.1) h(t;φ1)− h(t;φ2) ≤ M,

since h(t;φ2)− h(t;φ1) ≤ M can be proved in the same way.
Because both φ1 and φ2 are compactly supported, by replacing φ1 with φ1(·+M1)

for some large positive constant M1, we may assume that

(4.2) h(0;φ1) < g(0;φ2)− 1.

So the support of φ1 lies to the left of the support of φ2 with some positive distance.
As t is increased to +∞, by assumption h(t;φ1) increases to +∞, and g(t;φ2)

decreases to −∞. Therefore there exists a unique time T1 > 0 such that

h(T1;φ1) = g(T1;φ2).

We now consider h(t;φ1) − h(t;φ2), which is negative when t = 0 due to (4.2). If
h(t;φ1)− h(t;φ2) < 0 for all t ≥ 0, then (4.1) holds for any M > 0, which is what we
wanted.

In the following, we consider the remaining case, where

T2 := inf{t > 0 : h(t;φ1) = h(t;φ2)}

is finite and positive. Let us also define

T3 := inf{t > 0 : g(t;φ1) = g(t;φ2)}

with the convention that T3 = +∞ if g(t;φ1) − g(t;φ2) < 0 for all t > 0. Note that
by (4.2), T3 > 0 whenever it is finite. It is easily seen that T2, T3 > T1.

For t > T1, we now define

kl(t) := max
{
g(t;φ1), g(t;φ2)

}
, kr(t) := min

{
h(t;φ1), h(t;φ2)
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NONLINEAR DIFFUSION PROBLEMS WITH FREE BOUNDARIES 3569

and

w(t, x) := u(t, x;φ1)− u(t, x;φ2), x ∈ [kl(t), kr(t)].

Then similar to the situation in Lemma 2.3, w satisfies

wt − wxx = c(t, x)w for x ∈ [kl(t), kr(t)], t > T1,

where c ∈ L∞, and

(4.3) w(t, kl(t)) > 0 > w(t, kr(t)) for T1 < t < T 1 := min{T2, T3}.
Note that kl(T1) = kr(T1) = g(T1;φ2) = h(T1;φ1), and for t > T1 but very close

to T1, w(t, ·) has exactly one zero in [kl(t), kr(t)], which is nondegenerate. Indeed, for
such t and x ∈ [kl(t), kr(t)], by continuity and the Hopf boundary lemma,

ux(t, x;φ1) <
1

2
ux(t, h(t;φ1);φ1) < 0

and

ux(t, x;φ2) >
1

2
ux(t, g(t;φ2);φ2) > 0.

Hence wx(t, x) < 0.
Let x = x(t) denote this unique zero for t > T1 but close to T1. In view of this fact

and (4.3), we can apply Lemma 2.2 to conclude that for every t ∈ (T1, T
1), w(t, x) has

at most one zero in (kl(t), kr(t)). On the other hand, (4.3) implies that for every such
t, w(t, x) has at least one zero. Therefore there is a unique zero, and by Lemma 2.2,
it must be nondegenerate. Thus the unique zero x(t) is defined for all t ∈ (T1, T

1),
and due to its nondegeneracy, x(t) is a C1 function.

We now consider the limit of x(t) as t increases to T 1. If it does not exist, then
as in the proof of Lemma 2.4 we deduce that

(4.4) w(T 1, ·) ≡ 0 in [kl(T
1), kr(T

1)];

if limt↗T 1 x(t) = x(T 1) exists, we can also argue as in the proof of Lemma 2.4 to see
that x(T 1) ∈ {kl(T 1), kr(T

1)}, and w(T 1, x) does not change sign in (kl(T
1), kr(T

1)).
In the former case, by the uniqueness of the solution to the free boundary problem,

we must have(
u(t, x;φ1), g(t;φ1), h(t;φ1)

) ≡ (
u(t, x;φ2), g(t;φ2), h(t;φ2)

)
for t > T 1,

which clearly implies (4.1).
In the latter case we show that a contradiction arises, and so this case cannot

occur. Indeed, we have

[kl(T
1), kr(T

1)] = [g(T 1;φ2), h(T
1;φ2)] when x(T 1) = kr(T

1)

and

[kl(T
1), kr(T

1)] = [g(T 1;φ1), h(T
1;φ1)] when x(T 1) = kl(T

1).

Therefore, when x(T 1) = kr(T
1), we have

u(T 1, x;φ1) > u(T 1, x;φ2) for x ∈ (g(T 1;φ2), h(T
1, φ2)).
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3570 YIHONG DU, BENDONG LOU, AND MAOLIN ZHOU

By the comparison principle (see Lemma 2.1 of [5]) and the strong maximum principle
we deduce that, for t > T 1, g(t;φ1) < g(t;φ2), h(t;φ1) > h(t;φ2), and

u(t, x;φ1) > u(t, x;φ2) for g(t;φ2) ≤ x ≤ h(t;φ2).

Hence for fixed t0 > T 1, there exists ε > 0 such that

u(t0, x;φ1) ≥ (1 + ε)u(t0, x;φ2) for x ∈ [g(t0;φ2), h(t0;φ2)].

This implies, by the sharp transition result of [5] and the comparison principle,

lim
t→∞u(t, x;φ1) = 1.

On the other hand, by the choice of φ1, we have

u(t, x;φ1) → θ as t → ∞.

When x(T 1) = kl(T
1), we can derive a contradiction similarly. The proof of the

lemma is complete.
By Lemma 4.1, to prove Theorem 1.2 for the combustion case, it suffices to

consider a special initial function. This will be crucial to our analysis. More precisely,
suppose that transition happens with the initial function u0 ∈ X (h0). We choose a
function ũ0 ∈ X (h0) with the properties

ũ0(x) ≥ u0(x) in [−h0, h0], ũ0(x) = ũ0(−x) and ũ′
0(x) < 0 for 0 < x < h0.

Then there exists σ∗ ∈ (0,+∞) such that transition happens for the solution of (1.1)
with initial function φ := σ∗ũ0. By uniqueness and a simple reflection-comparison
argument, such a solution satisfies

(4.5) u(t, x) = u(t,−x), ux(t, x) < 0 for 0 < x < h(t), t ≥ 0.

Hence g(t) = −h(t), and we only need to show that

h(t) = 2ξ0
√
t[1 + o(1)] as t → ∞.

4.2. Estimate of h(t) under an extra condition. As explained above, by
Lemma 4.1 we only need to consider the transition case with a special initial function
such that the solution u(t, x) satisfies (4.5).

We first observe that u(t, 0) > θ for all t ≥ 0. Otherwise there exists t0 ≥ 0 such
that u(t0, 0) ≤ θ and hence u(t0, x) < θ for x ∈ [−h(t0), h(t0)] \ {0}. By the strong
maximum principle we easily deduce u(t, x) < θ for t > t0 and x ∈ [−h(t), h(t)], which
implies u(t, x) → 0 as t → ∞ (see [5]), contradicting the assumption that transition
happens.

This observation and (4.5) indicate that for each t ≥ 0, there is a unique θ(t) ∈
(0, h(t)) such that

u(t, θ(t)) = θ.

We will prove that

(4.6) lim
t→∞ θ(t)/h(t) = 0.
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Assuming (4.6), we now prove the required estimate for h(t).
Proposition 4.2. Let u(t, x), h(t), and θ(t) be as above. Suppose that (4.6)

holds. Then

(4.7) h(t) = 2ξ0
√
t [1 + o(1)] as t → ∞,

where ξ0 is defined by (1.11).
Proof. We will prove (4.7) by some comparison arguments involving the functions

Φ(t, x) and ρ(t) given by

Φ(t, x) :=
θ

E(ξ0)

[
E(ξ0)− E

(
x

2
√
t

)]
, ρ(t) := 2ξ0

√
t,

where E(x) := 2√
π

∫ x

0
e−t2dt and ξ0 is given by (1.11).

It is easily seen that

Φ(t, 0) = θ, Φ(t, ρ(t)) = 0, and Φ(t, x) > 0 for t > 0 and x ∈ [0, ρ(t)).

In fact, a direct calculation confirms the well-known fact that (η, r) = (Φ(t, x), ρ(t))
satisfies

(4.8)

⎧⎨
⎩

ηt − ηxx = 0, 0 < x < r(t), t > 0,
η(t, 0) = θ, η(t, r(t)) = 0, t > 0,
r′(t) = −μηx(t, r(t)), t > 0.

For ε ∈ (0, 1) and T > 0 to be determined, we define

h̃(t) = (1− ε)−1ρ(t+ T ), η̃(t, x) = Φ(t+ T, x− εh̃(t)) for t > 0 and x ∈ [εh̃(t), h̃(t)].

It is clear that

η̃(t, εh̃(t)) = θ, η̃(t, h̃(t)) = 0

and

h̃′(t) = (1− ε)−1ρ′(t+ T ) > ρ′(t+ T ) = −μΦx(t+ T, ρ(t+ T )) = −μη̃x(t, h̃(t)).

By the definition, we find

η̃(t, x) =
θ

E(ξ0)

[
E(ξ0)− E

(
x

2
√
t+ T

− εξ0
1− ε

)]
,

from which it is easily calculated that

η̃t − η̃xx = 0.

Next we determine T for any fixed ε ∈ (0, 1). By (4.6), there exists τε > 0 such
that

(4.9) θ(t) < εh(t) for t > τε.

We choose T = Tε such that

h(τε) =
ε

1− ε
ρ(T ) = εh̃(0).
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3572 YIHONG DU, BENDONG LOU, AND MAOLIN ZHOU

Then h(τε) < h̃(0) and by continuity we can find δ0 > 0 such that

h(τε + t) < h̃(t) for t ∈ [0, δ0).

We claim that

h(τε + t) < h̃(t) for all t ≥ 0.

Otherwise we can find t0 ≥ δ0 such that

h(τε + t) < h̃(t) for t ∈ [0, t0), h(τε + t0) = h̃(t0).

It follows that

h′(τε + t0) ≥ h̃′(t0).

On the other hand, by (4.9),

θ(τε + t) < εh(τε + t) < εh̃(t) for t ∈ [0, t0),

which implies that u(τε + t, εh̃(t)) < θ for t ∈ [0, t0). This allows us to compare
u(τε + t, x) with η̃(t, x) by the comparison principle over the region Ω := {(t, x) :
εh̃(t) < x < h(τε + t), 0 < t ≤ t0} to conclude that

u(τε + t, x) < η̃(t, x) in Ω.

By the Hopf boundary lemma we further obtain

ux(τε + t0, h(τε + t0)) > η̃x(t0, h̃(t0)).

It follows that

h′(τε + t0) = −μux(τε + t0, h(τε + t0)) < −μη̃x(t0, h̃(t0)) < h̃′(t0).

This contradiction proves our claim.
Thus we have

h(t+ τε) < h̃(t) =
2ξ0
1− ε

√
t+ Tε for t > 0.

It follows that

lim sup
t→∞

h(t)− 2ξ0
√
t√

t
≤ lim

t→∞
h̃(t− τε)− 2ξ0

√
t√

t
= 2ξ0

ε

1− ε
.

Since ε ∈ (0, 1) is arbitrary, we obtain

(4.10) lim sup
t→∞

h(t)− 2ξ0
√
t√

t
≤ 0.

Next we estimate h(t) from below. Since θ(t)/h(t) → 0 and u(t, 0) → θ as t → ∞,
we can find t1 > 0 such that θ(t1) < h(t1) and u(t1 + t, x) < 1 for all t ≥ 0 and
x ∈ [0, h(t1+ t)]. It follows that f(u(t1+ t, x)) ≥ 0 for such t and x. We also note that
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u(t1, x) > θ for 0 ≤ x < θ(t1). Choose t2 > 0 small such that ρ(t2) ≤ θ(t1) < h(t1).
We claim that

ρ(t2 + t) < h(t1 + t) for t > 0.

If this is not true, then we can find t̃0 > 0 such that

(4.11) ρ(t2 + t) < h(t1 + t) for t ∈ [0, t̃0), ρ(t2 + t̃0) = h(t1 + t̃0).

Then we can apply the comparison principle to Φ(t2 + t, x) and u(t1 + t, x) over the
region Ω̃ := {(t, x) : 0 < x < ρ(t2 + t), 0 < t ≤ t̃0}, followed by the Hopf boundary
lemma, to deduce

Φx(t2 + t̃0, ρ(t2 + t̃0)) > ux(t1 + t̃0, ρ(t2 + t̃0)),

which yields ρ′(t2+ t̃0) < h′(t1+ t̃0). But this is a contradiction to (4.11). This proves
our claim, and so

h(t) > ρ(t+ t2 − t1) = 2ξ0
√
t+O

( 1√
t

)
as t → ∞.

The required estimate (4.7) is a direct consequence of this fact and (4.10).

4.3. Proof of (4.6). To complete the proof of Theorem 1.2, it remains to prove
(4.6). We will do this in several steps.

4.3.1. Analysis of an ODE problem. For any b ∈ (0, (1− θ)/2), we consider
the initial value problem

v′′ + f(v) = 0, v(0) = θ + b, v′(0) = 0.

Let Vb(x) denote its unique solution.
Lemma 4.3. There exist 0 < l(b) < L(b) < +∞ such that
(i) Vb(l(b)) = θ and Vb(L(b)) = 0,
(ii) Vb(x) = Vb(−x) and V ′

b (x) < 0 for x ∈ (0, L(b)],
(iii) l(b) → ∞ if and only if b → 0.
Proof. The conclusions follow directly from a simple phase plane analysis. The

details are omitted.
Lemma 4.4. limb→0 l(b)/L(b) = limb→0 V

′
b (l(b)) = 0.

Proof. Since Vb(x) is a linear function over [l(b), L(b)], we have

θ

L(b)− l(b)
= −V ′

b (l(b)) and hence 0 <
l(b)

L(b)
< −V ′

b (l(b))
l(b)

θ
.

Because of V ′′
b + f(Vb) = 0 and V ′

b (0) = 0, it follows that

V ′
b (l(b)) = −

√
G(b) with G(u) := 2

∫ u

0

f(s+ θ)ds

and

l(b) =

∫ b

0

1√
G(b)−G(s)

ds.
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Therefore

(4.12) l(b)V ′
b (l(b)) = −

∫ b

0

√
G(b)√

G(b)−G(s)
ds = −b

∫ 1

0

√
G(b)√

G(b)−G(br)
dr.

Since f(u) is nondecreasing in u ∈ (θ, θ + δ), for any 0 < r < 1 and 0 < b < δ we
have

G(br) = 2

∫ br

0

f(s+ θ)ds = 2r

∫ b

0

f(rt+ θ)dt ≤ 2r

∫ b

0

f(t+ θ)dt = rG(b).

Substituting this into (4.12) we obtain, for b ∈ (0, δ),

0 > l(b)V ′
b (l(b)) ≥ −b

∫ 1

0

1√
1− r

dr = −2b.

It follows that

0 <
l(b)

L(b)
< −V ′

b (l(b))
l(b)

θ
≤ 2b

θ
.

Since l(b) → +∞ as b → 0, the lemma is proved.

4.3.2. Sign-changing patterns of the function x �→ u(t, x) − Vb(x). In
this step, we classify the sign-changing patterns of the function

wb(t, x) := u(t, x)− Vb(x)

for any fixed t ≥ 1 and small b > 0. This will be done by making use of the comparison
principle and the zero number argument.

Let us recall that u(t, x) satisfies (4.5), and u(t, x) → θ in C1
loc(R

1) as t → ∞.
Moreover, u(t, 0) > θ for all t ≥ 0.

Lemma 4.5. There exists δ0 > 0 small such that for each b ∈ (0, δ0),
(i) wb(1, 0) > 0 > wb(1, h(1)),
(ii) wb(1, x) has a unique zero in [0, h(1)], and the zero is nondegenerate.
Proof. Fix a ∈ (θ, u(1, 0)). There exists xa ∈ (0, h(1)) and εa > 0 such that

u(1, xa) = a, ux(1, x) ≤ −εa for x ∈ [xa, h(1)].

Since V ′′
b (x) ≤ 0 for x ∈ [0, L(b)] and V ′′

b (x) ≡ 0 for x ∈ [l(b), L(b)], we have

(4.13) 0 ≥ V ′
b (x) ≥ V ′(l(b)) for x ∈ [0, l(b)], V ′

b (x) ≡ V ′(l(b)) for x ∈ [l(b), L(b)].

Therefore from Lemmas 4.3 and 4.4 we find that

l(b) → +∞ and ‖V ′
b ‖∞ → 0 as b → 0.

Hence we can find δ0 ∈ (0, a− θ) sufficiently small so that, for b ∈ (0, δ0),

l(b) > h(1), 0 ≥ V ′
b (x) > −εa for x ∈ [0, L(b)].

It follows that, for such b, d
dxwb(1, x) < 0 for x ∈ [xa, h(1)], and

wb(1, xa) = a− Vb(xa) > a− Vb(0) > 0, wb(1, h(1)) = −Vb(h(1)) < 0.
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Hence wb(1, x) has a unique zero in (xa, h(1)), and the zero is nondegenerate.
For x ∈ [0, xa], we have

wb(1, x) > u(1, xa)− Vb(0) = a− Vb(0) > 0.

The proof is complete.
From now on, we always assume that

b ∈ (0, δ0) with δ0 given in Lemma 4.5.

To simplify notation, we will write w(t, x) instead of wb(t, x) when the dependence of
b ∈ (0, δ0) is not stressed.

Since t �→ w(t, x), t �→ wx(t, x), and t �→ h(t) are all continuous and uniformly in
x, from the conclusions of Lemma 4.5 we see that there exists ε0 > 0 small such that
for each fixed t ∈ [1− ε0, 1 + ε0], w(t, x) has the same properties, namely,

(i) w(t, 0) > 0 > w(t, h(t)),
(ii) w(t, x) has a unique zero in [0, h(t)], and the zero is nondegenerate.
We now define

T1 := sup{s : w(t, 0) > 0 for t ∈ [1− ε0, s)},
T2 := sup{s : h(t) < L(b) for t ∈ [1− ε0, s)}.

Clearly T1, T2 ≥ 1 + ε0. Since h(t) → +∞ and w(t, 0) → −b < 0 as t → +∞, T1 and
T2 are both finite.

Lemma 4.6. Suppose T1 < T2. Then
(i) for t ∈ [1, T1), w(t, x) has a unique nondegenerate zero x(t) in (0, h(t)), with

sign-changing pattern [+0−] over [0, h(t)], meaning

w(t, x) > 0 in [0, x(t)), w(t, x(t)) = 0, w(t, x) < 0 in (x(t), h(t)];

(ii) w(T1, x) has sign-changing pattern [0−] over [0, h(T1)], meaning

w(T1, 0) = 0 and w(T1, x) < 0 in (0, h(T1)];

(iii) for t ∈ (T1, T2), w(t, x) has sign-changing pattern [−] over [0, h(t)], meaning

w(t, x) < 0 in [0, h(t)];

(iv) w(T2, x) has sign-changing pattern [−0] over [0, L(b)], meaning

w(T2, x) < 0 in [0, h(T2)) and w(T2, h(T2)) = 0;

(v) for t > T2, w(t, x) has a unique nondegenerate zero y(t) in (0, L(b)), with
sign-changing pattern [−0+] over [0, L(b)], meaning

w(t, x) < 0 in [0, y(t)), w(t, y(t)) = 0, w(t, x) > 0 in (y(t), L(b)];

(vi) limt↗T1 x(t) = 0, limt↘T2 y(t) = L(b).
Proof. We divide the proof into several steps.
Step 1: The behavior of w(t, x) for t ∈ [1 − ε0, T1). We note that w(t, x) satisfies

wt = wxx + c(t, x)w for x ∈ [0, k(t)], t > 0,
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with k(t) = min{h(t), L(b)} and some bounded function c(t, x). Moreover, w(t, 0) > 0
and w(t, k(t)) < 0 for t ∈ [1− ε0, T1), and for t ∈ [1− ε0, 1 + ε0], w(t, x) has a unique
(nondegenerate) zero in (0, k(t)). Therefore we may apply Lemma 2.2 to conclude
that w(t, x) has a unique zero in (0, k(t)) for all t ∈ [1 − ε0, T1), and the zero is
nondegenerate. If we denote the unique zero by x(t), then t �→ x(t) is a C1 function.
This proves the conclusions in part (i).

Step 2: limt↗T1 x(t) and the behavior of w(T1, x). We next examine the limit of
x(t) as t increases to T1. If this limit does not exist, then similar to the argument
in the proof of Lemma 2.4, we find that w(T1, x) is identically zero in some interval
of x, and it follows that w(T1, x) ≡ 0 for x ∈ [0, h(T1)], which is impossible since
w(T1, x) < 0 for x close to h(T1) < L(b). Therefore x0 := limt↗T1 x(t) exists and
w(T1, x0) = 0. We necessarily have x0 < h(T1) since w(T1, h(T1)) < 0.

We now show that x0 = 0. Otherwise x0 > 0 and we may apply the maximum
principle over the region Q1 := {(t, x) : 0 < x < x(t), 1 < t ≤ T1} to conclude
that w(t, x) > 0 in Q1. Since w(T1, 0) = 0 by the definition of T1, we can use the
Hopf lemma to conclude that wx(T1, 0) > 0. Since V ′

b (0) = 0, this implies that
ux(T1, 0) > 0, which is impossible since u(T1, x) is a smooth even function of x by
(4.5). This contradiction proves x0 = 0 and the first part of (vi) is proved.

Applying the maximum principle to w over the region Q2 := {(t, x) : x(t) < x ≤
h(t), 1 < t ≤ T1}, we easily see that w < 0 in Q2. In particular, w(T1, x) < 0 for
x ∈ (0, h(T1)]. Since we already know w(T1, 0) = 0, part (ii) is proved.

Step 3: The case t ∈ (T1, T2) and t = T2. Let Q3 := {(t, x) : −h(t) ≤ x ≤
h(t), T1 < t < T2}. We find that w < 0 on the parabolic boundary of Q3 except
at (T1, 0). Hence we can apply the maximum principle to conclude that w < 0 in
Q3, and w(T2, x) < 0 for x ∈ (−h(T2), h(T2)). By the definition of T2, we see that
w(T2, h(T2)) = 0. This proves part (iii) and part (iv).

Step 4: The case t ∈ (T2, T2 + ε). Continuing from the last paragraph, we may
apply the Hopf boundary lemma to conclude that wx(T2, h(T2)) > 0. By continuity,
there exists ε1 > 0 small so that wx(t, x) > 0 for t ∈ (T2, T2 + ε1] and x ∈ [h(T2) −
ε1, h(T2)] = [L(b)− ε1, L(b)]. Since h(t) > h(T2) = L(b) for t ∈ (T2, T2 + ε1], we find
that w(t, L(b)) > 0 for such t. From w(T2, L(b)− ε1) < 0, by continuity, we can find
ε2 ∈ (0, ε1] small so that w(t, L(b) − ε1) < 0 for t ∈ (T2, T2 + ε2]. Thus for fixed
t ∈ (T2, T2 + ε2], the strictly increasing function w(t, x) over [L(b) − ε1, L(b)] has a
unique zero y(t) ∈ (L(b) − ε1, L(b)), and the zero is nondegenerate. Hence y(t) is a
C1 function for t ∈ (T2, T2 + ε2].

We now examine the limit of y(t) as t decreases to T2. Since w(T2, x) < 0 in
[0, L(b)) and w(T2, L(b)) = 0, the limit necessarily exists and has value L(b). This
proves the second part of (vi).

Since w(T2, 0) < 0, by shrinking ε2 further we may assume that w(t, 0) < 0 for
t ∈ [T2, T2 + ε2]. Applying the maximum principle to w over Q4 := {(t, x) : 0 ≤ x <
y(t), T2 ≤ t ≤ T2 + ε2}, we see that w < 0 in Q4. Therefore, for t ∈ (T2, T2 + ε2],
y(t) ∈ (0, L(b)) is the unique zero of w(t, x) over [0, L(b)] and it is nondegenerate.

Step 5: The case t > T2. We claim that w(t, 0) < 0 for all t > T2. Otherwise
there exists t1 > T2 such that w(t, 0) < 0 for t ∈ [T2, t1) and w(t1, 0) = 0. By Lemma
2.2, the fact that w(t, 0) < 0 < w(t, L(b)) for t ∈ (T2, t1), and the existence of y(t) for
t ∈ (T2, T2 + ε), we see that w(t, x) has a unique nondegenerate zero over [0, L(b)] for
every t ∈ (T2, t1). Hence y(t) can be extended to all t ∈ (T2, t1).

Let us look at the limit of y(t) as t increases to t1. If the limit does not exist, then
as before we deduce w(t1, x) ≡ 0 over [0, L(b)], which is impossible since w(t1, L(b)) >
0. Hence the limit exists, and we denote it by y(t1). Clearly w(t1, y(t1)) = 0, which
implies y(t1) < L(b).
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If y(t1) = 0, then applying the maximum principle to w over {(t, x) : y(t) < x <
L(b), T2 < t ≤ t1} we obtain w(t1, x) > 0 for x ∈ (y(t1), L(b)) = (0, L(b)). It follows
that u(t1, x) ≥ Vb(x) for x ∈ [−L(b), L(b)], which implies, by the comparison principle,
u(t, x) ≥ Vb(x) for all t > t1 and x ∈ [−L(b), L(b)], contradicting our assumption that
u(t, x) → θ as t → +∞.

If y(t1) ∈ (0, L(b)), then applying the maximum principle to w over Q5 := {(t, x) :
0 < x < y(t), T2 ≤ t ≤ t1}, we see that w < 0 in Q5. By Hopf’s boundary lemma
we have wx(t1, 0) < 0, which implies ux(t1, 0) < 0. But this is a contradiction since
u(t1, x) is even in x. Our claim is now proved.

We now use Lemma 2.2 to w over the region 0 < x < L(b), t > T2. By our earlier
knowledge on the zeros of w(t, x) for fixed t ∈ (T2, T2 + ε2], we see that for each fixed
t > T2, w(t, x) has at most one zero in [0, L(b)]. Since w(t, 0) < 0 and w(t, L(b)) > 0
there exists at least one zero in this interval. Therefore there is a unique zero and it
must be nondegenerate. Denoting this zero by y(t), we find that y(t) is a C1 function.
This proves part (v), and all the conclusions in the lemma are now proved.

Lemma 4.7. Suppose T1 > T2. Then

(i) for t ∈ [1, T2), w(t, x) has a unique nondegenerate zero x(t) in (0, h(t)) with
sign-changing pattern [+0−] over [0, h(t)];

(ii) w(T2, x) has a unique nondegenerate zero x(T2) in (0, L(b)) plus a second zero
at x = L(b), and it has sign-changing pattern [+0− 0] over [0, L(b)];

(iii) for t ∈ (T2, T1), w(t, x) has exactly two nondegenerate zeros x(t) < y(t) in
(0, L(b)) with sign-changing pattern [+0− 0+] over [0, L(b)];

(iv) w(T1, x) has a unique nondegenerate zero y(T1) in (0, L(b)) plus a second zero
at x = 0, and it has sign-changing pattern [0− 0+] over [0, L(b)];

(v) for t > T1, w(t, x) has a unique nondegenerate zero y(t) in (0, L(b)) with
sign-changing pattern [−0+] over [0, L(b)];

(vi) x(t) is a C1 function for t ∈ [1, T1) with limt↗T1 x(t) = 0, and y(t) is a C1

function for t > T2 with limt↘T2 y(t) = L(b).

Proof. For clarity we again break the proof into several steps.

Step 1: The case t ∈ [1, T2). The proof of part (i) is the same as that for Lemma
4.6. So we have a unique nondegenerate zero of w(t, x) for t ∈ [1, T2), denoted by
x(t).

Step 2: limt↗T2 x(t) and the behavior of w(T2, x). We show that limt↗T2 x(t)
exists and belongs to (0, L(b)). If the limit does not exist, then as before we deduce
w(T2, x) ≡ 0 in [0, L(b)], which is impossible since w(T2, 0) > 0 by the assumption
T2 < T1. Thus the limit exists and we denote it by x(T2).

We next prove that x(T2) ∈ (0, L(b)). Since w(T2, x(T2)) = 0 and T2 < T1, we
necessarily have x(T2) > 0. We show now x(T2) = L(b) leads to a contradiction.
Indeed, in such a case, we can apply the maximum principle to w over the region
{(t, x) : 0 ≤ x < x(t), 1 < t ≤ T2} to see that w > 0 in this region. In particular,
w(T2, x) > 0 for x ∈ [0, x(T2)) = [0, L(b)). It follows that

u(T2, x) ≥ Vb(x) for x ∈ [−L(b), L(b)].

Using the comparison principle we deduce u(t, x) ≥ Vb(x) for x ∈ [−L(b), L(b)] and
all t > T2, which contradicts the assumption that u(t, x) → θ as t → +∞. Thus we
have proved that

x(T2) = lim
t↗T2

x(t) ∈ (0, L(b)).
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Moreover, applying the maximum principle to w over {(t, x) : 0 ≤ x < x(t), 1 <
t ≤ T2} we deduce w > 0 in this region and hence w(T2, x) > 0 for x ∈ [0, x(T2)).
Similarly, using the maximum principle to w over {(t, x) : x(t) < x < h(t), 1 < t ≤ T2}
we deduce w(T2, x) < 0 for x ∈ (x(T2), L(b)). Clearly w(T2, L(b)) = w(T2, h(T2)) = 0.
We have thus proved part (ii) except that we still have to show that x(T2) is a
nondegenerate zero.

Step 3: The case t ∈ (T2, T2+ε). Continuing from the last paragraph, we may use
the Hopf boundary lemma to obtain wx(T2, L(b)) > 0. Thus we can now argue as in
the proof of Lemma 4.6 to find ε1 > 0 and ε2 ∈ (0, ε1] such that for each t ∈ (T2, T2+ε2],
w(t, x) over [L(b)− ε1, L(b)] has a unique nondegenerate zero y(t) ∈ (L(b)− ε1, L(b)),
whose sign-changing pattern over [L(b)− ε1, L(b)] is [−0+].

Applying Lemma 2.2 to w over {(t, x) : 0 < x < min{h(t), L(b)} − ε1, t ∈ (1, T2 +
ε2)} (and we may shrink ε1 and ε2 to guarantee that x(t) < r(t) := min{h(t), L(b)}−ε1
for t ∈ (1, T2 + ε2) ⊂ (1, T1)), we find that w(t, x) can have at most one zero in
(0, r(t)) for t ∈ (1, T2 + ε2). On the other hand, since w(t, 0) > 0 > w(t, r(t)) for
such t, there exists at least one zero. Therefore there exists exactly one zero and
it is nondegenerate. In other words, the nondegenerate zero x(t) can be extended
smoothly to t ∈ [1, T2 + ε), and x(t) < L(b)− ε1 < y(t) for t ∈ (T2, T2 + ε2). This in
particular proves the remaining part of (ii).

We now consider the limt of y(t) as t decreases to T2. Since y(t) ∈ (L(b)−ε1, L(b))
for t ∈ (T2, T2 + ε2) and w(T2, x) < 0 for x ∈ [L(b) − ε1, L(b)), we necessarily have
limt↘T2 y(t) = L(b).

Step 4: The case t ∈ (T2, T1). In view of Lemma 2.2 and the fact that w(t, 0) >
0, w(t, L(b)) > 0 for t ∈ (T1, T2), and that for t ∈ (T2, T2+ ε2), w(t, x) has exactly two
nondegenerate zeros x(t) < y(t) over the interval [0, L(b)], we see that w(t, x) has at
most two zeros over this interval for every t ∈ (T1, T2).

We claim that for every t ∈ (T2, T1), w(t, x) has exactly two nondegenerate zeros
in (0, L(b)). Indeed, by the implicit function theorem, the nondegenerate zeros x(t)
and y(t) can be continued to larger t as long as they stay nondegenerate. Define

T ∗ := sup{s ∈ (T2, T1) : x(t) and y(t) are nondegenerate zeros of

w(t, x) for every t ∈ (T2, s)}.
Clearly T ∗ ≥ T2 + ε2. If T ∗ = T1, then x(t) and y(t) are two nondegenerate zeros
of w(t, x) in [0, L(b)] for every t ∈ (T2, T1). As there can be at most two zeros,
our claim is proved. If T ∗ < T1, we show that a contradiction arises. In such a
case, let us consider the limit of x(t) and y(t) as t increases to T ∗. Both limits
must exist for otherwise w(T ∗, x) would be identically zero for some interval of x in
[0, L(b)], contradicting the fact that it has at most two zeros. Let x(T ∗) and y(T ∗)
denote these limits, respectively. Then w(T ∗, x(T ∗)) = w(T ∗, y(T ∗)) = 0 and hence
0 < x(T ∗) ≤ y(T ∗) < L(b). Using the maximum principle to w over {(t, x) : 0 ≤
x < x(t), T2 < t ≤ T ∗}, we deduce that w(T ∗, x) > 0 for x ∈ [0, x(T ∗)). Similarly,
w(T ∗, x) > 0 for x ∈ (y(T ∗), L(b)].

If x(T ∗) = y(T ∗), we havew(T ∗, x) ≥ 0 for x ∈ [0, L(b)]. It follows that u(T ∗, x) ≥
Vb(x) for x ∈ [−L(b), L(b)]. As before we can use the comparison principle to deduce
that u(t, x) ≥ Vb(x) for all t > T ∗ and x ∈ [−L(b), L(b)], contradicting our assumption
that u(t, x) → θ as t → ∞.

If x(T ∗) < y(T ∗), then we can apply the maximum principle to w over {(t, x) :
x(t) < x < y(t), t ∈ (T2, T

∗]} to deduce that w(T ∗, x) < 0 for x ∈ (x(T ∗), y(T ∗)). Set
x0 := [x(T ∗) + y(T ∗)]/2. Then w(T ∗, x0) < 0 and by continuity we can find ε3 > 0
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small such that w(t, x0) < 0 for t ∈ (T ∗ − ε3, T
∗ + ε3). We may now use Lemma 2.2

to w for 0 < x < x0 and t ∈ (T ∗ − ε3, T
∗ + ε3) to conclude that w(t, x) has at most

one zero in [0, x0] for every such t. On the other hand, from w(t, 0) > 0 > w(t, x0)
we see that it has at least one zero. Therefore it has a unique nondegenerate zero in
[0, x0] for every t ∈ (T ∗− ε3, T

∗+ ε3). This implies that x(t) remains a nondegenerate
zero of w(t, x) for t ∈ [1, T ∗ + ε3). Similarly we can apply Lemma 2.2 to w for
x0 < x < L(b) and t ∈ (T ∗ − ε3, T

∗ + ε3) to see that y(t) remains nondegenerate for
every t ∈ (T2, T

∗ + ε3). But this contradicts the definition of T ∗. Our claim is thus
proved. Moreover, the discussion above also shows that the sign-changing pattern of
w(t, x) over [0, L(b)] for every t ∈ (T2, T1) is [+0− 0+]. This proves part (iii).

Step 5: limt↗T1 x(t), limt↗T1 y(t), and the behavior of w(T1, x). We first observe
that both limits exist, for otherwise, as before, we can deduce w(T1, x) ≡ 0 for x ∈
[0, L(b)], which is impossible since w(T1, L(b)) > 0. Denote the two limits by x(T1)
and y(T1), respectively. Then necessarily w(T1, x(T1)) = w(T1, y(T1)) = 0 and 0 ≤
x(T1) ≤ y(T1) < L(b). By the same argument used in Step 2 of the proof of Lemma
4.6, we find that x(T1) = 0. We show next that y(T1) > 0. Indeed, if y(T1) = 0, then
we can use the maximum principle to w over {(t, x) : y(t) < x < L(b), t ∈ (T2, T1]}
to deduce that w(T1, x) > 0 in (0, L(b)]. It follows that u(T1, x) ≥ Vb(x) for x ∈
[−L(b), L(b)], which implies u(t, x) ≥ Vb(x) for all t > T1 and x ∈ [−L(b), L(b)], a
contradiction to the assumption that u(t, x) → θ as t → +∞. We have thus proved
that

0 = x(T1) < y(T1) < L(b).

Applying the maximum principle to w over {(t, x) : x(t) < x < y(t), t ∈ (T2, T1]}
we deduce w(T1, x) < 0 for x ∈ (0, y(T1)). Similarly using the maximum principle
to w over {(t, x) : y(t) < x < L(b), t ∈ (T2, T1]}, we obtain w(T1, x) > 0 for x ∈
(y(T1), L(b)]. Thus w(T1, x) has sign-changing pattern [0 − 0+] over [0, L(b)]. This
proves part (iv) except that we still have to show that y(T1) is a nondegenerate zero.

Step 6: The case t ∈ [T1, T1 + ε). Fix y0 ∈ (0, y(T1)). We have w(T1, y0) < 0. By
continuity there exists ε > 0 small such that w(t, y0) < 0 for t ∈ (T1 − ε, T1 + ε). We
now apply Lemma 2.2 to w(t, x) over the region y0 < x < L(b) and t ∈ (T1−ε, T1+ε).
Since w(t, y0) < 0 < w(t, L(b)) for such t, w(t, x) has at least one zero in (y0, L(b)).
But for t ∈ (T1 − ε, T1), we already know that there is a unique zero. Hence Lemma
2.2 infers that w(t, x) has a unique zero in (y0, L(b)) and it is nondegenerate for every
t ∈ (T1 − ε, T1 + ε). This implies that y(t) can be extended to all t ∈ (T2, T1 + ε)
as a nondegenerate zero of w(t, x). In particular, y(T1) is a nondegenerate zero of
w(T1, x). We have now proved all the conclusions in part (iv) of the lemma.

Using the maximum principle to w over {(t, x) : −y(t) < x < y(t), T1 < t <
T1 + ε}, we find that w < 0 in this region. In particular, w(t, x) < 0 for x ∈ [0, y(t))
and t ∈ (T1, T1+ ε). Hence y(t) is the unique nondegenerate zero of w(t, x) in [0, L(b)]
for every t ∈ (T1, T1 + ε).

Step 7: The case t > T1. From the discussions in Step 6 above, we already know
that w(t, 0) < 0 for t ∈ (T1, T1 + ε). The same argument in Step 5 of the proof of
Lemma 4.6 shows that w(t, 0) < 0 for all t > T1. We may now use Lemma 2.2 to w
over the region 0 < x < L(b) and t > T1 in the same way as in Step 5 of Lemma
4.6 to conclude that for every t > T1, w(t, x) has a unique nondegenerate zero y(t) in
(0, L(b)), and w(t, x) has sign-changing pattern [−0+] over [0, L(b)]. This proves part
(v) of the lemma.
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Since y(t) is nondegenerate, it is a C1 function for t > T1. Let us note that the
other conclusions in part (vi) have already been proved in Steps 3, 4, and 5. The
proof of the lemma is now complete.

Lemma 4.8. Suppose T1 = T2. Then
(i) for t ∈ [1, T1), w(t, x) has a unique nondegenerate zero x(t) in (0, h(t)) with

sign-changing pattern [+0−] over [0, h(t)];
(ii) w(T1, x) has sign-changing pattern [0− 0] over [0, L(b)];
(iii) for t > T1 = T2, w(t, x) has a unique nondegenerate zero y(t) in (0, L(b))

with sign-changing pattern [−0+] over [0, L(b)];
(iv) limt↗T1 x(t) = 0, limt↘T1 y(t) = L(b).
Proof. This follows from simple variations of the proof of Lemma 4.6. The proof

of part (i) is the same as Step 1 of the proof of Lemma 4.6.
Step 2 there requires variations. If limt↗T1 x(t) does not exist, then as before

we obtain w(T1, x) ≡ 0 for x ∈ [0, L(b)]. Since this time w(T1, h(T1)) = 0, we derive
a contradiction in a different way as follows. From the above identity we obtain
u(T1, x) ≡ Vb(x), which implies, by the comparison principle, u(t, x) ≥ Vb(x) for all
t > T1 and x ∈ [−L(b), L(b)]. But this contradicts our assumption that u(t, x) → θ
as t → +∞. Therefore x0 := limt↗T1 x(t) exists. If x0 ∈ (0, L(b)], then we can derive
a contradiction as in Step 2 of Lemma 4.6. Thus x0 = 0 and the first part of (iv) is
proved.

We can also obtain w(T1, x) < 0 for x ∈ (0, L(b)) as in Step 2 of Lemma 4.6.
Since T1 = T2, clearly w(T1, L(b)) = 0. This proves part (ii).

By the argument in Step 4 of Lemma 4.6, we can find small ε1 > 0 and ε2 ∈
(0, ε1] such that for every t ∈ (T1, T1 + ε2], w(t, x) over [L(b)− ε1, L(b)] has a unique
nondegenerate zero y(t) ∈ (L(b)− ε1, L(b)). Moreover, limt↘T1 y(t) = L(b).

Using the maximum principle to w over {(t, x) : −y(t) < x < y(t), T1 < t ≤
T1 + ε2} we see that w < 0 in this region. In particular, w(t, x) < 0 for x ∈ [0, y(t))
and t ∈ (T1, T1 + ε2]. Hence y(t) is the unique zero of w(t, x) over [0, L(b)] for every
t ∈ (T1, T1 + ε2].

We may now follow Step 5 of Lemma 4.6 to complete the proof.
Let us note that Lemmas 4.6, 4.7, and 4.8 give a complete classification of the sign-

changing patterns of the function wb(t, x) := u(t, x)−Vb(x) for every fixed b ∈ (0, δ0)
and t ≥ 1. We next use this information to prove (4.6).

4.3.3. Completion of the proof of (4.6). Denote

m(δ) := sup
b∈(0,δ]

l(b)

L(b)
.

By Lemma 4.4 we find that m(δ) decreases to 0 as δ → 0. Therefore, (4.6) is a direct
consequence of the following result.

Proposition 4.9. For any given δ ∈ (0, δ0), there exists M = Mδ > 0 such that
θ(t)/h(t) ≤ m(δ) for t ≥ M .

Proof. Let δ ∈ (0, δ0) be arbitrarily given. Since L(b) is continuous in b and
L(b) → +∞ as b → 0, for any given h ∈ (L(δ),+∞), there exists b ∈ (0, δ) such that
L(b) = h. We now choose M1 > 0 such that h(t) > L(δ) for t ≥ M1. Then we can
find b(t) ∈ (0, δ) such that4

h(t) = L(b(t)) for t ≥ M1.

Since h(t) → +∞ as t → +∞, we necessarily have b(t) → 0 as t → +∞.

4b(t) need not be unique nor continuous with respect to t. We may require b(t) to be the minimal
solution b to h(t) = L(b) to make b(t) uniquely determined.
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We define

Σ1 := {t ≥ M1 : θ(t) ≤ l(b(t))}, Σ2 := {t ≥ M1 : θ(t) > l(b(t))}.
For t ∈ Σ1, since b(t) < δ, clearly

θ(t)

h(t)
=

θ(t)

L(b(t))
≤ l(b(t))

L(b(t))
≤ m(δ).

If there exists M2 > M1 such that Σ2 ∩ [M2,+∞) = ∅, then we can take M = M2

and our proof is complete.
It remains to consider the case that Σ2 ∩ [n,+∞) 	= ∅ for every n ≥ 1. Let

M2 > M1 be chosen such that, for every t ∈ Σ2 ∩ [M2,+∞),

(4.14) u(t, 0) < θ + δ and θ(t) > l(δ).

The second inequality is possible since for t ∈ Σ2, θ(t) > l(b(t)) → +∞ as t → +∞.
We now fix t ∈ Σ2 ∩ [M2,+∞) and denote

b0 = b(t), b1 = u(t, 0)− θ.

To stress the b-dependence of T1 and T2 determined by wb(t, x) in section 4.3.2, we
will write

T1 = T b
1 , T2 = T b

2 .

Claim: b0 < b1 < δ. The second inequality follows directly from (4.14). We next
prove the first by examining the sign-changing pattern of wb0(t, x). Since h(t) = L(b0),
we are in the case t = T b0

2 considered in section 4.3.2. By Lemmas 4.6–4.8, we find that
wb0(t, x) < 0 for x < L(b0) but close to L(b0). On the other hand, from θ(t) > l(b0)
we find wb0(t, l(b0)) > 0. Hence wb0(t, x) has a zero in (l(b0), L(b0)). Such a situation
can happen only in the case described by Lemma 4.7(ii), where wb0(t, x) has sign-
changing pattern [+0 − 0] over [0, L(b0)]. Therefore wb0(t, 0) = b1 − b0 > 0. This
proves the claim.

The discussions below are organized according to the three cases l(b1) > θ(t),
l(b1) = θ(t), and l(b1) < θ(t).

Case l(b1) > θ(t). Since l(δ) < θ(t) (see (4.14)), by continuity there exists
b2 ∈ (b1, δ) such that l(b2) = θ(t). We next prove h(t) > L(b2) by examining the
sign-changing pattern of wb2(t, x). From b2 > b1 we obtain wb2(t, 0) = b1 − b2 < 0.
Hence we are in the case t > T b2

1 . Moreover, l(b2) = θ(t) implies wb2(t, l(b2)) = 0.
Therefore we can only be in the case described in Lemma 4.6(v), or Lemma 4.7(v),
or Lemma 4.8(iii). In all these cases we have t > T b2

2 . Hence h(t) > L(b2). It follows
that

θ(t)

h(t)
=

l(b2)

h(t)
<

l(b2)

L(b2)
≤ m(δ).

Case l(b1) = θ(t). We examine the sign-changing pattern of wb1(t, x). Clearly
wb1(t, 0) = 0. So we are in the situation that t = T b1

1 . Moreover, wb1(t, x) has a zero
at x = θ(t) = l(b1) ∈ (0, L(b1)). This is possible only in the case of Lemma 4.7 part
(iv), which indicates that t > T b1

2 . Hence h(t) > L(b1) and we have

θ(t)

h(t)
=

l(b1)

h(t)
<

l(b1)

L(b1)
≤ m(δ).
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Case l(b1) < θ(t). This is the most complicated case to handle. We first examine
the sign-changing pattern of wb1(t, x). Due to wb1(t, 0) = 0 we are in the case t = T b1

1 .
By Lemmas 4.6–4.8, we find that wb1(t, x) < 0 for x > 0 but close to 0. On the other
hand, l(b1) < θ(t) implies that wb1 (t, l(b1)) > 0. Therefore wb1(t, x) has a zero
in (0, l(b1)). This is possible only in the case of Lemma 4.7(iv), where t > T b1

2 and
wb1(t, x) has sign-changing pattern [0−0+] over [0, L(b1)] with a unique nondegenerate
zero y(t) ∈ (0, L(b1)). As wb1(t, l(b1)) > 0, we necessarily have y(t) < l(b1).

Since l(b1) < θ(t) and l(b) → +∞ as b → 0, by decreasing b from b1 we can find
b3 ∈ (0, b1) such that

(4.15) l(b3) = θ(t) and l(b) < θ(t) for b ∈ (b3, b1].

We want to show that L(b3) < h(t). If this is proved, then as before we have

θ(t)

h(t)
=

l(b3)

h(t)
<

l(b3)

L(b3)
≤ m(δ).

Thus we can take M = M2 and the proof of the proposition is complete.
It remains to prove

L(b3) < h(t).

Since h(t) > L(b1), by continuity, for b < b1 but close to b1 we still have h(t) > L(b).
For such b clearly wb(t, 0) = b1 − b > 0, and hence t ∈ (T b

2 , T
b
1 ). We now examine

the sign-changing profile of wb(t, x). By Lemma 4.7(iii), wb(t, x) has sign-changing
pattern [+0 − 0+] over [0, L(b)] with exactly two nondegenerate zeros x(t) < y(t) in
(0, L(b)). Let us also note that from y(t) < l(b1) we obtain y(t) < l(b) for such b.

As we are now varying b while keeping t fixed, it is convenient to regard wb(t, x)
as a function of (b, x) and write

W (b, x) = wb(t, x).

Similarly, we will write X(b) = x(t) and Y (b) = y(t) to stress their dependence on
b. Thus W (b, x) has sign-changing pattern [+0 − 0+] over [0, L(b)] with exactly two
nondegenerate zeros X(b) < Y (b) for b < b1 but close to b1.

By the continuous dependence of Vb(x) on b, we find that W (b, x), Wx(b, x) are
continuous functions of (b, x). By the implicit function theorem we find that X(b)
and Y (b) are C1 functions of b as long as they are nondegenerate zeros of W (b, x).
Hence by our analysis above, X(b) and Y (b) are defined for all b < b1 and close to b1,
and they are C1 functions of b. We now consider the functions X(b), Y (b), and L(b)
as b is decreased further. We claim that for all b ∈ [b3, b1), X(b) and Y (b) are defined
and

0 < X(b) < Y (b) < L(b) < h(t).

Set

Λ :=
{
c ∈ (0, b1) : X(b), Y (b) are nondegenerate zeros of W (b, x)

and 0 < X(b) < Y (b) < L(b) < h(t) for all b ∈ [c, b1)
}

and

b∗ = inf Λ.
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By our earlier discussion, we have b∗ < b1. We prove that

b∗ < b3.

Suppose on the contrary b∗ ∈ [b3, b1). Let us first examine the limits of X(b) and Y (b)
as b decreases to b∗. If at least one of these limits does not exist, then W (b∗, x) =
wb∗(t, x) would be identically zero for x in some interval contained in [0, L(b∗)]. But
by Lemmas 4.6–4.8, no function wb(t, x) with fixed t ≥ 1 and b ∈ (0, δ0) can have
such a sign-changing pattern. Hence both limits exist, and we denote them by X(b∗)
and Y (b∗), respectively.

Evidently W (b∗, X(b∗)) = W (b∗, Y (b∗)) = 0. Since W (b∗, 0) = b1 − b∗ > 0, we
necessarily have

0 < X(b∗) ≤ Y (b∗) ≤ L(b∗) ≤ h(t).

We claim that

Y (b∗) ≤ l(b∗).

Otherwise, Y (b∗) > l(b∗), and in view of Y (b) < l(b) for b < b1 but close to b1, we
can find b4 ∈ (b∗, b1) such that Y (b4) = l(b4), which implies that u(t, l(b4)) = θ and
hence θ(t) = l(b4), contradicting (4.15). This proves our claim.

From W (b∗, 0) > 0 and L(b∗) ≤ h(t) we see that T b∗
2 ≤ t < T b∗

1 . Moreover,
for each b ∈ (b∗, b1) ⊂ Λ, we have T b

2 < t < T b
1 and by Lemma 4.7, W (b, x) has

sign-changing pattern [+0− 0+]. It follows that

(4.16) W (b∗, x) ≥ 0 for x ∈ [Y (b∗), L(b∗)].

We show next that L(b∗) < h(t). Otherwise L(b∗) = h(t) and hence t = T b∗
2 <

T b∗
1 . Therefore we can use Lemma 4.7(ii) to conclude that W (b∗, x) has sign-changing

pattern [+0 − 0], which contradicts (4.16). This proves L(b∗) < h(t) and hence
t ∈ (T b∗

2 , T b∗
1 ). But then we can apply Lemma 4.7(iii) to conclude that W (b∗, x) has

sign-changing pattern [+0−0+] over [0, L(b∗)], with exactly two nondegenerate zeros.
This implies that b∗ ∈ Λ, and by the implicit function theorem, any b < b∗ and close
to b∗ also belongs to Λ, contradicting the definition of b∗. We have thus proved b∗ < b3
and so b3 ∈ Λ. In particular, L(b3) < h(t), as we wanted.
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