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Abstract. We study a curvature-dependent motion of plane curves in a two-
dimensional cylinder with periodically undulating boundary. The law of motion
is given by V = κ + A, where V is the normal velocity of the curve, κ is the
curvature, and A is a positive constant. We first establish a necessary and
sufficient condition for the existence of periodic traveling waves, then we study
how the average speed of the periodic traveling wave depends on the geometry
of the domain boundary. More specifically, we consider the homogenization
problem as the period of the boundary undulation, denoted by ε, tends to
zero, and determine the homogenization limit of the average speed of periodic
traveling waves. Quite surprisingly, this homogenized speed depends only on
the maximum opening angle of the domain boundary and no other geometrical
features are relevant. Our analysis also shows that, for any small ε > 0,
the average speed of the traveling wave is smaller than A, the speed of the
planar front. This implies that boundary undulation always lowers the speed
of traveling waves, at least when the bumps are small enough.

1. Introduction. We discuss traveling waves for a curvature-driven motion of
plane curves in a two-dimensional cylinder Ωε, whose boundaries undulate peri-
odically with period ε > 0. The law of motion of the curve is given by

V = κ + A, (1.1)

where V denotes the normal velocity of the curve, κ denotes the curvature and A is
a positive constant representing a constant driving force. The domain Ωε is defined
as follows: Let g(y) be a 1-periodic smooth function satisfying

g(0) = g(1) = 0, g(y) ≥ 0 (y ∈ R)
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and
max

y
g′(y) = tan α, min

y
g′(y) = − tanβ (1.2)

for some α, β ∈ (0, π/2) (see Figure 1(a)). Then we define

Ωε :=
{
(x, y) ∈ R2 | −H − gε(y) < x < H + gε(y)

}
,

where H > 0 is a given constant and gε(y) := εg(y/ε) (see Figure 1(b)). We call α
the maximum opening angle of the boundary. Denote the left (resp. right) boundary
of Ωε by ∂−Ωε (resp. ∂+Ωε).

Figure 1. (a) The function g. (b) Ωε and the curve γt.

In this paper, by a solution of (1.1) we mean a time-dependent simple curve γt in
Ωε which satisfies (1.1) and contacts ∂±Ωε perpendicularly. Equation (1.1) appears
as a certain singular limit of an Allen-Cahn type nonlinear diffusion equation under
the Neumann boundary conditions. The curve γt represents the interface between
two different phases. See, e.g., [11, 1] for details.

To avoid sign confusion, the normal to the curve γt will always be chosen toward
the upper region, and the sign of the normal velocity V and the curvature κ will be
understood in accordance with this choice of the normal direction. Consequently,
κ is negative at those points where the curve is concave while it is positive where
the curve is convex (see Figure 1(b)).

We will mainly consider the case where γt is expressed as a graph of a certain
function y = u(x, t) at each time t. Let ζ−(t), ζ+(t) be the x-coordinates of the end
points of γt lying on ∂−Ωε, ∂+Ωε, respectively. In other words, (ζ±(t), u(ζ±(t), t)) ∈
∂±Ωε. Now (1.1) is equivalent to

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, ζ−(t) < x < ζ+(t), t > 0, (1.3)

with the boundary conditions

ux(ζ±(t), t) = ∓g′ε(u(ζ±(t), t)), (ζ±(t), u(ζ±(t), t)) ∈ ∂±Ωε. (1.4)

Throughout this paper we will assume that the boundary angles α, β satisfy

0 < α, β <
π

4
(slope condition)

or equivalently,
G := max

y∈R
|g′(y)| < 1. (1.5)
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We impose the above condition in order to prevent γt from developing singularities
near the boundary ∂Ωε. As we will show in Section 3 (Theorem 3.19), under the
condition (1.5), the equation (1.3)-(1.4) has a time-global classical solution for any
smooth initial data u0 satisfying |u′0(x)| ≤ G. Here the term “classical solution” is
understood in the following sense:

Definition 1.1. A function u(x, t) defined for ζ−(t) ≤ x ≤ ζ+(t), 0 ≤ t < T is
called a classical solution of (1.3)-(1.4) in the time interval [0, T ) if

(a) u, ux are continuous for ζ−(t) ≤ x ≤ ζ+(t), 0 ≤ t < T , and uxx, ut are
continuous for ζ−(t) < x < ζ+(t), 0 < t < T ;

(b) u satisfies (1.3)-(1.4) for ζ−(t) < x < ζ+(t), 0 < t < T .
It is called a time-global classical solution if T = +∞.

Now if ε = 0 then Ω0 = {(x, y) ∈ R2 | −H < x < H} is a straight cylinder.
In this case (1.1) has a planar traveling wave, namely a solution of the form γt =
{(x,At) | −H ≤ x ≤ H}, which has a flat profile and moves at a constant speed
A. On the other hand, if ε > 0, traveling waves in the usual sense cannot exist. In
fact, as the front γt propagates, its shape and speed fluctuate due to undulation of
the boundaries ∂±Ωε. Therefore we have to adopt a generalized notion of traveling
waves. In the case of spatially periodic environments, such a generalized notion of
traveling waves is well-established in the literature, which, in the present context,
can be stated as follows:

Definition 1.2. A solution Uε(x, t) of (1.3)-(1.4) is called a periodic traveling wave
— or simply a traveling wave — if it satisfies

Uε(x, t + Tε) = Uε(x, t) + ε (1.6)

for some Tε > 0. Its average speed — or the effective speed — is defined by

cε =
ε

Tε
.

Note that, despite its apparent notational difference, the above definition is equiv-
alent to the standard definition of traveling waves in periodic media; see for example,
[2, 4, 5, 12, 14]. In order to emphasize the difference from the classical notion of
traveling waves, in the present paper we have adopted the term “periodic traveling
wave” as in [12]. As is clear from the definition, periodic traveling waves change
their profile periodically in time (see Figure 2).

Figure 2. Periodic traveling wave.
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The first aim of the present paper is to prove the existence and uniqueness of the
periodic traveling wave, and discuss its stability. The second aim is to study the
homogenization limit of the periodic traveling wave Uε as ε → 0 and determine its
homogenized speed and profile. As we will see later in Subsection 2.2 and Section 5,
the periodic traveling wave Uε(x, t) converges to a function of the form ϕ(x) + c0t
as ε → 0, and determining the homogenized speed c0 is equivalent to determining
the contact angle θ∗ of the homogenized profile ϕ (see Figure 3).

Figure 3. Homogenization limit of the periodic traveling wave.

This paper is organized as follows. In Section 2, we state our main theorems,
Theorems 2.1 to 2.3. Theorem 2.1 gives a sharp criterion for the existence of periodic
traveling waves. More precisely, a periodic traveling wave exists if AH ≥ sin α, while
it does not if AH < sin α, where α is the maximum opening angle of the boundary
as defined in (1.2). In the latter case, propagation is always blocked (or, so to
say, “pinned”) and every solution of (1.3)-(1.4) converges to a stationary solution
as t → ∞. Theorem 2.2 asserts that the periodic traveling wave is asymptotically
stable. Theorem 2.3 is concerned with the estimate of the speed of periodic traveling
wave and its homogenization limit as ε → 0.

In Section 3, we discuss the local and global existence of solutions of the initial-
boundary value problem for (1.3)-(1.4). In doing so, we introduce a new coordi-
nate system (iso-thermal coordinates) that converts (1.3)-(1.4) into a problem on a
straight cylinder while preserving the contact angles.

In Section 4, we construct an entire solution — namely a solution that is defined
for −∞ < t < ∞ — by using a renormalization argument. Then we prove the
uniqueness (up to time shift) of the entire solution. The uniqueness implies that
this entire solution must satisfy (1.6) for some Tε ∈ R, hence it is a periodic traveling
wave. This establishes the existence and uniqueness of the periodic traveling wave,
completing the proof of Theorem 2.1 for the case AH ≥ sin α. Stability of the
periodic traveling wave is also discussed (proof of Theorem 2.2).

In Section 5 we estimate the average speed of the periodic traveling wave and
discuss the homogenization limit of the speed and the profile as ε → 0 (proof of
Theorem 2.3). The estimate of the speed is given by constructing a suitable upper
and a lower solution. Once the limit speed c0 = limε→0 cε is determined, the limit
profile ϕ along with the contact angle θ∗ will follow rather straightforwardly.

Finally, in Section 6, we consider the pinning case AH < sinα and prove that
every global solution of (1.3)-(1.4) converges to a stationary solution. This proof is
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based on the comparison principle, the energy functional and the uniqueness results
of ω-limit points for one-dimensional parabolic equations.

2. Main theorems. In this section we present our main results on the periodic
traveling wave and its homogenization limit. More basic questions such as the
well-posedness of equation (1.3)-(1.4) will be discussed in Section 3. In the rest of
the paper we impose the slope condition (1.5), which guarantees the existence of
classical solutions for equation (1.3)-(1.4) (see Subsection 3.6).

2.1. Existence and stability of periodic traveling wave.

Theorem 2.1. (Existence). Assume the slope condition (1.5).
(i) If AH ≥ sin α, then there exists a periodic traveling wave of (1.3)-(1.4), and it

is unique up to time shift. Moreover, this periodic traveling wave Uε satisfies

Uε(−x, t) = Uε(x, t), − tan α ≤ sgn x · Uε
x(x, t) ≤ tan β, Uε

t (x, t) > 0

for all (x, t) with (x,Uε(x, t)) ∈ Ωε and t ∈ R.
(ii) If AH < sin α and if ε is sufficiently small, then there exists no periodic

traveling wave. Moreover, every classical solution of (1.3)-(1.4) that is defined
globally for t ≥ 0 converges to a stationary solution as t →∞.

Theorem 2.2. (Stability). Assume the slope condition (1.5) and that AH ≥ sin α.
Then the periodic traveling wave Uε(x, t) is stable in the following sense:

(i) [Stability] Let Γε
t be the solution curve of (1.1) associated with Uε(x, t). Then

for any σ > 0 there exists δ > 0 such that for any solution curve γt of (1.1)
that is defined globally for t ≥ 0 and satisfies dH(γ0, Γε

τ ) < δ for some τ ∈ R,
it holds that dH(γt,Γε

t+τ ) < σ for all t ≥ 0. Here dH denotes the Hausdorff
distance between two compact sets in R2.

(ii) [Asymptotic stability] Let u(x, t) be a classical solution of (1.3)-(1.4) defined
globally for t ≥ 0 and let γt be the solution curve of (1.1) associated with
u(x, t). Then there exists a constant τ ∈ R such that

lim
t→+∞

dH(γt, Γε
t+τ ) = 0.

Furthermore, γt approaches Γε
t+τ in the C2 sense as t → +∞.

The above existence criteria AH ≥ sin α and AH < sin α can be interpreted that
the front propagates freely if the driving force A is large enough, while propagation
is blocked (or pinned) if A is not large enough to push the front against the boundary
bumps.

2.2. Homogenization limit. An important question concerning the periodic trav-
eling wave is how its average speed depends on the geometrical shape of the bound-
aries. This problem is important in many physical phenomena and very little is
known so far. We study this problem for the case where ε is very small. In other
words, we determine the homogenization limit of the periodic traveling wave Uε(x, t)
and the limit of its average speed cε as ε → 0. Since Uε(x, t + τ) is also a periodic
traveling wave for any constant τ ∈ R, this may create ambiguity in the definition
of Uε. In order to avoid such ambiguity, hereafter we normalize Uε(x, t) so that

Uε(0, 0) = 0 (2.1)

for every ε > 0. Our result is the following:
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Theorem 2.3. (Homogenization limit) Assume the slope condition (1.5) and that
AH ≥ sinα. Let Uε(x, t) be the periodic traveling wave of (1.3)-(1.4).

(i) For small ε, the average speed cε of Uε satisfies

c0 < cε < c0 + M
√

ε, (2.2)

where c0 is the constant determined uniquely by

H =
∫ α

0

cos s

A− c0 cos s
ds, (2.3)

and M is a positive constant independent of ε. Moreover c0 satisfies

0 < c0 < A,
∂c0

∂α
< 0,

∂c0

∂A
> 0,

∂c0

∂H
> 0 (2.4)

if AH > sinα, and c0 = 0 if AH = sinα.
(ii) Uε(x, t) converges to ϕ(x; c0) + c0t in C2,1

loc ((−H,H) × R) as ε → 0, where
ϕ(x; c0) is the solution of

c0 =
ϕxx

1 + ϕ2
x

+ A
√

1 + ϕ2
x, (2.5)

ϕ(0) = 0, ϕx(0) = 0. (2.6)

Remark 2.4. Equation (2.5) is derived by setting u = ϕ(x; c0) + c0t in equation
(1.3). Therefore the function ϕ(x; c0) + c0t is a traveling wave of (1.3) in Ω0 with
constant speed c0 and constant profile ϕ(x; c0). As we will see in Lemma 5.1, if
c0 > 0, by introducing a parameter θ := − arctan ϕx, the problem (2.5)-(2.6) can
be solved as follows:

ϕ(x(θ; c0); c0) = − 1
c0

log
(

A− c0 cos θ

A− c0

)
, (2.7)

x(θ; c0) =
∫ θ

0

cos s

A− c0 cos s
ds. (2.8)

On the other hand, (2.5)-(2.6) with c0 = 0 can be solved as

ϕ(x; 0) = − 1
A

(
1−

√
1−A2x2

)
, (2.9)

which coincides with the limit of ϕ(x(θ; c0); c0) as c0 → 0. Thus the condition (2.3)
can be expressed as x(α; c0) = H, or, equivalently, that

ϕx(H; c0) = − tan α.

This means that ϕ(x; c0) + c0t is a traveling wave in Ω0 (or a stationary front if
c0 = 0) with contact angle θ∗ = π

2 − α (see Figure 3). In other words,

(2.3) ⇐⇒ θ∗ =
π

2
− α.

Summarizing, Theorem 2.3 states that Uε converges to a traveling wave in Ω0

whose contact angle is θ∗ = π
2 −α, and that its speed c0 is determined uniquely by

this contact angle and the constants A, H through the identity (2.3).

3. Local and global existence. In this section we present basic existence results
for solutions of (1.3)-(1.4) and derive uniform bounds on the derivatives of solutions.
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3.1. Change of variables. In studying the existence of solutions for equation
(1.3)-(1.4), it is convenient to introduce new coordinates that convert the domain
into a flat cylinder. More precisely, we make a change of variables (x, y) 7→ (ξ, η),
which gives a diffeomorphism Ωε → D, where

D := {(ξ, η) ∈ R2 | −H < ξ < H, −∞ < η < ∞}.
Here the functions ξ(x, y) and η(x, y) are to be specified later. With these new
coordinates, the function y = u(x, t) is expressed as η = v(ξ, t), where the new
unknown v(ξ, t) is determined by the relation

η (x, u(x, t)) = v (ξ(x, u(x, t)), t) (3.1)

for (x, t) with (x, u(x, t)) ∈ Ωε and t ≥ 0. The function v(ξ, t) is well-defined by
(3.1) provided that x 7→ ξ(x, u(x, t)) is strictly monotone for each fixed t. We will
see later that this monotonicity condition always holds for the class of solutions
which we consider. Indeed, there exists a positive constant δ such that

∂

∂x
ξ (x, u(x, t)) = ξx + ξyux ≥ δ > 0. (3.2)

Once v(ξ, t) is defined, then substituting it into the relation y = u(x, t) yields

Y (ξ, v(ξ, t)) = u (X(ξ, v(ξ, t)), t) , (3.3)

where the map (ξ, η) 7→ (X(ξ, η), Y (ξ, η)) : D → Ωε is the inverse map of (x, y) 7→
(ξ(x, y), η(x, y)). The expression (3.3) gives a formula for recovering the original
solution u(x, t) from v(ξ, t). In order for u to be smoothly dependent on v, we need
the map ξ 7→ X(ξ, v(ξ, t)) to be one-to-one for each fixed t. As we will see later,
this is true since we have

∂

∂ξ
X (ξ, v(ξ, t)) = Xξ + Xηvξ ≥ δ1 > 0 (3.4)

for some constant δ1 > 0. See Lemma 3.6 for details.

3.2. Iso-thermal coordinates. Now we specify ξ and η. We adopt the so-called
iso-thermal coordinates. First, ξ(x, y) is given as a solution of the following bound-
ary value problem: 




∆ξ = 0
ξ = −H

ξ = H

in Ωε,

on ∂−Ωε,

on ∂+Ωε.

(3.5)

It is easily seen that the problem (3.5) has a unique solution within the class of
bounded functions. Next, we define η(x, y) to be the conjugate harmonic function
of ξ. More precisely, η is characterized by the Cauchy-Riemann relation{

ξx = ηy

ξy = −ηx

in Ωε. (3.6)

Such a function η exists since Ωε is a simply connected domain, and it is unique
up to addition of a constant. Thus, η is uniquely determined by (3.6) under the
following normalization condition:

η(0, 0) = 0. (3.7)

By a moving plane argument with respect to lines that are parallel to the y-axis,
we see that

ξx > 0 in Ωε. (3.8)
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Next we apply a similar reflection argument to a line `θ that is slightly tilted from
the y-axis by an angle θ. More precisely, choose an arbitrary point (x0, y0) ∈ Ωε

and consider a line `θ which passes through (x0, y0) and whose unit normal vector
is nθ := (cos θ, sin θ). Denote by ΩL

θ the portion of Ωε lying on the left-hand side of
`θ, and let (ΩL

θ )∗ be its reflection with respect to `θ. Also, denote by ξ∗(x, y) the
reflection of ξ(x, y) with respect to `θ.

Figure 4. Reflection with respect to line `θ.

If θ is sufficiently small, namely, if |θ| < π/2 − max{α, β}, then the reflection
of the boundary curve ∂−Ωε with respect to `θ does not intersect with ∂−Ωε itself
except on the line `θ, and the same is true of the curve ∂+Ωε. So long as θ has this
property, one can see by the maximum principle that

ξ∗ < ξ in Dθ := (ΩL
θ )∗ ∩ Ωε,

since ξ − ξ∗ ≥ 0, 6≡ 0 on the boundary of Dθ. Furthermore, ξ = ξ∗ on `θ ∩ Ωε,
which is a portion of the boundary of Dθ. Hence, by the Hopf boundary lemma, the
normal derivative of ξ on the line segment `θ ∩ Ωε does not vanish. Thus we have
nθ · ∇ξ(x0, y0) > 0 for |θ| < π/2 − max{α, β}. Consequently, the angle between
the vector ∇ξ and the x-axis lies in the interval [−max{α, β}, max{α, β}]. This
implies the following estimate:

∣∣∣∣
ξy

ξx

∣∣∣∣ ≤ max{tanα, tan β} = G in Ωε. (3.9)

This and (3.6) yield ∣∣∣∣
ηx

ηy

∣∣∣∣ ≤ G in Ωε. (3.10)

Before closing this subsection, let us list up basic properties and some useful
identities concerning the map (ξ(x, y), η(x, y)) and its inverse (X(ξ, η), Y (ξ, η)).
First we note that the map (x, y) 7→ (ξ(x, y), η(x, y)) : Ωε → D is one-to-one, since
ξx > 0, ηy > 0 in Ωε (see (3.8)). It is also easily seen that this map is onto, since the
level curves of ξ(x, y) and those of η(x, y) are smooth curves stretching vertically
and horizontally, respectively.
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Next we recall that the Cauchy-Riemann relation (3.6) implies

det
(

ξx ξy

ηx ηy

)
= ξ2

x + ξ2
y = η2

x + η2
y.

This, together with the fact that ξx > 0 in Ωε, implies

det
(

ξx ξy

ηx ηy

)
> 0 in Ωε. (3.11)

Therefore (ξ(x, y), η(x, y)) is a diffeomorphism from Ωε to D, so its inverse map
(X(ξ, η), Y (ξ, η)) is well-defined. The same Cauchy-Riemann relation implies

∇ξ · ∇η = 0 in Ωε. (3.12)

This means that the level curves of ξ and those of η intersect orthogonally every-
where. In particular, the level curves of η meet the boundary curves ∂−Ωε and
∂+Ωε perpendicularly.

As regards the derivatives of X, Y , clearly the following identity holds:(
Xξ Xη

Yξ Yη

)(
ξx ξy

ηx ηy

)
=

(
1 0
0 1

)
. (3.13)

Consequently X and Y also satisfy the Cauchy-Riemann relation:{
Xξ = Yη

Xη = −Yξ

in D. (3.14)

We also note that the following holds for the quantities in (3.2) and (3.4):

(ξx + ξy ux)(Xξ + Xη vξ) = 1. (3.15)

To see this, let us differentiate (3.1) by x, and (3.3) by ξ:

ηx + ηyux = vξ(ξx + ξyux),

Yξ + Yηvξ = ux(Xξ + Xηvξ).

Consequently

Xξ + Xηvξ = Xξ + Xη
ηx + ηyux

ξx + ξyux
=

Xξ(ξx + ξyux) + Xη(ηx + ηyux)
ξx + ξyux

.

By (3.13), the numerator of the right-hand side is equal to 1.

3.3. Equation in the new coordinates. Let us now rewrite the equation (1.3)
using the new coordinates ξ, η and the new unknown v(ξ, t). Differentiating the
expression

Y (ξ, v(ξ, t)) = u (X(ξ, v(ξ, t)), t)
twice by ξ and once by t, and using (3.14), we obtain

ux =
−Xη + Xξvξ

Xξ + Xηvξ
,

uxx =
1

(Xξ + Xηvξ)3

{
(1 + v2

ξ )(Jη − Jξvξ)
2J2

+
vξξ

J

}
,

ut =
vt

(Xξ + Xηvξ)J
,

where
J(ξ, η) :=

1
X2

ξ (ξ, η) + X2
η(ξ, η)

(
= ξ2

x(X, Y ) + ξ2
y(X,Y )

)
.
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Therefore, we find that (1.3) is converted into the following equation:

vt = d(ξ, v, vξ)vξξ + f(ξ, v, vξ), (3.16)

where

d(ξ, η, p) :=
J(ξ, η)
1 + p2

,

f(ξ, η, p) := −1
2
Jξ(ξ, η)p +

1
2
Jη(ξ, η) + A

√
J(ξ, η)(1 + p2).

In deriving equation (3.16), we need to assume condition (3.4), the validity of which
will be verified later in Lemma 3.6. Note also that, because of the orthogonality
(3.12), the boundary condition (1.4) is converted to

vξ(−H, t) = vξ(H, t) = 0. (3.17)

In accordance with Definition 1.1, a classical solution of this reduced problem is
defined as follows:

Definition 3.1. A function v(ξ, t) defined in [−H, H]× [0, T ) is said to be a clas-
sical solution of (3.16)-(3.17) in the time interval [0, T ) if v, vξ are continuous in
[−H, H]× [0, T ), vξξ, vt are continuous in (−H,H)× (0, T ) and if v satisfies (3.16)-
(3.17) in (−H, H)× (0, T ). It is called a time-global classical solution if T = +∞.

Remark 3.2. In what follows, when we say v is a classical solution in the closed
time-interval [0, T ], we mean that v is a classical solution in [0, T ) and that v, vξ

vξξ, vt are continuous up to t = T .

Equation (3.16) is a quasilinear parabolic equation whose coefficients are smooth
functions of (ξ, v, vξ). Furthermore, the coefficients J(ξ, v), Jξ(ξ, v), Jη(ξ, v) are
bounded, thanks to the following lemma:

Lemma 3.3. The functions X(ξ, η) and Y (ξ, η) are smooth in D. Moreover, there
exists a constant pε ∈ (0, ε) such that

X(ξ, η + pε) = X(ξ, η), Y (ξ, η + pε) = Y (ξ, η) + ε in D. (3.18)

Consequently, the derivatives of X, Y , hence those of J(ξ, η), are all periodic in η
with period pε.

Proof. Since Ωε is invariant with respect to the translation (x, y) 7→ (x, y + ε), the
function ξ(x, y + ε) is also a solution of (3.5), hence

ξ(x, y + ε) = ξ(x, y) in Ωε (3.19)

by the uniqueness of the solution. Therefore both η(x, y + ε) and η(x, y) are the
conjugate harmonic function of ξ(x, y). Consequently

η(x, y + ε) = η(x, y) + pε in Ωε (3.20)

for some constant pε. Let us show that 0 < pε < ε. Put

∆ε := Ωε ∩ {0 < y < ε}, ∆̃ε := ∆ε ∩ {−H < x < H}.
Since ξ = −H on ∂−Ωε and ξ = H on ∂+Ωε, we obtain∫∫

∆ε

ξx dxdy = 2Hε.

Similarly, we have ∫∫
e∆ε

ηy dxdy = 2Hpε.



PERIODIC TRAVELING WAVES 547

Considering that ηy = ξx > 0 and that ∆ε ⊃ ∆̃ε, we obtain 2Hε > 2Hpε > 0,
hence ε > pε > 0. From (3.19) and (3.20) one can easily deduce (3.18).

At the end of this subsection we derive useful gradient bounds which will be
needed in the next subsection to prove the existence of a time-global solution. As
mentioned in the introduction, we will assume (1.5) throughout the present paper.
This condition is equivalent to

max{tan α, tan β} < 1.

Hereafter we denote by QT the space-time region on which u is defined:

QT := {(x, t) | ζ−(t) < x < ζ+(t), 0 < t < T}.
Lemma 3.4 (A priori gradient bound for u). Let u be a classical solution of (1.3)-
(1.4) in the interval [0, T ], whose initial data u0(x) satisfies

|u′0(x)| ≤ G for ζ−(0) ≤ x ≤ ζ+(0). (3.21)

Then
|ux(x, t)| ≤ G for (x, t) ∈ QT . (3.22)

Furthermore, inequality (3.2) holds everywhere in QT .

Proof. The function w := ux(x, t) satisfies the following equation:




wt =
wxx

1 + w2
− 2ww2

x

(1 + w2)2
+ A

wwx√
1 + w2

in QT ,

w(ζ±(t), t) = ∓g′
(
ε−1u(ζ±(t), t)

)
, for t ∈ (0, T ).

This equation can be written in the form

wt = a(x, t)wxx + b(x, t)wx,

with a(x, t) > 0. By the maximum principle, the maximum of |w| on QT is attained
on the parabolic boundary of QT . Thus (3.22) follows from (3.21) and (1.5). Next,
combining this gradient estimate and (3.9), we obtain

ξx + ξyux ≥ ξx

(
1−

∣∣∣∣
ξy

ξx
ux

∣∣∣∣
)
≥ ξx (1−G2).

Since min ξx > 0 because of the periodicity of ξ(x, y) in y, and since 1 − G2 > 0,
the inequality (3.2) holds by setting δ := (1−G2) minΩε

ξx.

Definition 3.5. By an admissible function for equation (1.3)-(1.4), we mean a C1

function u0(x) defined on some interval ζ− ≤ x ≤ ζ+ such that
(a) (x, u0(x)) ∈ Ωε for all ζ− < x < ζ+;
(b) (ζ±, u0(ζ±)) ∈ ∂±Ωε; and the graph of u0 intersects ∂±Ωε perpendicularly;
(c) |u′0(x)| ≤ G for all ζ− ≤ x ≤ ζ+.

We denote by C1
ad the set of all admissible functions.

If u0 ∈ C1
ad, then, as we have seen in the proof of the above lemma, ξx(x, u0) +

ξy(x, u0)u′0(x) > 0. Consequently, a function v0(ξ), −H ≤ ξ ≤ H, is well-defined
from the expression

η (x, u0(x)) = v0 (ξ(x, u0(x))) .

We denote by C̃1
ad the set of all the functions v0(ξ) obtained this way.
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Lemma 3.6 (A priori gradient bound for v). Let v be a classical solution of (3.16)-
(3.17) in the time interval [0, T ] with initial data v0 ∈ C̃1

ad. Then inequality (3.4)
holds everywhere in [−H, H] × [0, T ], hence v(·, t) ∈ C̃1

ad for every t ∈ [0, T ]. Fur-
thermore,

|vξ(ξ, t)| ≤ G̃ :=
2G

1−G2
for (ξ, t) ∈ [−H,H]× [0, T ]. (3.23)

Proof. Let us show that (3.4) holds with the following choice of δ1 :

δ1 :=
1

(1 + G2)maxΩε
ξx

.

Suppose the conclusion does not hold. Then there exist t0 ∈ (0, T ] such that

Xξ + Xηvξ

{
> 0 for 0 ≤ t ≤ t0,
< δ1 for t = t0.

Since Xξ +Xηvξ > 0 in the interval [0, t0], a function u(x, t) is determined uniquely
from (3.3), and it is a classical solution of (1.3)-(1.4). The assumption v0 ∈ C̃1

ad

implies that the initial data u(x, 0) belongs to C1
ad. Therefore, by Lemma 3.4, u

satisfies (3.22). Combining this and (3.9), we obtain

ξx + ξyux = ξx

(
1 +

ξy

ξx
ux

)
≤ (1 + G2)max

Ωε

ξx

for 0 ≤ t ≤ t0. This and (3.15) yields

Xξ + Xηvξ ≥ δ1 for t = t0,

contradicting our earlier assumption. This contradiction shows that (3.4) holds for
all t ∈ [0, T ]. Therefore, the solution u(x, t) of (1.3)-(1.4) corresponding to v(ξ, t)
is defined for all t ∈ [0, T ] and satisfies (3.22). This means v(·, t) ∈ C̃1

ad for all
t ∈ [0, T ]. Furthermore,

|vξ| =
∣∣∣∣
ηx + ηyux

ξx + ξyux

∣∣∣∣ =

∣∣∣∣∣
ux − ξy

ξx

1 + ξy

ξx
ux

∣∣∣∣∣ ≤
2G

1−G2
.

The lemma is proved.

Corollary 3.7. Let v0 be an element of C̃1
ad which corresponds to u0 ∈ C1

ad. If
there exists a time-global classical solution v for equation (3.16)-(3.17) with initial
data v0, then there exists a time-global classical solution u for equation (1.3)-(1.4)
with initial data u0. Moreover, u(·, t) belongs to C1

ad for each t > 0.

3.4. Comparison principles.

Definition 3.8. A function v̂ ∈ C2,1([−H, H]× [0, T ]) is called a lower solution of
(3.16)-(3.17) on the interval 0 ≤ t ≤ T if





v̂t ≤ d(ξ, v̂, v̂ξ)v̂ξξ + f(ξ, v̂, v̂ξ), (ξ, t) ∈ (−H, H)× (0, T ),

±v̂ξ(±H, t) ≤ 0, t ∈ (0, T ).

A function v̂ ∈ C2,1([−H,H]× [0, T ]) is called an upper solution of (3.16)-(3.17) if
the reversed inequalities hold.

The following proposition follows easily from the maximum principle:
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Proposition 3.9 (Comparison principle for v). Let v− and v+ be a lower and an
upper solution of (3.16)-(3.17) on the interval 0 ≤ t ≤ T , respectively. Suppose that
v−(ξ, 0) ≤ v+(ξ, 0) for ξ ∈ [−H,H]. Then

v−(ξ, t) ≤ v+(ξ, t) for (ξ, t) ∈ [−H,H]× [0, T ].

Furthermore, if v− 6≡ v+ then

v−(ξ, t) < v+(ξ, t) for (ξ, t) ∈ [−H, H]× (0, T ].

Corollary 3.10 (Growth bound on v). There exists a constant Kf > 0, dependent
only on A and ‖J‖L∞ , ‖Jη‖L∞ such that for any classical solution v of (3.16)-(3.17)
with initial data v0 ∈ C̃1

ad,

‖v(·, t)‖L∞ ≤ Kf t + ‖v0‖L∞ . (3.24)

Proof. By the periodicity of J and Jη in η, we have

Kf := sup
(ξ,η)∈[−H,H]×R

|f(ξ, η, 0)| < +∞.

Consequently, v+(t) = Kf t + ‖v0‖L∞ is an upper solution of (3.16)-(3.17), while
v−(t) = −Kf t − ‖v0‖L∞ is a lower solution of (3.16)-(3.17). Moreover v−(0) ≤
v0(ξ) ≤ v+(0) for ξ ∈ [−H,H]. Hence, by Proposition 3.9, we have

v−(t) ≤ v(ξ, t) ≤ v+(t) for (ξ, t) ∈ [−H, H]× [0, T ].

This proves the corollary.

Next we state the comparison principle for solution curves of (1.1).

Definition 3.11. Let û be a C2,1-function defined for ζ̂−(t) ≤ x ≤ ζ̂+(t), 0 ≤ t ≤ T

such that (ζ̂±(t), û(ζ̂±(t), t)) ∈ ∂±Ωε, respectively. Then û is called a lower solution
of (1.3)-(1.4) on the interval 0 ≤ t ≤ T if





ût ≤ ûxx

1 + û2
x

+ A
√

1 + û2
x, ζ̂−(t) < x < ζ̂+(t), 0 < t < T,

ûx(ζ̂+(t), t) ≤ −g′ε(û(ζ̂+(t), t)), 0 < t < T,

ûx(ζ̂−(t), t) ≥ g′ε(û(ζ̂−(t), t)), 0 < t < T.

A function û is called an upper solution of (1.3)-(1.4) if the reversed inequalities
hold.

We easily see that û is a lower solution of (1.3)-(1.4) if and only if v̂, the expression
of û in the coordinates (ξ, η, t), is a lower solution of (3.16)-(3.17), provided that v̂
is well-defined by (3.1).

Notation. Let C denote the set of all simple (non-self-intersecting) C1-curves γ in
Ωε such that

(a) The two endpoints of γ lie on ∂−Ωε and on ∂+Ωε, respectively;
(b) Every point of γ except the endpoints lies in Ωε.

Each γ ∈ C divides Ωε into two open sets. We denote the one located above γ
by U(γ). We then define an order relation in C by

γ ¹ γ̃
def⇐⇒ U(γ) ⊃ U(γ̃).

We also write γ ¿ γ̃ if γ ¹ γ̃ and γ ∩ γ̃ = ∅.
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Let u be a C1 function defined on some interval ζ− ≤ x ≤ ζ+ such that (x, u(x)) ∈
Ωε for ζ− < x < ζ+ and that (ζ±, u(ζ±)) ∈ ∂±Ωε. Then the graph of u, say G(u),
belongs to C. For such functions u1 and u2, we define an order relation between
them by

u1 ¹ u2
def⇐⇒ G(u1) ¹ G(u2),

u1 ¿ u2
def⇐⇒ G(u1) ¿ G(u2).

Proposition 3.12 (Comparison principle for u). Let u1 and u2 be a lower solution
and an upper solution of (1.3)-(1.4) on the interval 0 ≤ t ≤ T , respectively. Suppose
that u1(·, 0) ¹ u2(·, 0). Then

u1(·, t) ¹ u2(·, t) for 0 ≤ t ≤ T.

Furthermore, if u1 6≡ u2 then

u1(·, t) ¿ u2(·, t) for 0 < t ≤ T.

Proof. If u1 and u2 satisfy the condition (3.22), then they have expressions v1 and v2

in the coordinates (ξ, η, t), respectively. In this case, it is clear that u1(·, t) ¹ u2(·, t)
(resp. u1(·, t) ¿ u2(·, t)) if and only if v1(ξ, t) ≤ v2(ξ, t) (resp. v1(ξ, t) < v2(ξ, t))
for ξ ∈ [−H, H]. Therefore the conclusion follows from Proposition 3.9. The general
case is basically the same: the conclusion follows from the strong maximum principle
except that the Hopf boundary lemma has to be applied after an appropriate local
change of coordinates near the boundary. We omit the details.

The above proposition remains true even if the solution curve γt is not necessarily
the graph of a function u. More precisely, we have:

Proposition 3.13 (Comparison principle for solutions of (1.1)). Let {γt}t∈[0,T ]

and {γ̃t}t∈[0,T ] ⊂ C be solutions of (1.1) which contact ∂±Ωε perpendicularly for
0 ≤ t ≤ T with initial data γ0 and γ̃0 ∈ C, respectively. Suppose that γ0 ¹ γ̃0. Then

γt ¹ γ̃t for 0 ≤ t ≤ T.

Furthermore, if γ0 6= γ̃0 then

γt ¿ γ̃t for 0 < t ≤ T.

The proof of this proposition is similar to that of Proposition 3.9. In fact, by using
local coordinates, one can express (1.1) locally as a quasilinear parabolic equation;
one can then apply the maximum principle. The details are omitted.

3.5. Uniform Hölder estimates. In this subsection we derive uniform Hölder
estimates for solutions of (3.16)-(3.17). More precisely, we show that if a classical
solution v of (3.16)-(3.17) exists for 0 ≤ t ≤ T and if v ∈ C2+ν,1+ν/2([−H, H] ×
(0, T ]), then for any δ ∈ (0, T ) there exists a constant Cδ > 0 such that

‖ṽ(·, t)‖C2+ν([−H,H]) ≤ Cδ for δ ≤ t ≤ T,

where ν ∈ (0, 1) is a constant to be specified later and Cδ depends on δ but is
independent of v and T , and

ṽ(ξ, t) := v(ξ, t)− 1
2H

∫ H

−H

v(z, t)dz.

In the rest of this subsection, Cδ denotes a positive constant dependent on δ > 0
but independent of v and T , whose actual value may differ in different contexts.
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Lemma 3.14. Let v(ξ, t) be a classical solution of (3.16)-(3.17) in the time interval
[0, T ] and define

h(t) :=
1

2H

∫ H

−H

v(z, t)dz.

Then there exists a positive constant M independent of v and T such that

sup
0≤t≤T

|h′(t)| ≤ M.

Proof. Since equation (3.16) can be written in the following divergence form

vt = (D(ξ, v, vξ))ξ + F (ξ, v, vξ),

with

D(ξ, η, p) := J(ξ, η) arctan p,

F (ξ, η, p) := f(ξ, η, p)− (Jξ(ξ, η) + Jη(ξ, η)p) arctan p,

we have

h′(t) =
1

2H

∫ H

−H

F (z, v(z, t), vξ(z, t))dz.

Therefore the assertion of the lemma follows from Lemma 3.6 and the fact that F
is periodic in η.

Lemma 3.15. Let v(ξ, t) be a classical solution of (3.16)-(3.17) in the time interval
[0, T ]. Then there exists a positive constant ν ∈ (0, 1) such that

‖ṽ‖Cν,ν/2([−H,H]×[δ,T ]) ≤ Cδ, ‖ṽξ‖Cν,ν/2([−H,H]×[δ,T ]) ≤ Cδ (3.25)

for any δ ∈ (0, T ).

Proof. First we extend v to a function v̂ defined on the whole line R by

v̂(ξ, t) :=

{
v(ξ, t), −H ≤ ξ ≤ H,

v(2H − ξ, t), H < ξ ≤ 3H,

v̂(ξ + 4H, t) = v̂(ξ, t), (ξ, t) ∈ R× [0, T ].

Then v̂ solves

v̂t = d̂(ξ, v̂, v̂ξ)v̂ξξ + f̂(ξ, v̂, v̂ξ), (ξ, t) ∈ R× (0, T ),

where

d̂(ξ, η, p) :=

{
d(ξ, η, p), −H ≤ ξ ≤ H,

d(2H − ξ, η,−p), H < ξ ≤ 3H,

d̂(ξ + 4H, η, p) = d̂(ξ, η, p),

and f̂ is the extension of f defined in the same way as d̂. In what follows, we write
v, d, f instead of v̂, d̂, f̂ for simplicity. Note that, by the boundary conditions
vξ(±H, t) = 0, the function vξ is continuous in R × (0, T ). Moreover, w := vξ is a
weak solution of

wt = (P (ξ, t, w,wξ))ξ ,

where P (ξ, t, w, p) := d(ξ, v(ξ, t), w)p + f(ξ, v(ξ, t), w). Recalling the fact that |w|
is uniformly bounded by the constant G̃, we obtain

|P (ξ, t, w, p)| ≤ K1|p|+ K2, P (ξ, t, w, p)p ≥ K3|p|2 −K4
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for some positive constants Kj (j = 1, 2, 3, 4) independent of T . Hence, applying
the interior Hölder estimates for quasilinear parabolic equations of divergence form
(see [13, Theorem 2.2]) to the above equation for w, we see that

‖vξ‖Cµ,µ/2(R×[δ,T ]) = ‖ṽξ‖Cµ,µ/2(R×[δ,T ]) ≤ Cδ

for any δ ∈ (0, T ), where the constant µ ∈ (0, 1) does not depend on δ, v and T .
Next we derive the Hölder estimates for ṽ. We note that |ṽ(ξ, t)| ≤ 2G̃H for

(ξ, t) ∈ R× [0, T ] and that ṽ satisfies

ṽt = (D(ξ, ṽ + h(t), ṽξ))ξ + F (ξ, ṽ + h(t), ṽξ)− h′(t).

Here we extend D and F for all ξ ∈ R in the following way:

D(ξ, η, p) = D(2H − ξ, η, p), F (ξ, η, p) = F (2H − ξ, η,−p), for H < ξ ≤ 3H,

D(ξ + 4H, η, p) = D(ξ, η, p), F (ξ + 4H, η, p) = F (ξ, η, p).

By Lemmas 3.3, 3.6 and 3.14, there exist positive constants Mj (j = 1, 2, 3) inde-
pendent of T such that

|D(ξ, η + h(t), p)| ≤ M1|p|,
D(ξ, η + h(t), p)p ≥ M2|p|2,

|F (ξ, η + h(t), p)− h′(t)| ≤ M3(1 + |p|),
for all (ξ, t, η, p) ∈ R × [0, T ] × R × [−G̃, G̃]. Again, applying the interior Hölder
estimates for quasilinear parabolic equations ([13, Theorem 2.2]), we see that

‖ṽ‖Cµ̃,µ̃/2(R×[δ,T ]) ≤ Cδ

for any δ > 0, where the constant µ̃ ∈ (0, 1) does not depend on δ, v and T .
Letting ν = min{µ, µ̃} ∈ (0, 1), we obtain (3.25).

Corollary 3.16. Let the assumptions of Lemma 3.15 hold. Then

‖v(·, t)‖C1+ν([−H,H]) ≤ Cδ + Kf t + ‖v0‖L∞

for δ ≤ t ≤ T , where Kf is the constant in Corollary 3.10.

Proof. The assertion follows immediately from (3.24) and (3.25).

Lemma 3.17. Let v(ξ, t) be a classical solution of (3.16)-(3.17) in the time interval
[0, T ] and let ν ∈ (0, 1) be the constant in Lemma 3.15. If v ∈ C2+ν,1+ν/2([−H,H]×
(0, T ]), then for any δ ∈ (0, T ) we have

‖ṽ‖C2+ν,1+ν/2([−H,H]×[δ,T ]) ≤ Cδ, (3.26)

‖v‖C2+ν,1+ν/2([−H,H]×[δ,T ]) ≤ Cδ + KfT + ‖v0‖L∞ , (3.27)

where Kf is the constant in Corollary 3.10 and Cδ is a constant independent of the
solution v.

Proof. We note that ṽ satisfies the equation of the form

ṽt = a(ξ, t)ṽξξ + b(ξ, t),

where

a(ξ, t) = d(ξ, ṽ(ξ, t) + h(t), ṽξ(ξ, t)),

b(ξ, t) = f(ξ, ṽ(ξ, t), ṽξ(ξ, t))− 1
2H

∫ H

−H

F (z, ṽ(z, t) + h(t), ṽξ(z, t))dz.
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Since vξ(±H, t) = 0, the functions a and b are continuous in R× [0, T ]. Moreover,
by Lemmas 3.14 and 3.15, for any δ ∈ (0, T ), the quantities ‖a‖Cν,ν/2(R×[δ/2,T ])

and ‖b‖Cν,ν/2(R×[δ/2,T ]) are bounded by some positive constant that depends on δ.
Hence the interior a priori estimates ([6, Theorem 8.11.1]) implies

‖ṽ‖C2+ν,1+ν/2(R×[δ,T ]) ≤ Cδ.

By Corollary 3.10, Lemmas 3.14, 3.15 and the fact that

h′(t) =
1

2H

∫ H

−H

F (z, ṽ(z, t) + h(t), ṽξ(z, t))dz,

we have
‖h‖C1+ν/2([δ,T ]) ≤ KfT + ‖v0‖L∞ + Cδ.

Therefore,

‖v‖C2+ν,1+ν/2([−H,H]×[δ,T ]) ≤ ‖ṽ‖C2+ν,1+ν/2([−H,H]×[δ,T ]) + ‖h‖C1+ν/2([δ,T ])

≤ Cδ + KfT + ‖v0‖L∞ .

The lemma is proved.

3.6. Existence of time-global solutions. Now we are ready to prove the exis-
tence of global solutions of (1.3)-(1.4).

Theorem 3.18. Let 0 < λ < 1. For any v0 ∈ C̃1
ad ∩C1+λ([−H, H]), there exists a

time-global classical solution v(ξ, t) of (3.16)-(3.17) with initial data v0. Moreover,
v ∈ C2+ν,1+ν/2([−H, H]× [δ, T ]) for any 0 < δ < T , where ν ∈ (0, 1) is the constant
in Lemma 3.15. If, in addition, v0 ∈ C̃1

ad∩C2([−H, H]), then vξξ, vt are continuous
up to t = 0.

Proof. By the theory of abstract quasilinear parabolic equations ([7, Theorem 2.1]),
we see that for any initial data v0 ∈ C1+λ([−H, H]) with λ ∈ (0, 1) satisfying the
compatibility condition v′0(±H) = 0 there exists a unique local-in-time classical
solution v of (3.16)-(3.17) in some time interval 0 ≤ t < T1. We set

T ∗ := sup{T1 > 0 | v can be continued as a classical solution up to t = T1}.
By Lemma 3.15, v(·, t) ∈ C1+ν([−H, H]) for some ν ∈ (0, 1) and for every t ∈ [δ, T ∗),
where δ is any number in (0, T ∗).

In order to prove that T ∗ = +∞, suppose the contrary: T ∗ < +∞. Then, using
again the local existence result of [7, Theorem 2.1] in the space C1+ν([−H,H]), we
see that

lim
t↗T∗

‖v(·, t)‖C1+ν([−H,H]) = +∞.

This, however, contradicts Corollary 3.16, hence T ∗ = +∞.
Since d(ξ, v, vξ), f(ξ, v, vξ) ∈ Cν,ν/2([−H, H]×[δ, T ]) for any 0 < δ < T , standard

regularity results for linear parabolic equations imply v ∈ C2+ν,1+ν/2([−H, H] ×
[δ, T ]). Moreover, [7, Theorem 2.1] also implies that vξξ, vt are continuous up to
t = 0 if v0 ∈ C̃1

ad ∩ C2([−H, H]).

As mentioned in Corollary 3.7, the above theorem implies the existence of global
classical solutions of (1.3)-(1.4).

Theorem 3.19. Let 0 < λ < 1. For any u0 ∈ C1
ad ∩ C1+λ, there exists a time-

global classical solution u(x, t) of (1.3)-(1.4) with initial data u0. Moreover, if
u0 ∈ C1

ad ∩ C2 then uxx and ut are continuous up to t = 0.
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4. Existence of periodic traveling waves.

4.1. Existence of entire solutions. First we explain the geometric meaning of
the assumption AH ≥ sinα in Theorems 2.1 to 2.3:

Lemma 4.1. If AH ≥ sin α, then problem (1.3)-(1.4) has no stationary solution
for any ε > 0.

Proof. Suppose that there exists a stationary solution w(x) of (1.3)-(1.4). Then
the graph of w is a circular arc of constant curvature −A whose endpoints meet
the boundaries ∂±Ωε perpendicularly. Naturally the radius of this arc is 1/A. Let
(x±, w(x±)) be the endpoints on ∂±Ωε, respectively. Then we have x+ − x− > 2H
by the definition of g.

On the other hand, since ∓w′(x±) ≤ max g′(y) = tan α, a simple geometric
observation shows that the central angle of this arc is less than or equal to 2α,
which implies

x+ − x− ≤ 2 sinα

A
≤ 2H.

This contradiction proves the lemma.

Let u be the global solution of (1.3)-(1.4) with initial data u(x, 0) ≡ 0. Since
problem (1.3)-(1.4) has reflection symmetry with respect to the y-axis, u is an
even function in x. We denote by [−ζ(t), ζ(t)] the horizontal span of the solution
curve u(x, t) at each time t ≥ 0. Then, since − tan β ≤ ux(−ζ(t), t) ≤ tan α and
ux(0, t) = 0 for t ≥ 0, we see from the maximum principle that

− tan β ≤ ux(x, t) ≤ tanα for − ζ(t) ≤ x ≤ 0, t ≥ 0.

The same inequality holds for −ux(x, t) for 0 ≤ x ≤ ζ(t), t ≥ 0, hence

− tanα ≤ sgnx · ux(x, t) ≤ tanβ (4.1)

for all x ∈ [−ζ(t), ζ(t)] and t ≥ 0. Moreover, since ut(x, 0) ≡ A > 0, the strong
maximum principle yields that

ut(x, t) > 0 for all x ∈ [−ζ(t), ζ(t)], t ≥ 0.

Let v be the expression of u in the coordinates (ξ, η, t). Then

vt(ξ, t) > 0, |vξ(ξ, t)| ≤ G̃ for all (ξ, t) ∈ [−H, H]× [0,+∞). (4.2)

For t ≥ 0 we set m(t) := max|ξ|≤H v(ξ, t).

Lemma 4.2. For each t ≥ 0, let k(t) be a nonnegative integer satisfying

k(t)pε ≤ m(t)−m(0) < (k(t) + 1)pε,

where pε is the period of J(ξ, η) in η. Then the following hold:

(i) k(t) is nondecreasing and diverges to +∞ as t → +∞.
(ii) For any t, s ≥ 0,

k(t + s)− k(t) ≤ Kf

pε
s + 1, (4.3)

where Kf is the constant in Corollary 3.10.
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Proof. (i) Since vt > 0, it is easily seen that k(t) is nondecreasing in t. Suppose that
k(t) is bounded. Then ‖v(·, t)‖L∞ is also bounded. By the same argument as in the
proof of Lemma 3.17, we see that for any δ > 0, ‖v(·, t)‖C2+ν([−H,H]) is bounded
for t ≥ δ. Therefore, v converges to some smooth function as t → +∞, which is
necessarily an stationary solution of (3.16)-(3.17). This contradicts Lemma 4.1.

(ii) By the definition of k and the comparison principle, we have

{k(t + s)− k(t)− 1}pε ≤ m(t + s)−m(t) ≤ Kfs

for all t, s ≥ 0. These inequalities imply (4.3).

Proposition 4.3. Problem (3.16)-(3.17) has an entire solution V (ξ, t) with the
following properties:

(i) V ∈ C2+ν,1+ν/2([−H, H]× [−T, T ]) for any T > 0.
(ii) V (·, t) ∈ C̃1

ad for all t ∈ R, hence |Vξ(ξ, t)| ≤ G̃ for all (ξ, t) ∈ [−H,H]× R.
(iii) δ0 := inf

(ξ,t)∈[−H,H]×R
Vt(ξ, t) > 0.

Proof. (i) We construct an entire solution V by using a standard renormalization
argument. For n ∈ N we define vn(ξ, t) := v(ξ, t + n) − k(n)pε. Then vn solves
(3.16)-(3.17) for t ≥ −n and satisfies

∂vn

∂t
(ξ, t) > 0,

∣∣∣∣
∂vn

∂ξ

∣∣∣∣ ≤ G̃,

for all ξ ∈ [−H, H] and t ≥ −n.
We fix T > 0. Then for any n > T and t ∈ [−T, T ], we have

vn(ξ,−T ) ≤ vn(ξ, t) ≤ vn(ξ, T ), ξ ∈ [−H, H].

By (4.3),

vn(ξ,−T ) = v(ξ, n− T )− k(n)pε ≥ m(n− T )− 2G̃H − k(n)pε

≥ m(0)− {k(n)− k(n− T )}pε − 2G̃H ≥ m(0)− pε − 2G̃H −KfT,

and

vn(ξ, T ) = v(ξ, n + T )− k(n)pε ≤ m(n + T )− k(n)pε

≤ m(0) + pε + {k(n + T )− k(n)}pε ≤ m(0) + 2pε + KfT.

Thus there exists a positive constant K̃ which does not depend on n such that
‖vn(·, t)‖L∞ ≤ KfT + K̃ for all n > T and t ∈ [−T, T ]. Therefore, the same
argument as in Subsection 3.5 implies

‖vn‖C2+ν,1+ν/2(RT ) ≤ MT

for some positive constant MT that depends on T but is independent of n. Here we
set RT := [−H,H] × [−T, T ]. Consequently, for any T > 0, there exist a sequence
nj(T ) →∞ (j →∞) and a function VT ∈ C2+ν,1+ν/2(RT ) such that

lim
j→∞

‖vnj(T ) − VT ‖C2,1(RT ) = 0. (4.4)

Hence, by Cantor’s diagonal argument, one can find a subsequence {lj}j and a
function V (ξ, t) defined on [−H, H]× R such that vlj converges to V as j →∞ in
C2,1(RT ) for any T > 0. This implies that V is an entire solution of (3.16)-(3.17)
and that V ∈ C2+ν,1+ν/2(RT ) for any T > 0.
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(ii) Let t ∈ R be fixed. As in the proof of Lemma 3.6,

Xξ(ξ, vn(ξ, t)) + Xη(ξ, vn(ξ, t))(vn)ξ(ξ, t) ≥ δ1

for all n > |t| and ξ ∈ [−H, H]. Since vlj converges to V in C2([−H,H]) as j →∞,
we have

Xξ(ξ, V (ξ, t)) + Xη(ξ, V (ξ, t))Vξ(ξ, t) ≥ δ1.

This implies that the function U(x, t) defined on [ζ−U (t), ζ+
U (t)]×R by the expression

U(X(ξ, V (ξ, t)), t) = Y (ξ, V (ξ, t))

solves (1.3) for all t ∈ R, where ζ±U (t) = X(±H,V (±H, t)). In order to prove the
statement we shall prove U(·, t) ∈ C1

ad for any t ∈ R.
Let un(x, t) be the expression of vn in the coordinates (x, y, t). Then un(·, t) ∈

C1
ad for any t ∈ R. Setting x = X(ξ, V (ξ, t)) and xj = X(ξ, vlj (ξ, t)) for (ξ, t) ∈

[−H, H]× R, we see that xj → x as j →∞ and that

ulj (xj , t) = Y (ξ, vlj (ξ, t))

→ Y (ξ, V (ξ, t)) = U(x, t),

∂ulj

∂x
(xj , t) =

Yξ(ξ, vlj (ξ, t)) + Yη(ξ, vlj (ξ, t))(vlj )ξ(ξ, t)
Xξ(ξ, vlj (ξ, t)) + Xη(ξ, vlj (ξ, t))(vlj )ξ(ξ, t)

→ Yξ(ξ, V (ξ, t)) + Yη(ξ, V (ξ, t))Vξ(ξ, t)
Xξ(ξ, V (ξ, t)) + Xη(ξ, V (ξ, t))Vξ(ξ, t)

=
∂U

∂x
(x, t)

as j →∞. This implies U(·, t) ∈ C1
ad for any t ∈ R.

(iii) It is easily seen that Vt(ξ, t) ≥ 0 for all (ξ, t) ∈ [−H, H] × R. Suppose that
there exist sequences {ξn}n∈N and {tn}n∈N with Vt(ξn, tn) → 0 as n →∞. We may
assume ξn → ξ∞ for some ξ∞ ∈ [−H,H]. For n ∈ N, let kn ∈ Z be an integer
satisfying

knpε ≤ max
ξ∈[−H,H]

V (ξ, tn) < (kn + 1)pε,

and let Vn(ξ, t) := V (ξ, tn + t)− knpε. Then Vn is also an entire solution of (3.16)-
(3.17).

By a similar argument to the one in the proof of (i), there exists an entire
solution Ṽ (ξ, t) of (3.16)-(3.17) such that a subsequence {Vnj}j∈N converges to
Ṽ in the topology of C2,1(RT ) for any T > 0. Moreover, Ṽt(ξ, t) ≥ 0 for all
(ξ, t) ∈ [−H, H]× R. Since

Ṽt(ξ∞, 0) = lim
j→∞

∂Vnj

∂t
(ξnj , 0) = lim

j→∞
∂V

∂t
(ξnj , tnj ) = 0,

the strong maximum principle yields Ṽt ≡ 0, in other words, Ṽ is an equilibrium
solution of (3.16)-(3.17). This contradicts Lemma 4.1.

4.2. Uniqueness of entire solution. In this subsection, we prove that the entire
solution V (ξ, t) of (3.16)-(3.17) is unique up to time shift. Suppose that W (ξ, t) is
another entire solution of (3.16)-(3.17) satisfying the same properties as in Propo-
sition 4.3 (i)-(iii). Define

ΛV,W (t) := inf





Λ > 0

∣∣∣∣∣∣∣

there exists a ∈ R such that

V (ξ, t + a) ≤ W (ξ, t) ≤ V (ξ, t + a + Λ)

for all ξ ∈ [−H, H]





.

The function ΛV,W (t) has the following properties:
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Lemma 4.4.

(i) The function ΛV,W (t) is monotone decreasing and is bounded in t ∈ R.
(ii) If ΛV,W (t0) = 0 for some t0, then there exists a ∈ R such that V (·, t + a) ≡

W (·, t) for t ≥ t0. If ΛV,W (t0) > 0 for some t0, then ΛV,W (t) is positive and
is strictly decreasing in t < t0.

Proof. (i) By the definition of ΛV,W , for each fixed t ∈ R, there exists a(t) ∈ R such
that

V (ξ, t + a(t)) ≤ W (ξ, t) ≤ V (ξ, t + a(t) + ΛV,W (t)), ξ ∈ [−H,H]. (4.5)

Therefore, it follows from the comparison principle that for any s > 0,

V (ξ, t + s + a(t)) ≤ W (ξ, t + s) ≤ V (ξ, t + s + a(t) + ΛV,W (t)), ξ ∈ [−H,H].

This implies ΛV,W (t + s) ≤ ΛV,W (t) for s > 0.
Next we note that, by Proposition 4.3,

max
|ξ|≤H

V (ξ, t)− min
|ξ|≤H

V (ξ, t) ≤ 2G̃H, max
|ξ|≤H

W (ξ, t)− min
|ξ|≤H

W (ξ, t) ≤ 2G̃H. (4.6)

By the definition of ΛV,W , there exist ξ1, ξ2 ∈ [−H, H] and a ∈ R satisfying

V (ξ1, t + a) = W (ξ1, t), W (ξ2, t) = V (ξ2, t + a + ΛV,W (t)).

In view of this and (4.6), we have

V (ξ, t + a + ΛV,W (t))− V (ξ, t + a) ≤ V (ξ2, t + a + ΛV,W (t))− V (ξ1, t + a) + 4G̃H

= W (ξ2, t)−W (ξ1, t) + 4G̃H ≤ 6G̃H.

On the other hand, Proposition 4.3 (iii) implies that

V (ξ, t + a + ΛV,W (t))− V (ξ, t + a) ≥ δ0ΛV,W (t).

Hence

0 ≤ ΛV,W (t) ≤ 6G̃H

δ0
.

(ii) The former statement is obvious. Suppose that ΛV,W (t0) > 0 for some t0.
Then by (i), ΛV,W (t) > 0 for any fixed t < t0. Therefore (4.5) and the comparison
principle (Proposition 3.9) yield

V (ξ, t + s + a(t)) < W (ξ, t + s) < V (ξ, t + s + a(t) + ΛV,W (t)), ξ ∈ [−H, H]

for all s > 0. Consequently, by the continuity of V (ξ, t) in t, there exists δ =
δ(t, s) > 0 such that

V (ξ, t+s+a(t)+ δ) < W (ξ, t+s) < V (ξ, t+s+a(t)+ΛV,W (t)− δ), ξ ∈ [−H,H].

From this it follows that ΛV,W (t+s) ≤ ΛV,W (t)−2δ. This proves statement (ii).

Remark 4.5. In fact, by the backward uniqueness theorem for linear parabolic
equations (see [3]), we have ΛV,W (t) = 0 for all t ∈ R in the former case of (ii), and
ΛV,W (t) > 0 for all t ∈ R in the latter case of (ii).

The following is the main result of this subsection:

Lemma 4.6. W (ξ, t) is a time-shift of V (ξ, t).
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Proof. We only need to show that ΛV,W (t) = 0 for all t ∈ R. Suppose that
ΛV,W (t0) > 0 for some t0 ∈ R. Then Lemma 4.4 (i) implies that ΛV,W (t) con-
verges to some Λ > 0 as t → −∞. Define

Vn := V (ξ, t− n)− lnpε, Wn := W (ξ, t− n)− lnpε,

where ln is the largest integer that does not exceed maxξ∈[−H,H] V (ξ,−n)/pε. Then
Vn and Wn are solutions of (3.16)-(3.17) and have the same properties as in Propo-
sition 4.3.

A diagonal argument similar to the one in the proof of Proposition 4.3 shows
that there exist a sequence nj →∞ (j →∞) and two entire solutions V∞ and W∞
such that

lim
j→∞

‖Vnj
− V∞‖C2,1(RT ) = 0, lim

j→∞
‖Wnj

−W∞‖C2,1(RT ) = 0

for any T > 0. Moreover, we see that ΛVnj
,Wnj

(t) → ΛV∞,W∞(t) as j →∞. On the
other hand, ΛVnj

,Wnj
(t) = ΛV,W (t−nj) → Λ as j →∞. Therefore ΛV∞,W∞(t) ≡ Λ

for all t ∈ R. This, however, contradicts Lemma 4.4 (ii) and the fact that Λ > 0.
Thus we have ΛV,W (t) = 0 for all t ∈ R, and hence there exists a constant a such

that V (ξ, t + a) ≡ W (ξ, t) for all (ξ, t) ∈ [−H, H]× R.

4.3. Existence of periodic traveling wave. Let V ε be an entire solution of
(3.16)-(3.17) obtained in Proposition 4.3. The following proposition shows that V ε

changes its shape periodically in time:

Proposition 4.7. There exists a positive constant Tε such that

V ε(ξ, t + Tε) = V ε(ξ, t) + pε (4.7)

for all (ξ, t) ∈ [−H, H]× R.

Proof. Since V ε(ξ, t) + pε is also an entire solution of (3.16)-(3.17), Lemma 4.6
implies that V ε(ξ, t) + pε is a time-shift of V ε. In other words, there exists a
constant Tε that satisfies (4.7) for all (ξ, t) ∈ [−H, H]×R. Moreover, the positivity
of Tε immediately follows from the fact that V ε

t > 0.

Proof of Theorem 2.1 (i). Let Uε(x, t) and un(x, t) be the expression of V ε(ξ, t) and
vn(ξ, t) = v(ξ, t+n)−k(n)pε (n ∈ N) in the coordinates (x, y, t), respectively. Then
Uε is a unique entire solution of (1.3)-(1.4) up to time shift. By (3.18), it holds
that un(x, t) = u(x, t + n)− k(n)ε for every n ∈ N.

As in the proof of Proposition 4.3(ii), for any (x, t) with (x,Uε(x, t)) ∈ Ωε and
t ∈ R, there exists a sequence {xj}j with xj → x as j →∞ such that

ulj (xj , t) → Uε(x, t),
∂ulj

∂x
(xj , t) → Uε

x(x, t) as j →∞,

where {lj}j is the sequence in the proof of Proposition 4.3. Therefore, noting that
u is an even function in x satisfying (4.1), we obtain

Uε(−x, t) = Uε(x, t), − tan α ≤ sgnx · Uε
x(x, t) ≤ tanβ,

for all (x, t) with (x,Uε(x, t)) ∈ Ωε and t ∈ R. Moreover, since V ε
t (ξ, t) > 0

for all (ξ, t) ∈ [−H, H] × R, it is easily seen that Uε
t (x, t) > 0 for all (x, t) with

(x,Uε(x, t)) ∈ Ωε and t ∈ R.
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Next we show that Uε is a periodic traveling wave. By the expression (3.3), for
any fixed (x, t) with (x,Uε(x, t)) ∈ Ωε and t ∈ R, there exists a unique ξ ∈ [−H, H]
satisfying

x = X(ξ, V ε(ξ, t)), Uε(x, t) = Y (ξ, V ε(ξ, t)).
Then (3.18) and (4.7) imply

x = X(ξ, V ε(ξ, t) + pε) = X(ξ, V ε(ξ, t + Tε)),

hence

Uε(x, t + Tε) = Y (ξ, V ε(ξ, t + Tε)) = Y (ξ, V ε(ξ, t) + pε)

= Y (ξ, V ε(ξ, t)) + ε = Uε(x, t) + ε.

This means, by definition (1.6), that Uε(x, t) is a periodic traveling wave of (1.3)-
(1.4).

4.4. Asymptotic stability of the periodic traveling wave. In this subsection
we show that the periodic traveling wave Uε is stable and that any solution of (1.3)-
(1.4) with u0 ∈ C1

ad ∩ C1+λ (λ > 0) converges to a time-shift of Uε as t → +∞.
As a matter of fact, such properties of Uε follow from the general result of [10,
Theorem 2.4], which discusses asymptotic stability of periodic traveling waves in
the framework of order-preserving discrete dynamical systems. (See also Theorems
8.12 and 8.15 of the same paper for related results.) For the self-containedness of
the present paper, we give a complete proof here.

Lemma 4.8. For any t0 ∈ R, V ε(ξ, t + t0) is stable under the perturbation of
initial data within the class C̃1

ad ∩ C1+λ([−H, H]) with λ > 0. More precisely, for
any σ > 0 there exists δ > 0 such that for any v0 ∈ C̃1

ad ∩C1+λ([−H,H]) satisfying
‖v0 − V ε(·, t0)‖L∞ < δ, the solution v(ξ, t) of (3.16)-(3.17) with initial data v0

satisfies
‖v(·, t)− V ε(·, t + t0)‖L∞ < σ

for all t ≥ 0.

Proof. We may assume t0 = 0 without loss of generality. By (4.7), for any constant
s > 0, the function V ε(ξ, t + s)− V ε(ξ, t) is periodic in t with period Tε. In view of
this and the continuity of V ε, we can choose sufficiently small s > 0 such that

max
(ξ,t)∈[−H,H]×R

|V ε(ξ, t + s)− V ε(ξ, t− s)| < σ. (4.8)

Fix such s > 0. Now, since V ε
t > 0, we have

V ε(ξ, t− s) < V ε(ξ, t) < V ε(ξ, t + s), (ξ, t) ∈ [−H, H]× R.

Again using the periodicity and the continuity of V ε(ξ, t+ s)−V ε(ξ, t), we see that

min
(ξ,t)∈[−H,H]×R

(V ε(ξ, t + s)− V ε(ξ, t)) = min
(ξ,t)∈[−H,H]×R

(V ε(ξ, t)− V ε(ξ, t− s)) > 0.

Denote by δ the left-hand side of the above inequality. Then ‖v0 − V ε(·, 0)‖L∞ < δ
implies

V ε(ξ,−s) ≤ v0(ξ) ≤ V ε(ξ, s), ξ ∈ [−H,H].
The comparison principle (Proposition 3.9) then yields

V ε(ξ, t− s) ≤ v(ξ, t) ≤ V ε(ξ, t + s), ξ ∈ [−H,H], t ≥ 0.

Since V ε
t > 0, we obtain

|v(ξ, t)− V ε(ξ, t)| ≤ |V ε(ξ, t + s)− V ε(ξ, t− s)| < σ, ξ ∈ [−H,H], t ≥ 0.
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The lemma is proved.

Lemma 4.9. Let v(ξ, t) be the solution of (3.16)-(3.17) with initial value v0 ∈
C̃1

ad ∩ C1+λ([−H,H]), λ > 0. Then there exists a constant τ such that

lim
t→+∞

‖v(·, t)− V ε(·, t + τ)‖C2([−H,H]) = 0. (4.9)

Proof. Let a ∈ R and Λ > 0 be constants such that

V ε(ξ, a) ≤ v0(ξ) ≤ V ε(ξ, a + Λ), ξ ∈ [−H, H].

For each n ∈ N, we define vn(ξ, t) := v(ξ, t + nTε) − npε for t ≥ −nTε. Then the
comparison principle and (4.7) imply

V ε(ξ, t + a) ≤ vn(ξ, t) ≤ V ε(ξ, t + a + Λ), ξ ∈ [−H,H], t ≥ −nTε.

Arguing as in the proof of Proposition 4.3 (i), we can choose a subsequence {vnj
}j∈N

converging to an entire solution, say W , as j → ∞ locally uniformly in (ξ, t). By
Lemma 4.6 we have W (ξ, t) = V ε(ξ, t + τ) for some τ ∈ R, hence, ‖vnj

(·, t) −
V ε(·, t + τ)‖L∞ → 0 as j →∞ for any t ∈ R. This implies, in particular,

lim
j→∞

‖v(·, njTε)− V ε(·, njTε + τ)‖L∞ = 0.

Combining this and Lemma 4.8, we obtain

lim
t→+∞

‖v(·, t)− V ε(·, t + τ)‖L∞ = 0.

Letting

ṽ(ξ, t) = v(ξ, t)− 1
2H

∫ H

−H

v(z, t)dz, Ṽ ε(ξ, t) = V ε(ξ, t)− 1
2H

∫ H

−H

V ε(z, t)dz,

we see that {ṽ(·, t)}t≥δ and {Ṽ ε(·, t)}t≥δ remain bounded in C2+ν([−H, H]) for
some fixed δ > 0 as in Section 3.5. Therefore, the above convergence takes place in
the C2 topology. The lemma is proved.

The stability of the periodic traveling wave Uε follows from the above lemmas,
as we will see below.

Proof of Theorem 2.2 (i). Since the derivatives of ξ, η and those of X, Y are all
bounded, there exists a constant C > 1 such that for any (x1, y1), (x2, y2) ∈ Ωε,

C−1d((ξ1, η1), (ξ2, η2)) ≤ d((x1, y1), (x2, y2)) ≤ Cd((ξ1, η1), (ξ2, η2)), (4.10)

where ξj = ξ(xj , yj), ηj = η(xj , yj) (j = 1, 2) and d denotes the Euclidean metric
in R2.

First we assume that γt is given by the graph of u(x, t), a classical solution of
(1.3)-(1.4). Let v be the expression of u in the coordinates (ξ, η, t). By (4.10) and
the fact that |vξ| ≤ G̃, |V ε

ξ | ≤ G̃, there exists a constant C̃ > 1 satisfying

C̃−1‖v(·, t)− V (·, t + τ)‖L∞ ≤ dH(γt,Γε
t+τ ) ≤ C̃‖v(·, t)− V (·, t + τ)‖L∞ (4.11)

for any fixed t ≥ 0 and τ ∈ R. In view of this and Lemma 4.8, we obtain the
statement of (ii) for the case where γt is the graph of a classical solution of (1.3)-
(1.4).

Next we consider the general case. We may assume τ = 0 without loss of general-
ity. By the above argument for the graph case, for any σ > 0, we can find δ > 0 and
t0 > 0 such that dH(Γε

t0 , Γ
ε
−t0) < δ implies dH(Γε

t+t0 , Γ
ε
t−t0) < σ for all t ≥ 0. Since

Γε
−t0 ¿ Γε

0 ¿ Γε
t0 , there exists a sufficiently small δ′ > 0 such that dH(γ0,Γε

0) < δ′
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implies Γε
−t0 ¿ γ0 ¿ Γε

t0 . Therefore, the comparison principle (Proposition 3.13)
implies

Γε
t−t0 ¿ γt ¿ Γε

t+t0 , Γε
t−t0 ¿ Γε

t ¿ Γε
t+t0 ,

hence,
dH(γt,Γε

t ) ≤ dH(Γε
t+t0 , Γ

ε
t−t0) < σ

for all t ≥ 0.

Proof of Theorem 2.2 (ii). Let v be the expression of u in the coordinates (ξ, η, t).
In view of (4.11) and Lemma 4.9, we obtain

lim
t→+∞

dH(γt, Γε
t+τ ) = 0,

where τ is the constant satisfying (4.9) for v. Moreover, Lemma 4.9 also implies that
the above convergence takes place in the C2 topology. The theorem is proved.

5. Homogenization limit. Let Uε(x, t) be the periodic traveling wave of (1.3)-
(1.4) obtained in the previous section and let cε = ε/Tε be the average speed of
Uε. In this section we discuss the homogenization limit of Uε and cε as ε → 0 by
constructing suitable upper and lower solutions of (1.3).

5.1. Preliminaries. In this subsection we study basic properties of a traveling
wave solution of (1.3) that is defined in [−H, H] × R and contacts the boundaries
x = ±H with a given angle θ∗ := π

2 − α. We will see later that this traveling wave
coincides with the homogenization limit of Uε and plays an important role in the
construction of suitable upper and lower solutions.

First we note that a traveling wave solution of (1.3) (with a constant speed and
a constant profile) is generally written in the form u(x, t) = ϕ(x)+ ct. Substituting
this into (1.3) yields that (ϕ, c) satisfies

c =
ϕxx

1 + ϕ2
x

+ A
√

1 + ϕ2
x. (5.1)

In addition, considering the normalization and the symmetry of Ωε, we impose the
following initial condition:

ϕ(0) = 0, ϕx(0) = 0. (5.2)

We denote by ϕ(x; c) the solution of (5.1)-(5.2).

Lemma 5.1. If AH ≥ sin α, then there exists a unique c0 ∈ [0, A) such that

ϕx(H; c0) = − tan α. (5.3)

The constant c0 = c0(α,A, H) is determined by

H =
∫ α

0

cos s

A− c0 cos s
ds, (5.4)

and satisfies

c0 = 0 if AH = sin α, 0 < c0 < A if AH > sin α, (5.5)
∂c0

∂α
< 0,

∂c0

∂A
> 0,

∂c0

∂H
> 0 if AH > sin α. (5.6)

Moreover, if c0 = 0 then

ϕ(x; 0) = − 1
A

(
1−

√
1−A2x2

)
, (5.7)
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while if c0 > 0 then by introducing a parameter θ ∈ (−α, α), ϕ(x; c0) can be ex-
pressed as

ϕ(x(θ; c0); c0) = − 1
c0

log
(

A− c0 cos θ

A− c0

)
, (5.8)

x(θ; c0) =
∫ θ

0

cos s

A− c0 cos s
ds. (5.9)

Proof. Set θ(x; c) = − arctan ϕx(x; c). Then θ solves the initial value problem:




θx =
A

cos θ
− c,

θ(0) = 0.
(5.10)

By the uniqueness of the solution of (5.10), θ(−x; c) = −θ(x; c) for all x ∈ Ic,
where Ic is the maximal interval of existence for θ(x; c). Since c ∈ [0, A), we have
θx ≥ A − c > 0 for all x ∈ Ic. Therefore, there exists xmax(c) > 0 such that
Ic = (−xmax(c), xmax(c)) and that θ(x; c) → ±π

2 as x → ±xmax(c).
By (5.10), the solution θ(x; c) is implicitly defined in Ic by

x =
∫ θ(x;c)

0

cos s

A− c cos s
ds. (5.11)

Since θ is strictly monotone increasing in x and since α ∈ (0, π/2), there exists a
unique xα(c) ∈ (0, xmax(c)) such that θ(xα(c); c) = α. In view of (5.11), we have

xα(c) =
∫ α

0

cos s

A− c cos s
ds,

and hence xα(c) is strictly monotone increasing in c. Since

lim
c↘0

xα(c) =
sin α

A
, lim

c↗A
xα(c) = +∞,

and since AH ≥ sinα, there exists a unique c0 = c0(α, A,H) satisfying (5.5) such
that xα(c0) = H. This means that ϕx(H; c0) = − tan α for the unique solution c0

of (5.4). Moreover, differentiating (5.4) by α, A and H, and noting that

∂

∂c

(∫ α

0

cos s

A− c cos s
ds

)
=

∫ α

0

cos2 s

(A− c cos s)2
> 0,

we obtain (5.6) by the implicit function theorem.
In the case where c0 = 0, we easily see that ϕ(x; 0) defined in (5.7) is the solution

of (5.1)-(5.2) with c = 0. In the case where c0 > 0, we obtain

ϕ(x; c0) = −
∫ x

0

tan θ(z; c0)dz = −
∫ θ(x;c0)

0

sin s

A− c0 cos s
ds

= − 1
c0

log
(

A− c0 cos θ(x; c0)
A− c0

)
. (5.12)

Putting θ = θ(x; c0) in (5.11) with c = c0 and (5.12), we obtain (5.8)-(5.9).
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5.2. Lower solution. Set ϕ0(x) = ϕ(x; c0) − ϕ(−H; c0). Then ϕ0 satisfies (5.1)
with c = c0 and ϕ0(±H) = 0.

Lemma 5.2. If ε > 0 is sufficiently small, then c0 < cε.

Proof. Let C− be a constant satisfying Uε(x, 0) ≥ ϕ0(x) + C− for all x ∈ [−H, H]
and Uε(x−, 0) = ϕ0(x−) + C− for some x− ∈ [−H, H]. By (5.1) with c = c0,
the function u−(x, t) := ϕ0(x) + c0t + C− satisfies (1.3) in Ic0 × R, where Ic0 =
(−xmax(c0), xmax(c0)) is the maximal interval of existence for ϕ(x; c0).

If ε is sufficiently small such that H + ε max g < xmax(c0), then

x0(t) := min{x ≥ H | (x, u−(x, t)) ∈ ∂+Ωε}
is well-defined for every t ∈ R. Since

u−x (x, t) ≤ − tanα for x ≥ H, u−x (x, t) ≥ tan α for x ≤ −H,

we see that w−(·, 0) ¹ Uε(·, 0), w−(·, 0) 6≡ Uε(·, 0) and that

u−x (x0(t), t) ≤ −g′ε(u
−(x0(t), t)), u−x (−x0(t), t) ≥ g′ε(u

−(x0(t), t)).

Hence u− is a lower solution of (1.3)-(1.4). By the comparison principle, we have
u−(·, t) ¿ Uε(·, t) for all t > 0, in particular, u−(x−, Tε) < Uε(x−, Tε). Noting that

u−(x−, Tε) = ϕ0(x−) + c0Tε + C−,

Uε(x−, Tε) = Uε(x−, 0) + ε = ϕ0(x−) + C− + ε,

we obtain c0 < cε.

5.3. Upper solution. Let t0 ∈ R be such that Uε(±H, t0) = 0 and let C+ be a
constant satisfying Uε(x, t0) ≤ ϕ0(x) + C+ for all x ∈ [−H, H] and Uε(x+, t0) =
ϕ0(x+) + C+ for some x+ ∈ [−H,H]. We define

u+(x, t) = ψ(x, t) + ϕ0(x) + c0t + C+

for x ∈ [−H, H] and t ≥ 0, where ψ(x, t) = L
√

ε(1− e−ρ2t cos ρx), ρ = π/(2H) and
L is a positive constant. Note that ψ satisfies the heat equation ψt = ψxx.

Lemma 5.3. If

L ≥
(

A

cos3 α
+ 1

)
Heρ2

(5.13)

and if ε > 0 is sufficiently small, then

Uε(x, t + t0) ≤ u+(x, t), x ∈ [−H, H], t ∈ [0, 1]. (5.14)

Proof. To prove the lemma, it suffices to show that

u+
t ≥ u+

xx

1 + (u+
x )2

+ A

√
1 + (u+

x )2, x ∈ [−H, H], t ≥ 0, (5.15)

and
Uε(±H, t + t0) < u+(±H, t), t ∈ [0, 1]. (5.16)

We denote by U(t) the region in Ωε above the graph of Uε(·, t).
We take a sufficiently small ε > 0 such that

ψxx + 2ϕ0xx ≤ Lρ2ε1/2 − 2(A− c0) ≤ 0, x ∈ [−H, H], t ≥ 0.

Then (u+
x )2 = ϕ2

0x + ψx(ψx + 2ϕ0x) ≤ ϕ2
0x. Since ϕ0xx < 0 and ψxx ≥ 0, we have

u+
t = ψxx +

ϕ0xx

1 + ϕ2
0x

+ A
√

1 + ϕ2
0x ≥

u+
xx

1 + (u+
x )2

+ A

√
1 + (u+

x )2
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for all x ∈ [−H,H] and t ≥ 0.
Since Uε(±H, t0) < u+(±H, 0),

τ0 = sup{τ ≥ 0 | Uε(±H, t + t0) < u+(±H, t) for t ∈ [0, τ ]}

is well-defined and is positive. Suppose τ0 < 1. Then we may assume Uε(−H, τ0 +
t0) = u+(−H, τ0) since the other case where Uε(H, τ0 + t0) = u+(H, τ0) can be
treated similarly. Note that Uε(x, t + t0) ≤ u+(x, t) for (x, t) ∈ [−H, H]× [0, τ0] by
the comparison principle.

Let y0 ∈ (0, 1) be such that g′(y0) = tanα and let χ(x) be an arc with constant
curvature −A satisfying χ(−H−ϑ) = 0 and χ′(−H−ϑ) = tan α, where ϑ = gε(εy0).
Then we have

χ(x) = − 1
A

cosα +
1
A

√
cos2 α + 2A sin α · (H + ϑ + x)−A2(H + ϑ + x)2.

Set I = [−H−ϑ,−H +
√

ε]. Since χ′′(x) = −A(1+χ′(x)2)3/2 ≥ −A/ cos3 α := −K
for x ∈ I,

χ(−H +
√

ε) = (
√

ε + ϑ) tanα + (
√

ε + ϑ)2
∫ 1

0

(1− s)χ′′(−H − ϑ + s(
√

ε + ϑ))ds

≥ (
√

ε + ϑ) tanα− K

2
(
√

ε + ϑ)2 ≥ ϕ0(−H +
√

ε) + ϑ tanα−Kε

for sufficiently small ε > 0. Here we used the fact that ϕ0xx < 0 and ϑ = O(ε).
Take a constant h such that the arc χ(x)+C++h intersects the graph of u+(x, τ0)

at x = −H +
√

ε. Then, if L satisfies (5.13), we obtain

h = u+(−H +
√

ε, τ0)− χ(−H +
√

ε)− C+

= ψ(−H +
√

ε, τ0) + ϕ0(−H +
√

ε) + c0τ0 − χ(−H +
√

ε)

≤ L
√

ε

(
1− e−ρ2

H

√
ε

)
+ c0τ0 − ϑ tan α + Kε

≤ u+(−H, τ0)− ϑ tanα− ε− C+.

On the other hand, since ϕ0(x)−χ(x) is strictly monotone increasing in I, we have
ϕ0(x) − χ(x) < h for all x ∈ I. This implies that Uε(x, t0) < χ(x) + C+ + h for
x ∈ [−H,−H +

√
ε].

Let δ ∈ [0, ε) be such that the graph of χ0(x) := χ(x) + h + C+ + δ intersects
∂−Ωε perpendicularly at x = −H − ϑ. Then the arc χ0(x) is a stationary curve of
(1.1) and the graph of χ0(x) for x ∈ I is contained in U(t0). Since

Uε(−H +
√

ε, t + t0) ≤ u+(−H +
√

ε, t) ≤ χ0(−H +
√

ε)

for all t ∈ [0, τ0], the graph of χ0(x) for x ∈ I is contained in U(t + t0) for all
t ∈ [0, τ0] by the comparison principle. Especially,

Uε(−H, τ0 + t0) ≤ χ0(−H) < ϑ tan α + h + C+ + ε ≤ u+(−H, τ0).

This contradicts the supposition that Uε(−H, τ0 + t0) = u+(−H, τ0). Thus we
obtain τ0 ≥ 1. The lemma is proved.
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5.4. Homogenization limit of the speed.

Proof of Theorem 2.3 (i). By Lemma 5.2 we only need the estimate of cε from
above. Let nε be the largest integer that is less than or equal to (L

√
ε + c0)ε−1,

where L is the constant in Lemma 5.3. Then we have

Uε(x, t0 + 1) ≤ u+(x, 1) = ψ(x, 1) + ϕ0(x) + c0 + C+

≤ ϕ0(x) + C+ + (nε + 1)ε

for all x ∈ [−H,H]. On the other hand,

Uε(x, t0 + (nε + 1)Tε) = Uε(x, t0) + (nε + 1)ε ≤ ϕ0(x) + C+ + (nε + 1)ε

for all x ∈ [−H, H], and equality holds at x+ ∈ [−H, H]. Since Uε
t > 0, we obtain

1 ≤ (nε + 1)Tε ≤ ((L
√

ε + c0)ε−1 + 1)Tε, hence

cε =
ε

Tε
≤ c0 + L

√
ε + ε.

This proves (2.2).

5.5. Homogenization limit of the profile.

Lemma 5.4. Assume AH ≥ sin α. Then there exist constants k1 ≥ 0, k2 > 0 and
C independent of ε such that

k1t− C ≤ Uε(x, t + t0)− Uε(x̃, t0) ≤ k2t + C (5.17)

for all x, x̃ ∈ [−H, H], t ≥ 0 and t0 ∈ R.

Proof. (i) Since |Uε
x | ≤ G, for any fixed t0 ∈ R, we have

Uε(0, t0)−GH ≤ Uε(x̃, t0) ≤ Uε(0, t0) + GH

for all x̃ ∈ [−H,H]. Let

r1 =
H

sin α
, r2 =

H

sin β
, k1 =

AH − sin α

H
, k2 =

AH + sin β

H cos β

and define

R1(x) = −r1 +
√

r2
1 − x2, R2(x) = r2 −

√
r2
2 − x2.

Then the graph of R1 is a circular arc with curvature − sin α/H and that of R2 is
a circular arc with curvature sin β/H. Therefore,

w−(x, t) = k1t+R1(x)+Uε(0, t0)−GH, w+(x, t) = k2t+R2(x)+Uε(0, t0)+GH

satisfy

w−t ≤ w−xx

1 + (w−x )2
+ A

√
1 + (w−x )2, w+

t ≥ w+
xx

1 + (w+
x )2

+ A

√
1 + (w+

x )2

for all x ∈ [−H,H], t ≥ 0 and that

w−x (±H, t) = ∓ tanα, w+
x (±H, t) = ± tanβ.

Therefore, by the comparison principle, w−(x, t) ≤ Uε(x, t + t0) ≤ w+(x, t), and
hence

k1t + R1(x)− 2GH ≤ Uε(x, t + t0)− Uε(x̃, t0) ≤ k2t + R2(x) + 2GH

for all x ∈ [−H,H] and t ≥ 0. Letting C = max{r1, r2}+2GH, we obtain (5.17).



566 H. MATANO, K.-I. NAKAMURA, B. LOU

Proof of Theorem 2.3 (ii). By Lemma 5.4, we have

‖Uε(·, t)‖L∞([−H,H]) ≤ k2|t|+ C, t ∈ R. (5.18)

Since |Uε
x(x, t)| ≤ G for all (x, t) ∈ [−H, H] × R, applying the interior Hölder

estimates for quasilinear parabolic equations ([13, Theorem 2.3]) to (1.3), we see
that there exists a constant ν̃ ∈ (0, 1) independent of ε such that for any fixed
δ ∈ (0,H) and T > 0, we have

‖Uε
x‖Cν̃,ν̃/2([−H+δ,H−δ]×[−T,T ]) ≤ Cδ,

where Cδ is a positive constant dependent on δ but independent of ε and T . There-
fore, (5.18) and the interior a priori estimates for linear parabolic equations ([6,
Theorem 8.11.1]) imply that there exists a constant M = M(δ, T ) independent of ε
satisfying

‖Uε‖C2+ν̃,1+ν̃/2([−H+δ,H−δ]×[−T,T ]) ≤ M.

Hence we can find a subsequence {Uεj}j which converges to a function U0 in
C2,1

loc ((−H,H)× R).
By (1.6), we have

1
Tε

∫ t+Tε

t

Uε
t (x, s)ds =

ε

Tε
= cε

for any fixed (x, t) ∈ (−H, H)×R. Setting ε = εj in the above equalities and letting
j → ∞, we obtain U0

t (x, t) = c0. This means that U0(x, t) = Φ(x) + c0t for some
Φ(x). Since Uε satisfies (1.3) and since Uε(0, 0) = Uε

x(0, 0) = 0, the function Φ
must satisfy

c0 =
Φxx

1 + Φ2
x

+ A
√

1 + Φ2
x, x ∈ (−H,H),

Φ(0) = 0, Φx(0) = 0.

Thus we obtain Φ(x) = ϕ(x; c0), where ϕ is given in Subsection 5.1.
Since for any sequence {ε̃j}j with ε̃j → 0 as j →∞, we can find a subsequence

of U ε̃j which converges to the same limit ϕ(x; c0) + c0t, we conclude that

lim
ε→0

‖Uε(x, t)− ϕ(x; c0)− c0t‖C2,1
loc ((−H,H)×R) = 0.

The theorem is proved.

6. The pinning case. In this section we consider the case AH < sin α and prove
Theorem 2.1 (ii).

Lemma 6.1. Assume the slope condition (1.5) and AH < sin α. Then (1.3)-(1.4)
has a stationary solution for any small ε > 0.

Proof. Recall that a stationary solution w(x) of (1.3)-(1.4) is a circular arc of con-
stant curvature −A whose endpoints meet the boundaries ∂±Ωε at (x±, w(x±))
perpendicularly.

Define
W (x) =

1
A

(√
1−A2x2 −

√
1−A2H2

)
.

Clearly W solves (1.3) with W (±H) = 0. Choose y0 ∈ (0, 1) such that g′(y0) =
tanα and let ε be sufficiently small so that A(H + εg(y0)) < sin α. Then we have

W ′(H + εg(y0)) = − A(H + εg(y0))√
1−A2(H + εg(y0))2

> − tanα = −g′(y0).
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Since W ′(H + εg(0)) = W ′(H) < 0 = −g′(0), there exists y1 ∈ (0, y0) satisfying
W ′(H + εg(y1)) = −g′(y1). Define

w(x) : = W (x) + εy1 −W (H + εg(y1))

= W (x) + εy1 −W (H + gε(εy1)).

Then the graph of w contacts ∂Ωε perpendicularly at (x±, w(x±)) = (±(H +
gε(εy1)), εy1). Moreover, the slope condition (1.5) assures that the graph of w
does not touch ∂Ωε except at (x±, w(x±)). Consequently, w is a stationary solution
of (1.3)-(1.4).

Proof of Theorem 2.1 (ii). Let w(x) be the stationary solution of (1.3)-(1.4) ob-
tained in Lemma 6.1 and let q(ξ) be the expression of w in the coordinates (ξ, η).
Then, for any n ∈ Z, w(x)+nε is a stationary solution of (1.3)-(1.4), while q(ξ)+npε

is a stationary solution of (3.16)-(3.17).
Let u(x, t) be a classical solution of (1.3)-(1.4) with initial data u0 ∈ C1

ad and
let v(ξ, t) be the solution of (3.16)-(3.17) which corresponds to u with initial data
v0 ∈ C̃1

ad. Then we can find n1, n2 ∈ Z satisfying q(ξ) + n1pε < v0(ξ) < q(ξ) + n2pε

for all ξ ∈ [−H, H]. Hence by the comparison principle,

q(ξ) + n1pε < v(ξ, t) < q(ξ) + n2pε, ξ ∈ [−H, H], t ≥ 0.

In other words, ‖v(·, t)‖L∞ is bounded for t ≥ 0. Arguing as in Subsection 3.5, we
see that ‖v(·, t)‖C2+ν([−H,H]) is bounded for t ≥ δ with some fixed δ > 0.

Next we note that (3.16)-(3.17) has a Lyapunov functional. This follows from
the general result of [15] or [9] on one-dimensional quasilinear parabolic equations.
(A Lyapunov functional can also be constructed by using the energy functional
associated with (1.3)-(1.4).) Therefore, a standard dynamical systems theory shows
that the ω-limit set of v is non-empty and is contained in the set of stationary
solutions. The uniqueness of the ω-limit point can be shown by the same zero-
number argument as in [8], or it also follows from the result in [15]. (The result
in [8] is given for semilinear equations, but the proof is virtually the same for a
quasilinear equation.) Consequently there exists a stationary solution V ∗ of (3.16)-
(3.17) satisfying

lim
t→+∞

‖v(·, t)− V ∗‖C2([−H,H]) = 0.

Let U∗(x) be the expression of V ∗ in the coordinates (x, y). Then U∗ is a stationary
solution of (1.3)-(1.4) and u converges to U∗ as t → +∞ in the C2 topology.
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