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Abstract
In this paper, we mainly consider the existence of homoclinic orbits for the following
second-order Hamiltonian systems

ü(t) − L(t)u(t) + ∇W
(
t, u(t)

) = f (t),

where L(t) is a positive definite and symmetric matrix for all t ∈ R and the potential
functionW (t, u) is locally subquadratic. Here, the coefficient of the upper bound forW
is a positive constant, whereas in the previous literature the corresponding coefficient
need to be some integrable functions a(t) on R.
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1 Introduction andMain Results

The main purpose of this paper is to consider the following second-order Hamiltonian
systems

ü(t) − L(t)u(t) + ∇W
(
t, u(t)

) = f (t) (1.1)
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where L ∈ C(R,Rn×n) is a symmetric and positive definite matrix valued function,
W : R × R

n → R, ∇W (t, x) is the gradient with respect to x and f : R → R
n .

Usually, we say that a solution u(t) of (1.1) is nontrivial homoclinic (to 0) if u �≡ 0
and u(t) → 0 as t → ±∞.

It is well known that homoclinic solutions of Hamiltonian systems play the key
role in the study of gas dynamics and fluid mechanics. Recently, there has been an
extensive theoretical works on the existence and multiplicity of homoclinic solutions
for Hamiltonian systems via critical point theory and variational method, see [1–29]
and the references therein.

In the case that L(t) and W (t, u) are either independent of t or periodic in t , the
existence of homoclinic orbits can be obtained as a limit of 2kT -periodic orbits of
(1.1), see Rabinowitz [21], Izydorek and Janczewska [8,9] and so on. In the case
that L(t) and W (t, u) are not periodic with respect to t , the problem will become
more difficult because of the lack of compactness of the Sobolev embedding. Here,
it is worth pointing out that most of the results in the literature were based on some
globally conditions on W , such as the Ambrosetti-Rabinowitz condition and so on.
In [23], Rabinowitz and Tanaka considered (1.1) without a periodicity assumption,
both for L andW . By a variant of the Mountain Pass Theorem, they showed that (1.1)
admits a nontrivial homoclinic orbit.

Theorem 1.1 [23] Assume that L and W satisfy the following assumptions:
(A1) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an
l ∈ C(R,

(
0,∞)

)
such that l(t) → +∞ as |t | → ∞ and

(
L(t)x, x

) ≥ l(t)|x |2 f or all t ∈ R and x ∈ R
n;

(A2) W ∈ C1(R × R
n,R) and there is a constant μ > 2 such that

0 < μW (t, x) ≤ (
x,∇W (t, x)

)
f or all t ∈ R and x ∈ R

n\{0};

(A3) |∇W (t, x)| = o(|x |) as |x | → 0 uniformly with respect to t ∈ R;
(A4) There is a W ∈ C(Rn,R) such that

|W (t, x)| + |∇W (t, x)| ≤ |W (x)| f or all t ∈ R and x ∈ R
n .

Then

ü(t) − L(t)u(t) + ∇W
(
t, u(t)

) = 0 (HS)

possesses a nontrivial homoclinic solution.

Motivated by [12,17,18,23], the main purpose of this paper is to consider the exis-
tence of Homoclinic solutions for (1.1), where we only give some locally subquadratic
assumptions on W (t, u). Our main results are the following theorems.

Theorem 1.2 Assume that L and W satisfy the following assumptions:
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(L) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an l ∈
C(R,

(
0,∞)

)
such that l(t) → +∞ as |t | → ∞ and

(
L(t)x, x

) ≥ l(t)|x |2 f or all t ∈ R and x ∈ R
n,

where l ∈ L− μ
2−μ (R, (0,∞)) and 1 < μ < 2 is defined in the condition (W2);

(W1) W ∈ C1(R × R
n,R), W (t, 0) = ∇W (t, 0) ≡ 0 for all t ∈ R;

(W2) there exist constants � > 0, a > 0 and 1 < μ < 2 such that

W (t, x) ≤ a|x |μ f or all t ∈ R and |x | ≤ 1
√
2
√
l∗

�, (1.2)

where l∗ = inf t∈R l(t);
(F) f �≡ 0 is a continuous function such that

∫
R

| f (t)|βdt < ∞ and

1

2
�2 − aM

μ
2
l �μ −

(
1

√
2
√
l∗

)1− 2
β∗

M f l
− 1

β∗
∗ � > 0, (1.3)

where 1 < β ≤ 2, 1
β∗ + 1

β
= 1,

Ml =
(∫

R

l−
μ

2−μ (t)dt

) 2−μ
μ

and M f =
(∫

R

| f (t)|βdt
) 1

β

.

Then (1.1) admits a nontrivial homoclinic solution.

Remark 1.3 The condition (W2) is only defined in some local regions.

Remark 1.4 In the condition (W2), the coefficient of the upper bound a|x |μ is a positive
constant, whereas in the previous literature the corresponding coefficient need to be
some integrable functions a(t) on R, such as [16,17,24].

Example 1.5 If l(t) = 1 + t2, t ∈ R and μ = 3
2 , we can easily have that (L) holds,

i.e., 1
(1+t2)3

is integrable on R.

2 Proof of Theorems

Motivated by [10,18], we will consider the existence of homoclinic solutions for (1.1),
which can be seen as the limit of solutions for the following boundary-value problem

{
ü(t) − L(t)u(t) + ∇W

(
t, u(t)

) = f (t), t ∈ [−T , T ],
u(−T ) = u(T ) = 0, T ∈ R

+.
(2.1)
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For all T ∈ R
+, define

ET =
{
u ∈ W 1,2([−T , T ],Rn)∣∣

∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt < +∞
}

where

W 1,2([−T , T ],Rn) = {u : [−T , T ] −→ R
n
∣∣u is absolutely continuous,

u(−T ) = u(T ) = 0 and u̇ ∈ L2([−T , T ],Rn)}

and for u ∈ ET , introduce the inner product (u, v)ET = ∫ T
−T[(

u̇(t), v̇(t)
) + (

L(t)u(t), v(t)
)]
dt , then ET is a Hilbert space equipped with the

above inner product and the corresponding norm is ‖u‖ET = (u, u)
1
2
ET

.
Let IT : ET → R defined by

IT (u) = 1

2
‖u‖2ET

−
∫ T

−T
W

(
t, u(t)

)
dt +

∫ T

−T

(
f (t), u(t)

)
dt . (2.2)

It is obvious that IT ∈ C1(ET ,R) is weakly lower semi-continuous based on the fact
that it is the sum of a convex continuous function and of a weakly continuous one.
Direct computation shows that

< I ′
T (u), v >=

∫ T

−T

[(
u̇(t), v̇(t)

) + (
L(t)u(t), v(t)

) − (∇W
(
t, u(t)

)
, v(t)

) + (
f (t), v(t)

)]
dt

(2.3)
for all u, v ∈ ET . Moreover, we can have that critical points of IT in ET are classical
solutions of (2.1) (see [19]).

In order to prove our main result, we will give some lemmas as follows.

Lemma 2.1 (See [12]) Let X be a real reflexive Banach space and � ⊂ X be a closed
and bounded convex subset of X. Suppose that ϕ : X → R is weakly lower semi-
continuous. If there exists a point x0 ∈ �\∂� such that ϕ(x) > ϕ(x0) for all x ∈ ∂�.
Then there exists a x∗ ∈ �\∂� such that ϕ(x∗) = infu∈� ϕ(u).

Lemma 2.2 (See [18]) Let u ∈ ET . It follows that

‖u‖L∞[−T ,T ] ≤ 1
√
2
√
l∗

‖u‖ET = 1
√
2
√
l∗

{∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt

} 1
2

,

(2.4)
where l∗ = inf t∈R l(t).

Lemma 2.3 Assume that all conditions of Theorem 1.2 hold, then there exists a solution
uT ∈ ET for the boundary-value problem (2.1) and

∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt < �2 for all T ∈ R+. (2.5)
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Proof Evidently, IT (0) = 0 by (W1) for all T ∈ R+. In order to use Lemma 2.1, we
shall construct a closed and bounded convex subset of ET for all T ∈ R+. For any
T ∈ R+, define

�T :=
{
u ∈ ET :

∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt ≤ �2
}

,

where � is defined in (1.2). It is clear that �T is a closed and bounded convex subset
of ET for all T ∈ R+.

Given any T ∈ R+, we will show that (2.5) is correct. Choose u ∈ ∂�T , it is
obvious that

∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt = �2.

Using Lemma 2.2, we can easily get that ‖u‖L∞[−T ,T ] ≤ 1√
2
√
l∗

� for all u ∈ ∂�T . That

is |u(t)| ≤ 1√
2
√
l∗

� for all t ∈ [−T , T ]. This inequality together with (L), (W2) and

(F) implies that

IT (u) = 1

2
‖u‖2ET

−
∫ T

−T
W

(
t, u(t)

)
dt +

∫ T

−T

(
f (t), u(t)

)
dt

≥ 1

2
‖u‖2ET

− a

(∫ T

−T
l(t)|u(t)|2dt

)μ
2

(∫ T

−T
l−

μ
2−μ (t)dt

) 2−μ
2

−
(∫ T

−T
| f (t)|βdt

) 1
β

(∫ T

−T
|u(t)|β∗

dt

) 1
β∗

≥ 1

2
‖u‖2ET

− a

(∫ T

−T
l(t)|u(t)|2dt

)μ
2

(∫ T

−T
l−

μ
2−μ (t)dt

) 2−μ
2

− ‖u‖1−
2

β∗
L∞[−T ,T ]

(∫ T

−T
| f (t)|βdt

) 1
β

(∫ T

−T
|u(t)|2dt

) 1
β∗

≥ 1

2
‖u‖2ET

− aM
μ
2
l ‖u‖μ

ET
−

(
1

√
2
√
l∗

)1− 2
β∗

M f l
− 1

β∗
∗ ‖u‖ET

= 1

2
�2 − aM

μ
2
l �μ −

(
1

√
2
√
l∗

)1− 2
β∗

M f l
− 1

β∗
∗ �

for all u ∈ ∂�T . This together with (1.3) yields

IT (u) > IT (0) = 0, ∀ u ∈ ∂�T .
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Therefore, applying Lemma 2.1, we can obtain that for any T ∈ R+, there exists
uT ∈ int�T such that IT (uT ) = infu∈�T IT (u), where

int�T =
{
u ∈ ET :

∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt < �2
}

.

Moreover, we note that Theorem 1.3 in [19] implies that I ′
T (uT ) = 0. This shows that

uT is the solution of problem (2.1) and

∫ T

−T

[
|u̇(t)|2 + (

L(t)u(t), u(t)
)]

dt < �2.

The proof is complete. ��
Proof of Theorem 1.2 We first choose a sequence Tn → ∞ and consider the problem
(2.1) on the interval [−Tn, Tn]. By Lemma 2.3, there exists a sequence of solution un
and ‖un‖ETn

is bounded uniformly in n. The rest procedure is standard, see [18], we
omit it here.
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