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a b s t r a c t

Under some local conditions on W (t, u), the existence of homoclinic solutions is obtained
for the nonperiodic second-order Hamiltonian systems ü(t) − L(t)u(t) + ∇W (t, u(t)) =

f (t) as a limit of periodic solutions of a certain sequence of boundary-value problemswhich
are obtained by a new critical point theorem.
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1. Introduction and main results

In this paper, we consider the following second-order nonautonomous Hamiltonian systems

ü(t) − L(t)u(t) + ∇W

t, u(t)


= f (t) (1.1)

where t ∈ R, u ∈ Rn, L ∈ C(R, Rn×n) is a symmetric matrix valued function, W : R × Rn
→ R and f : R → Rn. As usual, we

say that a solution u(t) of (1.1) is nontrivial homoclinic (to 0) if u ≠ 0, u(t) → 0 and u̇(t) → 0 as t → ±∞. Consequently,
∇W (t, x) denotes the gradient with respect to x, (·, ·) : Rn

× Rn
→ R denotes the standard inner product in Rn and | · | is

the induced norm.
When f = 0, (1.1) reduces to the following second-order Hamiltonian system

ü(t) − L(t)u(t) + ∇W

t, u(t)


= 0. (1.2)

In applied sciences, as a special case of dynamical systems, Hamiltonian systems play a key role in practical problems
concerning gas dynamics, fluidmechanics, relativistic mechanics and nuclear physics. The existence of homoclinic solutions
is one of the most important problems in the theory of Hamiltonian systems. Inspired by the excellent monographs [1,2],
the existence and multiplicity of periodic solutions and homoclinic orbits for Hamiltonian systems have been extensively
and intensively studied in many papers via critical theory; see [3–25] and the references therein. Moreover, many evolution
processes are characterized by the fact that at certain moments of time they experience a change of state abruptly; thus
impulsive differential equations appear as a natural description of observed evolution phenomena of several real world
problems. Due to their applications inmany fields, second-order Hamiltonian systemswith impulses via critical point theory
have been recently considered in [26,27], and in papers [28–30], Nieto et al. studied some Dirichlet impulsive problems by
variational approach.
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The case where L(t) and W (t, x) are either independent of t or periodic in t is studied by several authors; see [3,6,8,17,
19,20]. More precisely, in paper [17], Rabinowitz has shown the existence of homoclinic orbits as a limit of 2kT -periodic
solutions of (1.2). Later, using the same method, several results for general Hamiltonian systems were obtained by Felmer
et al. [6], Izydorek and Janczewska [8], and Tang and Xiao [19,20].

When L(t) andW (t, x) are not periodic with respect to t , the problem of existence of homoclinic orbits for (1.2) is quite
different from the one just described, because of the lack of compactness of the Sobolev embedding. In [18], Rabinowitz
and Tanaka studied system (1.2) without a periodicity assumption, both for L andW . More precisely, they assumed that the
smallest eigenvalue of L(t) tends to+∞ as |t| → ∞, using a variant of theMountain Pass theoremwithout the Palais–Smale
condition, and proved that system (1.2) possesses a homoclinic orbit.

Theorem A ([18]). Assume that L and W satisfy the following conditions:

(L) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an l ∈ C(R,

0, ∞)


such that l(t) → +∞ as

|t| → ∞ and
L(t)x, x


≥ l(t)|x|2

for all t ∈ R and x ∈ Rn;
(A1) W ∈ C1(R × Rn, R) and there is a constant µ > 2 such that

0 < µW (t, x) ≤

x, ∇W (t, x)


for all t ∈ R and x ∈ Rn

\ {0};
(A2) |∇W (t, x)| = o(|x|) as |x| → 0 uniformly with respect to t ∈ R;
(A3) there is a W ∈ C(Rn, R) such that

|W (t, x)| + |∇W (t, x)| ≤ |W (x)|

for all t ∈ R and x ∈ Rn.

Then system (1.2) possesses a nontrivial homoclinic solution.

In paper [21], Lv et al. further investigated the existence of homoclinic orbits as a limit of solutions of a certain sequence
of boundary-value problems, which are obtained by using theMountain Pass theorem. In detail, they obtained the following
theorem.

Theorem B ([21]). Assume that L and W satisfy assumption (L) and the following conditions:

(B1) W (t, 0) ≡ 0, W ∈ C1(R × Rn, R) and |∇W (t, x)| = o(|x|) as |x| → 0 uniformly in t ∈ R;
(B2) there are two constants µ > 2 and ν ∈


0, µ

2 − 1

and β ∈ L1(R, R+) such that

∇W (t, x), x

− µW (t, x) ≥ −ν


L(t)x, x


− β(t)

for all t ∈ R and x ∈ Rn
\ {0};

(B3) there exists T0 > 0 such that

lim inf
|x|→∞

W (t, x)
|x|2

>
π2

2T 2
0

+
l1
2

uniformly in t ∈ [−T0, T0], where l1 is the biggest eigenvalue of L(t) on [−T0, T0].

Then system (1.2) possesses a nontrivial homoclinic solution.

Motivated by papers [13,18,21], in this paper, we will study the existence of Homoclinic solutions of (1.1) under more
general local conditions. Our main results are the following theorems.

Theorem 1.1. Assume that L and W satisfy the following conditions:

(L′) L(t) is a positive definite symmetric matrix for all t ∈ R and there exists an l ∈ C(R,

0, ∞


) such that

L(t)x, x


≥ l(t)|x|2, for all t ∈ R and x ∈ Rn

and supt∈R |Lij(t)| < ∞, where L(t) = (Lij(t))n×n;
(W1) W (t, 0) = ∇W (t, 0) ≡ 0 and W ∈ C1(R × Rn, R) uniformly in t ∈ R;
(W2) there exist a constant ρ > 0 and an a ∈ C(R, (0, ∞)) such that

W (t, x) ≤ a(t)|x|2, for all t ∈ R and |x| ≤ ρ,

where 0 < a(t) < 1
2 l(t), for all t ∈ R and m1 = inft∈R

 1
2 l(t) − a(t)


> 0;
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(F) f ≢ 0 is a continuous and bounded function such that

R |f (t)|2dt < ∞ and

min

1
2
,m1


ρ2

−
√
2Mρ > 0 (1.3)

where M =


R |f (t)|2dt
 1

2 .

Then system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.1. When ρ ≤ 1,W (t, x) = a(t)|x|µ, whereµ > 2, we can see that (W2) holds, i.e.W (t, x) can be superquadratic.

Remark 1.2. There are many functions satisfying (F). For example, if ρ = m1 = 1, we can choose f (t) = (f1(t), . . . , fn(t))T ,

where fi(t) =


1

16nπ(1+t2)

 1
2
, i = 1, . . . , n. Then M =

1
4 ; we can easily see that (F) holds.

Theorem 1.2. Assume that L and W satisfy assumptions (L′), (W1) and the following conditions:

(W2′) there exist constants ρ > 0, 1 < γ < 2 and an integrable function b ∈ L
2

2−γ (R, (0, ∞)) such that

W (t, x) ≤ b(t)|x|γ , for all t ∈ R and |x| ≤
√
2ρ,

where m2 =


R |b(t)|

2
2−γ dt

 2−γ
2

;

(F′) f ≢ 0 is a continuous and bounded function such that

R |f (t)|2dt < ∞ and

min

1
2
, l∗


ρ2

− m2ρ
γ

− Mρ > 0 (1.4)

where l∗ = inft∈R l(t) > 0 and M is determined by (1.3).

Then system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.3. There are many functions satisfying (F′). For example, if ρ = l∗ = 1, γ =
3
2 , we can let f (t) be the same as the

example given in Remark 1.2 and b(t) =
1
8


1

π(1+t2)

 1
4
. Then m2 =

1
8 ,M =

1
4 , we can obtain that (F′) holds.

Remark 1.4. For system (1.1), Theorems 1.1 and 1.2 give some new criteria for the existence of homoclinic solutions by
relaxing conditions, which are essentially new.

2. Proof of theorems

Motivated by papers [7,11,21], we will prove the existence of the homoclinic solutions for (1.1) as the limit of periodic
solutions of the following boundary-value problem

ü(t) − L(t)u(t) + ∇W

t, u(t)


= f (t), for t ∈ [−T , T ]

u(−T ) − u(T ) = u̇(−T ) − u̇(T ) = 0, (2.1)

for ∀T ∈ R+.
For ∀T ∈ R+, let

ET := W 1,2
[−T , T ], Rn

=

u : [−T , T ] −→ Rn

|u is absolutely continuous, u(−T ) = u(T ) and

u̇ ∈ L2([−T , T ], Rn)


and for u ∈ ET , let

‖u‖ET =

∫ T

−T


|u̇(t)|2 + |u(t)|2


dt

 1
2

;

then ET is a Hilbert space on the above norm.
We consider a functional IT : ET → R, defined by

IT (u) =

∫ T

−T

[
1
2
|u̇(t)|2 +

1
2


L(t)u(t), u(t)


− W


t, u(t)


+


f (t), u(t)

]
dt. (2.2)
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Then we can easily check that IT ∈ C1(ET , R) is weakly lower semi-continuous as the sum of a convex continuous function
and of a weakly continuous one and

⟨I ′T (u), v⟩ =

∫ T

−T


u̇(t), v̇(t)


+


L(t)u(t), v(t)


−


∇W


t, u(t)


, v(t)


+


f (t), v(t)


dt (2.3)

for all u, v ∈ ET . Furthermore, it is well known that the critical points of IT in ET are classical solutions of (2.1) (see [1,2]).
Wewill obtain a critical point of IT by using a new critical point theorem, which is important for what follows. Therefore,

we state this theorem precisely.

Lemma 2.1 (See [13]). Let X be a real reflexive Banach space and Ω ⊂ X be a closed bounded convex subset of X. Suppose that
ϕ : X → R is a weakly lower semi-continuous functional. If there exists a point x0 ∈ Ω \ ∂Ω such that

ϕ(x) > ϕ(x0), ∀x ∈ ∂Ω. (2.4)

Then there must be a x∗
∈ Ω \ ∂Ω such that

ϕ(x∗) = inf
u∈Ω

ϕ(u).

Lemma 2.2 (See [8]). Let u : R → Rn be a continuous mapping such that u̇ ∈ L2loc(R, R
n). Then for every t ∈ R the following

inequality holds

|u(t)| ≤
√
2

∫ t+ 1
2

t− 1
2


|u̇(s)|2 + |u(s)|2


ds

 1
2

. (2.5)

Lemma 2.3. Let u ∈ ET . Then the following inequality holds

‖u‖L∞
[−T ,T ]

≤

∫ T

−T
|u(t)|2dt

 1
2

+

∫ T

−T
|u̇(t)|2dt

 1
2

. (2.6)

This lemma is a special case of Corollary 2.2 in [20].

Corollary 2.1. Let u ∈ ET . Then the following inequality holds

‖u‖L∞
[−T ,T ]

≤
√
2‖u‖ET =

√
2

∫ T

−T


|u̇(t)|2 + |u(t)|2


dt

 1
2

. (2.7)

Proof. Combining (2.6) and the inequality
√
a +

√
b ≤

√
2(a + b)

1
2 , we can easily see that (2.7) holds. �

Lemma 2.4. Under the conditions of Theorem 1.1, problem (2.1) possesses a solution uT ∈ ET such that∫ T

−T


|u̇T (t)|2 + |uT (t)|2


dt <

1
2
ρ2, ∀T ∈ R+. (2.8)

Proof. Obviously, IT (0) = 0 by (W1). In order to use Lemma 2.1, the first step in the proof is to construct a closed bounded
convex subset of ET . For ∀ T ∈ R+, let ΩT :=


u ∈ ET :

 T
−T


|u̇(t)|2dt + |u(t)|2


dt ≤

1
2ρ

2

, where ρ is a constant given

by (1.3). We can easily see that ΩT is a closed bounded convex subset of ET .
Next, we will show that (2.8) holds. If u ∈ ∂ΩT , then

 T
T


|u̇(t)|2dt + |u(t)|2


dt =

1
2ρ

2. By Corollary 2.1, it is easy to
verify that for all u ∈ ∂ΩT , ‖u‖L∞

[−T ,T ]
≤ ρ, that is |u(t)| ≤ ρ for all t ∈ [−T , T ], which together with (L′) and (W2) implies

that

IT (u) =

∫ T

−T

[
1
2
|u̇(t)|2 +

1
2


L(t)u(t), u(t)


− W


t, u(t)


+


f (t), u(t)

]
dt

≥
1
2

∫ T

−T
|u̇(t)|2 dt +

1
2

∫ T

−T
l(t)|u(t)|2dt −

∫ T

−T
a(t)|u(t)|2dt +

∫ T

−T


f (t), u(t)


dt

≥
1
2

∫ T

−T
|u̇(t)|2 dt + m1

∫ T

−T
|u(t)|2dt −

∫ T

−T
|f (t)|2dt

 1
2
∫ T

−T
|u(t)|2dt

 1
2

≥ min

1
4
,
1
2
m1


ρ2

−
1

√
2
Mρ
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for all u ∈ ∂ΩT , which together with (1.3) yields

IT (u) > IT (0) = 0, ∀u ∈ ∂ΩT .

Then by using Lemma 2.1, we can obtain that for ∀T ∈ R+, there exists a point

uT ∈ ΩT :=


u ∈ ET :

∫ T

−T


|u̇(t)|2 + |u(t)|2


dt <

1
2
ρ2


such that

IT (uT ) = inf
u∈ΩT

IT (u).

Now, by Theorem 1.3 in [1] and the fact that ΩT is an open subset of ET , we conclude that

I ′T (uT ) = 0.

Since uT ∈ ΩT , we get∫ T

−T


|u̇T (t)|2 + |uT (t)|2


dt <

1
2
ρ2,

which shows that (2.8) holds. The proof is complete. �

Lemma 2.5. Under the conditions of Theorem 1.2, problem (2.1) possesses a solution uT ∈ ET such that∫ T

−T


|u̇T (t)|2 + |uT (t)|2


dt < ρ2, ∀ T ∈ R+, (2.9)

where ρ is determined by (W2′).

Proof. Let ΓT :=


u ∈ ET :

 T
−T


|u̇(t)|2dt + |u(t)|2


dt ≤ ρ2


. Clearly, ΓT is a closed bounded convex subset of ET . Similar

to the proof of Lemma 2.4, it suffices to show that for ∀ T ∈ R+,

IT (u) > IT (0) = 0, ∀u ∈ ∂ΓT . (2.10)

If u ∈ ∂ΓT , from the proof of Lemma 2.4, we can obtain |u(t)| ≤
√
2ρ for all t ∈ [−T , T ], which together with (L′) and (W2′)

implies that

IT (u) =

∫ T

−T

[
1
2
|u̇(t)|2 +

1
2


L(t)u(t), u(t)


− W


t, u(t)


+


f (t), u(t)

]
dt

≥
1
2

∫ T

−T
|u̇(t)|2 dt +

1
2

∫ T

−T
l(t)|u(t)|2dt −

∫ T

−T
b(t)|u(t)|γ dt +

∫ T

−T


f (t), u(t)


dt

≥
1
2

∫ T

−T
|u̇(t)|2 dt + l∗

∫ T

−T
|u(t)|2dt −

∫ T

−T
|b(t)|

2
2−γ dt

 2−γ
2

∫ T

−T
|u(t)|2dt

 γ
2

−

∫ T

−T
|f (t)|2dt

 1
2
∫ T

−T
|u(t)|2dt

 1
2

≥ min

1
2
, l∗


ρ2

− m2ρ
γ

− Mρ

which together with (1.4) yields (2.10) holds. The proof is complete. �
Proof of Theorem 1.1. Take a sequence Tn → ∞ and consider problem (2.1) on the interval [−Tn, Tn]. By the conclusions
of Lemma 2.4, it has a solution un and ‖un‖ETn is bounded uniformly in n.

Similar to the proof of Theorem 2.1 in [7], from the fact that

|un(t1) − un(t2)| ≤

∫ t2

t1

|u̇n(t)| dt ≤
√
t2 − t1

∫ t2

t1

|u̇n(t)|2 dt
 1

2

,

we claim that the sequence {un} is equicontinuous and uniformly bounded on every interval [−Tn, Tn] and we can select a
subsequence {unk} such that it converges uniformly on any bounded interval to a function u. Furthermore, since ‖un‖ETn is
bounded uniformly in n, we can conclude that u ∈ W 1,2(R, Rn) and∫

R


|u̇(t)|2 + |u(t)|2


dt < +∞. (2.11)



Author's personal copy

X. Lv, J. Jiang / Nonlinear Analysis: Real World Applications 13 (2012) 1152–1158 1157

Expressing ünk using Eq. (2.1), we conclude that the sequence ünk , and then also u̇nk converges uniformly on bounded
intervals. Writing

unk(t) =

∫ t

0
(t − s)ünk(s)ds + tu̇nk(0) + unk(0),

we obtain that u ∈ C2(R, Rn) and ünk → ü uniformly on bounded intervals. Consequently, at first, we consider Eq. (2.1) on
interval [−m,m],m ∈ N and then by the diagonal process and letm → ∞, we can conclude that u satisfies (1.1), i.e., u is a
classical solution of (1.1). Note that, by Lemma 2.2, we can have

|u(t)| ≤
√
2

∫ t+ 1
2

t− 1
2


|u̇(s)|2 + |u(s)|2


ds

 1
2

, for every t ∈ R.

From (2.11), we can easily see that the limits of u(t) exist as |t| → ∞, that is u(±∞) = 0.
We now prove that u̇(t) → 0 as |t| → ∞. By Lemma 2.2, we get that

|u̇(t)|2 ≤ 2
∫ t+ 1

2

t− 1
2


|u(s)|2 + |u̇(s)|2


ds + 2

∫ t+ 1
2

t− 1
2

|ü(s)|2 ds, for every t ∈ R.

By (2.11), we can have∫ t+ 1
2

t− 1
2


|u(s)|2 + |u̇(s)|2


ds → 0, as |t| → ∞.

Hence we only need to prove that∫ t+ 1
2

t− 1
2

|ü(s)|2 ds → 0, as |t| → ∞. (2.12)

For ∀ x ∈ Rn, by (L′) and Cauchy inequality, we can easily have that

|L(t)x| ≤ nL|x|, where L = sup
t∈R

|Lij(t)|. (2.13)

It follows from (1.1) and (2.13)∫ t+ 1
2

t− 1
2

|ü(s)|2 ds =

∫ t+ 1
2

t− 1
2

L(s)u(s) − ∇W

s, u(s)


+ f (s)

2 ds
≤ 3

∫ t+ 1
2

t− 1
2


|L(s)u(s)|2 +

∇W

s, u(s)

2 + |f (s)|2

ds

≤ 3
∫ t+ 1

2

t− 1
2


n2L2 |u(s)|2 +

∇W

s, u(s)

2 + |f (s)|2

ds.

By (W1), (F) and the fact that u(t) → 0 as |t| → ∞, we can have
∇W


t, u(t)

 → 0 and f (t) → 0 as |t| → ∞.
Consequently, from (2.11), we conclude that (2.12) holds.

In the end, since ∇W (t, 0) = 0 and f ≢ 0, then u is a nontrivial homoclinic orbit of system (1.1). The proof is
complete. �

Proof of Theorem 1.2. Since the proof of Theorem 1.2 is exactly similar to the proof of Theorem 1.1, we omit it here. �
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