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1. Introduction

ABSTRACT

The model discussed in this paper is described by the following periodic 3-species Lotka-
Volterra predator-prey system with several deviating arguments:

X1 (t) = x1(8)(r1 () — a1 (O)x1(t — T11(8)) — a2 (O)x2 (¢ — T12(t))
—a3(0)x3(t — 713(1)))

Xy (£) = X (8) (=12 (t) + a1 (X1 (t — T21 (1)) — A2 (D)X (t — T22(1)) (%)
—a3(t)x3(t — 123(t)))

X5 (t) = x3(8) (—r3(t) + a31 (X1 (t — T31(1)) — az2()x2(t — T32(1))
—az3(£)x3(t — 133(1))),

where x;(t) denotes the density of prey species at time t, x,(t) and x3(t) denote the den-
sity of predator species at time t, r;, a; € C(R, [0, 00)) and 7; € C(R, R) are w-periodic
functions with

1 (v 1 (v
= —/ ri(s)ds > 0O; a; = —[ a;(s) >0, i,j=1,2,3.
w Jo w Jo

By using Krasnoselskii’s fixed point theorem and the construction of Lyapunov function, a
set of easily verifiable sufficient conditions are derived for the existence and global attrac-
tivity of positive periodic solutions of (*).

© 20009 Elsevier Ltd. All rights reserved.

In recent years, many authors have researched the theories of functional differential equations in mathematical ecology.
Various mathematical models have been proposed in the study of population dynamics, ecology and epidemiology. One
of the most famous models for the dynamics of population is the Lotka-Volterra system. Owing to its theoretical and
practical significance, Lotka-Volterra systems have been studied extensively [ 1-15]. Particularly, [4,6,7,10-14] investigated
the existence of positive periodic solutions of the following periodic n-species Lotka-Volterra competitive systems with

several deviating arguments:

x(t) = x;(t) [ ri(t) — Zaij(t)xj(t -ty |, i=12,...,n, (1.1)
j=1
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where r;, a; € C(R, [0, 00)) and 7;; € C(R, R) are w-periodic functions with

1 (v 1 [v
= —/ ri(s)ds > 0; ajj = —/ aj(s) >0, L,j=12,...,n (1.2)
w Jo w Jo

For example, by using the method of coincidence degree and Lyapunov function, Fan and Wang [7] studied the system
(1.1) and derived a set of easily verifiable sufficient conditions for the existence and global attractivity of positive periodic
solutions of system (1.1).

Recently Tang and Zou [ 14] investigated the existence of positive periodic solutions of system (1.1) and established the
following result.

Theorem 1.1 ([14]). Assume that
(H1) the linear system

n
Y ag =7, i=12,....n (1.3)
=1
has a positive solution x* = (x7, x5, ..., xﬁ)T withx! > 0,i=1,2,...,n Thensystem(1.1) has at least one positive w-periodic
solution.
Theorem 1.2 ([14]). Assume that a;(t) = a; > 0, i(t) = 7;,1,j = 1,2, ..., n. Then system (1.1) has at least one positive

w-periodic solution if and only if the system of linear equations
n
Y apxi=F, i=1.2,....n, (1.4)
j=1

has a positive solution.

In the proof of Theorem 1.1, the author took advantage of the fact that there are no negative terms in ZJL a; (£)x;(t —
7;i(t)),i=1,2, ..., n. But for the Lotka-Volterra predator-prey systems, it is more difficult to discuss.

Motivated by this problem and some ideas in [ 14]. In this paper, we conjectured the following Lotka-Volterra predator-
prey system:

Xy (t) = x1(6) (r1(t) — a1 (O)x1(t — 711(t)) — a2 (O)x2(t — T12(8)) — a13()x3(t — T13(1)))
X5 () = x2(t) (—12(t) 4+ @21 ()x1(t — 121(8)) — A (O)X2(t — T22(t)) — az3(H)x3(t — T23(t))) (1.5)
X5 (t) = x3(t) (—13(t) + as1(D)x1(t — T31(1)) — A32(H)X2(t — T32(t)) — a33(t)x3(t — T33(t)))

may have the similar result.

The purpose of this paper is to give a positive answer to the above conjecture. In Section 2, we assume that (H1) (n = 3)
and a set of easily verifiable hypotheses hold, then system (1.5) has at least one positive w-periodic solution. In Section 3,
we will explore the global attractivity of positive periodic solutions of system (1.5).

Throughout of this paper, we say a vector x = (x1, X3, x3)" is positive ifx; > 0,i =1, 2, 3.

2. Main results
For the sake and convenience, we introduce the definition of cone and the celebrated Krasnoselskii’s fixed point theorem.

Definition 2.1. Let X be a Banach space, and let P be a closed, nonempty subset of X. P is a cone if
(i)ax+ By e Pforallx,y e Pand all o, 8 > 0;
(ii) x, —x € P imply x = 0.

Lemma 2.2 (Krasnoselskii, [16]). Let X be a Banach space, and let P C X be a cone in X. Assume that $21, £2; are open bounded
subsets of X with 0 € £21 C £21 C §2,, and let
@:PN(2\£2) — P
be a completely continuous operator such that either
(1) llex|l < lIx]l, Vx € P N 952y and |lgx|| = [IX]l, VX € P N 082;;
or

(i) llex|l = lix|l, Vx € PN 982y and |lgx|| < [Ix||, VX € P N 982,.
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Then ¢ has a fixed point in P N (2, \ §21).

Let
X = {x(t) = (x1,%2,x3)" € CR,R) : x(t + w) = x(t)}, (2.1)
3
x|l = Z IXjlo, 1Xjlo = max [x;(t)], j=1,2,3. (2.2)
= te[0,w]
Then X is a Banach space endowed with the above norm || - ||. If x(t) = (X1, X2, X3)T € X is a solution of Eq. (1.5), then
t /
|:x1(t) exp (— / r (s)ds):|
0
t
=—exp|— [ ri()ds ) x(t) (@1(O)x1(t — 711(t)) + a2 (O)X2(t — T12(8)) + a13(H)x3(t — 713(1)))

O -—

t 7
[xz (t) exp ( / r (s)ds)
1 0 (2.3)

= exp (/ r (5)d5> X2 (t) (az1(t)x1(t — 121(F)) — A (t)X2(t — T22(8)) — ax3(t)X3(t — T23(t)))
0

[x3(t) exp (/ r3 (s)ds>-
0

t
= exp (/ r3 (5)d5> X3(t) (az1(t)x1(t — 131(F)) — az(t)x2(t — T32(t)) — azz3(E)x3(t — T33(t))) .
0

Integrating both sides of (2.3) over [t, t + w], we obtain
t+w
x(t) = / Gi(t, )x1(s) (a11($)X1(s — 111(5)) + a12()X2(s — T12(5)) + A13()X3(s — T13(5))) ds

t+w
1 X2(t) = / Gy (t, $)X2(5) (a21(8)X1(S — 121(5)) — A2 (S)X2(S — T22(5)) — A23(S)X3(s — T23(5))) ds (2.4)

t+w
x3(t) = / G3(t, $)x3(s) (az1(s)x1(s — 131(5)) — a32(8)x2(s — 132(5)) — aA33($)X3(s — 733(8))) s,
t

where

1 N
Gi(t,s) = T, &P (—/ rl(é)d5>

-l N
Galtys) = o— exp / rz(é)dé) (255)
- t

= ! exp f@(é)dé).
envw —1 ¢

Let o = min{e™ %" : i = 1, 2, 3}. Now, we choose the cone defined by

G3(tv S) =

P = {x(t) = (x1(t), X2(t), X3())" € X : x(t) > o |xilo, i = 1,2, 3} (2:6)

and define an operator @ : X — X by

(@x)(t) = (DX)1(1), (Px)2(1), (PX)3(1))", (2.7)

where
t+w

(Px)1(t) = / G1(t, $)x1(5) (a11(8)X1(s — 111(5)) + a12()x2(s — 112(8)) + A13($)x3(s — T13(5))) ds
¢ t+w

(DPx)2(t) = / G (t, $)X2(5) (az1()X1 (s — T21(5)) — A22(S)X2(S — T22(S)) — aA23(S)x3(S — T23(5))) ds (2.8)
¢ t+w

(Px)3(t) = / G3(t, )x3(s) (az1(s)x1(s — 131(S)) — az2(8)x2(s — 132(5)) — a33($)x3(s — 7133($))) ds.
t

By (2.4) and (2.8), we can easily verify that x*(t) = (X](t), x5(t), x’g(t))T € X is a positive w-periodic solution of system (1.5)
provided that x*(t) is a fixed point of @ and (®x*);(t) > 0,i=1,2,3 foranyt € R.
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Set
—Flw 1
A= P < Gi(t,s) < 1w =B
1 sz
_ _ 2.9
Ay e < Gy(t,s) < oY B, (2.9)
1 3w
As= o< Gs(t,s) = o 1 = B3
and
A= min{02F1A1, FzAz, F3A3}, B = max{FlBl, szz, I_”3B3}. (210)

In the following discussion, we assume that
(H2) the solution of (1.3) (n = 3) satisfies

B3
e
(1 + 02A3> (axx; + x3X3) < 1y

o (2.11)
(1 + 02A3> (a3X; + A33X3) < T3,
where we denote h, = 6523,
(H3) the solution of (1.3) (n = 3) satisfies
Ac? (a% — U)
— N +1 (‘121x’{ > Fz
B (1 - 07)
(2.12)

Ac? (a% — 0)

1
where we denote h; = w.
B(1—02)
From (2.11) and (2.12), we can easily see that when h,h3 > 1, (H2) implies (H3), when hyhs < 1, (H3) implies (H2). Actually,
we can choose a little more large B such that h,hs > 1, so for the system (1.5), the condition (H2) is enough.
For the sake and convenience, we only assume that (H2) and (H3) hold together.

From (2.11), we can choose a constant k € N such that

+1 (_131XT > T_’3,

B2ok=2\ _ B3 _ _
1-— 2 Ty — <1 + 0’2A3) ((122)(; + (123X§) >0
B2ok-2 B3 (2.13)
(] — A2 ) I_'3 — (1 + 0’2A3) ((_132X§ + (_133X§) > 0.
Let
- _ - Bazz B(_123
Vi= (@) 'R+ Xy Xy
Ao¥ Ao (2.14)
. Bazy, , Basz , )
z] = (a31) r3+ mxz + mxg ,
and y* = max{yj, z{}. Obviously, we have y* > x7.
Next, we define
Xk
21 = {X(t) = (x1(t), %2(0), x3(t)" € X : |xilo < B_l’ i=1,2, 3} , (2.15)
w
T ¥ X5 X3
£2; = 1x(6) = (x1(8), x2(8), x3(t))" € Xt [X1]o < —7—, [X2lo < =, [X3o < = . (2.16)
o’Aw Aw Aw

Obviously, 2, and $2, are open bounded subsets of X with 0 € £2; C £2; C §2,.

Lemma 2.3. If x(t) € PN (£2, \ £21), (H1) (n = 3) and (H2) hold, then ((®x);(t) > 0,i=1,2,3 foranyt € R.
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Proof. First, from (2.13) and (2.14), we see that

Ayo? _ Byokanyt A, L _ B,Bo* (. Bayp Bays
X — ———1 = Bw 2(Fy — Ul — G23X3) — r+ > 3

Aok %t Aok 3

Bw Aw AA
A, 2= — % - x B k= Bay, * Ba,; *
— Ty — X — Apsxs) — — | 0" + —=X5 + —=x
_Bu)( (2 — axX; — a23X3) yE o'+ 2 ) T a0
AZO_Z Bzak—z _ B3 ~ y ~ .
> Buw 1— A2 Iy — 1 + 0’2A3 ((122)(2 + (123)(3) > 0. (217)

Since x(t) € P N (£2, \ £21), then from (2.14) and (2.17), we have

t+w
/ Gy (t, $)X2(5) (a21(8)X1(s — 121(5)) — A22(S)X2(S — T22(5)) — A23(S)X3(S — T23(5))) ds
t

5 _ _ _

> Ao % |x2|owdz1|X1]o — Ba|X2lowaz|X2|o — BalX2lowazz|x3|o
AzO’2 _ Bz _ B2 -

> |x200 ( 021XT - —022X§ - X023X§

B A
Byo*ty; By. . B
> |x2lo — Xazzxz — X023X3

BZ k= - _
= X|X2|0(O“ a1y — AxX; — Gx3X3)

Gsz

1_’2|X2|0 > 0. (218)

A%

Similarly, we can prove

t+w
/ G3(t, $)x3(5)(az1 ()X (s — 131(5)) — a32(8)x2(s — T32(5)) — A33(5)X3(s — 733(5)))ds > 0. (2.19)
t
The proof is complete. O
Lemma 2.4. Assume that (H1) (n = 3), (H2) and (H3) hold, the mapping @ : P N (£, \ £2;) — P.
Aj

Proof. Sincea% < ; <1,i=1,2,3,from(2.8)and (2.9), we can easily have that fort <s < t +w, x(t) € PN (£, \ £21),

[(®x)1l0 < B4 / x1(8) (a11(5)X1(s — 111(5)) + a12(8)X2(s — T12(5)) + A13(8)X3(s — T13(5))) ds
0
and

(Px)1 = A / X1(8) (a11(9)X1(s — 111(5)) + a12($)X2(s — 712(5)) + a13($)X3(s — 113(8))) ds
0

v

A
B—|(¢’X)1|0 > o |(Px)1]o-
1
And then,
[(@X)2l0 < B> / X2(8)a21(S)X1(s — 121(5))ds — Ay / X2(8)Az2($)X2 (s — T22(5))ds
0 0

—A; / X2(8)aa3(s)X3(s — T23(5))ds,
0

(Px); > Ay / X2(8)a21(8)x1(s — 121(5))ds — B, / X2(8)a2(8)X2 (s — 122(5))ds
0 0

- B, X2(8)a3(8)X3(s — T23(8))ds.
0

Next, we have

(Ay — 0By) / X2(8)a21(8)X1(s — 121(5))ds — (B, — 0Ay) f (%2(8)a22(8)X2(s — 122(5))
0 0
+ x2(8)az3(S)x3(s — 123(5)))ds
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11)(?122)(;< + LU(_I23X§
Aw

ok
wa1X3

> (A — 0By [x20 — (B, — 0Ay)|X20

(Az — 0'32)0’2 _ Bz — O’Az _ _
> —————1x2]0021X] — X210 (T2 — G21X7)
B A
Bz — UAZ (A2 — O'Bz)dz A - —
= - "|x +1)anxi—1y ). 2.20
2 |2|0(( 3 B, — oA, 21X] — 12 (2.20)
Fora% < ’% < 1, then we easily have

2 1
(A —oBo® A A0 (f“ - 0)
B Bz—O’Az_ B(l—U%) ’

and so from (2.12), we can obtain that (2.20) > 0i.e. (@x), > o |(DXx)2]o.
Similarly, we can obtain that (®x)3 > o |(®X)3]o. The proof is complete. O

Lemma25. @ : PN (2, \ £21) —> P is a completely continuous.

Proof. Let

fi(t, xe) = x1(t) (a11(O)x1(t — T11(F)) + ar2(D)x2(t — T12(1)) + a13(H)x3(t — 713(1)))
Lt %) = xo(t) (a1 (D)X (t — 121(8)) — A (D)X (t — T2(t)) — ax3(D)X3(t — T23(1)))
f3(t, %) = x3(t) (az1(£)xq(t — 131(t)) — Az ()X (t — 732(t)) — azz(t)x3(t — 33(t))) .

We first show that @ is continuous. For any L > 0 and ¢ > O, there exists a§ > 0 such that forany ¢, ¥ € X, ||¢|| < L,
¥l <L and ||¢ — @] < & imply

€
3B*w

n[]oax]lfi(s9 d)S) _ﬁ(sv w5)| < ) l= 17213 (22])

where B* = maxy<i<3 Bi. Ifx, y € X with ||x|| <L, |ly|| <L,and |x — y|| <4, then from (2.8),(2.9) and (2.21), we have

t+w
[(@x); — (PY)ilo 5/ |Gi(t, $)|Ifi(s, Xs) — fi(s, ¥s)|ds
t

IA

B / (5, %5) — fi(s, ys)\ds
0
£ .

< -, 1=1,2,3.
3

Obviously,

3
[(@x) — (Py)|| = Z [(@X)i — (@y)ilo < &.

i=1

Then @ is continuous.
Now, we prove that @ is a compact operator. Set @ = maxj<j<3 21-321 a;. Let M > O be any constantandletS = {x € X :
|x]| < M} be a bounded set. For any x € S, from (2.8) and (2.9), we can have

w 3 3
|(@x)ilo < B; / Xi($)] Y a(s)|xi(s — Ty(s))|ds < wB*M* )@y < awB*M?,
0

=1 j=1

and so

3
I(@0] =D 1(®x)ilo < 3awB"M?, Vxes.
i=1

Furthermore, by the Lemma 2.3 and from (2.8), we have
[(@x)1(0)]" = r1(t)(@x)1(t) — x1(£) (a11 (X1 (t — T11(1)) + A (X2 (t — T12(0)) + A13(O)x3(t — T13(1)))

[(@x)2()] = x2(t) (a21()X1(t — T21(t)) — A2 (D)X2(t — To2(t)) — A23(H)xX3(t — T23())) — r2() (PX)2(t)
[(@x)3(t)] = x3(t) (a31()x1(t — T31(t)) — az2()x2(t — T32(t)) — as3(O)x3(t — T33(t))) — r3(t) (PX)3(t).
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Then forx € S,

3
(@i < RO + (O] Y ay(®)|xi(t — (1))]

j=1
3
< rlawB*M? + M? Z a;
j=1
<KM?, i=1,2,3,
where K = max;<i<s(rfawB* + Y7 ; a¥) and
ri = max ri(t), @ = max a;(t), i,j=1,2,3.
te[0,w] te[0,w]

Hence, @S C X is a family of uniformly bounded and equi-continuous functions. By the Ascoli-Arzela Theorem (see, e.g.,
[17, p. 169]), @ is a compact operator, thus it is completely continuous. Now the proof is completed. O

Our main result on the existence of a positive periodic solution of system (1.5) is stated in the following theorem.

Theorem 2.6. Assume that (H1) (n = 3), (H2) and (H3) hold. Then system (1.5) has at least one positive w-periodic solution.

Proof. Letx* = (x], X5, x§)T withxf > 0, i = 1, 2, 3, be a positive solution of (1.3).
From (2.9) and (2.10), we have 0 < A < B < o0.
By the (2.15) and (2.16), if x = x(t) € P N 0§24, then o |x;|o < x;(t) < |xilo = (Bw)*lx?‘, i=1,2,3,and

w 3
[(@x)ilo < B; / xi(s) Y a($)x;(s — T(s))ds
0 j=1

3
B,'U)|Xi|0 Z &Ux]*
j=1

BiT;w (Bw) ™ [xilo
|xilo, i=1,2,3,

IA

IA

and so
3 3
lxll =) " 1(@x)ilo < ) Ixilo = lIxll,  Vx=x(t) € PN 2. (2.22)
Next, if x = x(t) € P N 0825, then o |xi|o < x;(t) < |x;|g,i = 1, 2, 3, and it follows that

(@x)1(t)

A%

w 3
an [0 Y ayomts - myoes
0 j=1

2 - - -
> o“Ajw(x1]o(ailx1lo + ai2|x2]0 + a13lx3lo)

_1{ an _ _
o?Arw|x;[o(Aw) ! (FJ’* + apx; + 6113?‘;)

v

2 —1,= - —
o A1w|xq|o(Aw) ™" (@11X] + 12X + G13X3)
24 = —1
o“Arwri(Aw) ™ x4 o
[x1]o

Ay / X2(8)a21(8)x1(s — 121(5))ds — B, / X2(8) (A22(8)X2 (S — T22(5)) + az3(S)x3(s — T23(5)))ds
0 0

2 - - -
o “Ayw|Xz]o021]X1]0 — BowlX2]o(a22 %20 + @231X30)

vVl

(@x)2(t)

v v

Ay _ By _ B, _ *
%210 —02131 - Xazzxz - — 73X,

v

By
%210 021y1 azzxz N — 73X,
By \ _ B By \ _
= |x 1 — — ) axnx; —— — — | Gy3X}
|2|0<+( A A) 222+<a"F2A A) 233)
B, 1 B,
|X2|0 <] + (J — 1> Xazzxj + (J — 1) A (123)(3)

|X21o.

v

v
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Similarly, we can have

(Px)3(t) = |x3]o

and so
3 3
1xll =Y " [(@x)ilo = Y Ixilo = [Ix]l.  Vx==x(t) € PN, (2.23)
i=1 i=1

Hence, @ : PN (£2,\ £21) —> P is a completely continuous operator and satisfies condition (i) in Lemma 2.2. By Lemma 2.2,
there exists a point x*(t) = (x7(t), x5(t), }<§(t))T € PN (§2; \ £21) such that x*(t) = (®x*)(t), and by Lemma 2.3 x*(t) is a
positive w-periodic solution of system (1.5). The proof is completed. O

Remark 2.7. This result is very concise and pretty in mathematics because of numerous parameters, while only there are a
linear constant system and very simple inequalities.

Remark 2.8. The method and technique in this paper may be used to more general mathematical ecology models than
system (1.1) and system (1.5).

3. Global attractivity of positive periodic solutions

In this section, we will always assume that the existence of positive periodic solutions of system (1.5) and study the
global attractivity of positive periodic solutions of system (1.5).

Theorem 3.1. In addition to the existence of positive periodic solutions, assume that 7;;(t) = 0, 7;(t) < 1,i,j = 1,2, 3, and
that there exist v; > 0,1 =1, 2, 3, such that

3, vaiE; (D)
i g L h 3.1
vidii(t) > ; 1— (&' (1) l .

where Si,-_](t) is the inverse function of &;(t) = t — 7;(t),i,j = 1, 2, 3. Then system (1.5) has a unique positive w-periodic
solution x*(t) = (X} (t), x5(t), X} (t))" which attracts all positive solutions x(t) = (x1(t), xo(t), x3(t))" of system (1.5), that is,

tlim Ixi(t) —x7(t)|=0, i=1,2,3. (3.2)
—00

Proof. Set &;(s) = t. Then

i+t w)=s+w—T1(s+w) =§;(s) +w=t+w,
and so

Elt+w) =s+w=§"(t)+w.

Thus, a,j(éijf](t)) and i,-j(‘g‘i;](t)) are still w-periodic functions fori,j = 1, 2, 3. Set

= max | Ly G 0)

S , 1=1,2,3.
tefo,w] | via;;(t) R 1-— Tji(gﬁ (1))

From (3.1), we can have that0 < 6; < 1,i =1, 2, 3,and

3 (& (b)) .
in,-a,-i(t)z;m, i=1,23. (3.3)

Let x(t) = (x1(t), x2(t), x3(t))T be any positive solution of system (1.5). Set

° xi(t) 3t a;(&; (5))
= ol n [ 2= ——————|xi(s) —x{(s)|ds |, t=0. .
V(t) ;v U n(xf(t))' +;/{rw l—i,»j(f;‘,-j‘](S)) |xi(s) — X' (s)|ds t>0 (3.4)
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Calculating the upper right derivative of V (t) at time t, we have

3 3 i -»_]t
DTV(t) < Z V; |:—a,-,-(t)|x,-(t) —x ()] + Z %& ©) |x;(t) — xf(t)|:|

i=1 j#i 1- Tu(gu_l(t))

3 3 V]aﬂ(éﬁ (1)
= —v;a;(t) + |x;(t) — X;‘ ®)]
< [ ’ ; B (t))}

3
< =) w1 =Ba® (@) —x;©)], t=0. (35)

i=1

This shows that V (t) is decreasing in [0, co) and so the limit v = lim;_, o, V(t) exists.
Consequently, integrating (3.5) from 0 to oo, we obtain

3 e8]
Y w1 —6) / ai () xi(s) — X7 (s)|ds < V(0) — v < V(0) < oo,
0

i=1

and so

3 )
> v / a;i(s) [xi(s) — X' (s)|ds < oo. (3.6)
i=1 0
From (3.1), we can note that
o
/ agi(s)ds=o00, i=1,2,3.
0
It follows from (3.6) that
3
lim inf Y wilxi(t) — X} (0)] = 0. (3.7)
* =T

Again from (3.3) and (3.6), we have

5 a6 C 2 ayE o)
E — ——|xi(s) — x7(s)|ds < / E — " _|xi(s) — xI(s)|ds
= / o 15 o) O TS | 2T ) O T

3
< - / > va(s)[x(s) — X (s)|ds > 0, t— oo, i=1,2,3,(38)
t=mm ji
where 7y = max{z;(t) : t € [0, w],i,j=1,2,3}and v = min{y; : i = 1, 2, 3}. Combining (3.4) and (3.8), we can have
3
i(t
lim S v |In (ﬁ)‘ — v, (3.9)
t—00 = xl?k(t)
which yields
xi(t) > e WtD/vxx(t), forlarget,i=1,2,3. (3.10)
By (3.7),(3.9) and (3.10),
3 3
i(L ..
v = liminf ) v;|In (X*( )) < liminf ;p@(t) — X/ (t)]
oo (0] 5 & min{x(0), X (D)

(+1/v

IA

e+ D/ jim infz |xl(t) XE()] <

t—>00

11m mfz vilxi(t) — X (t)]
=0, (3.11)
where m = min{x](t) : t € [0, w], i = 1, 2, 3}. Hence, it follows from (3.9) that
tlim Ixi(t) —x;(t)] =0, i=1,2,3. (3.12)

The proof is complete. O
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