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Abstract

This paper gives a criterion for the existence of a stationary solution for a class of semilinear stochastic 
functional differential equations with additive white noise and its global stability. Under the condition that 
the global Lipschitz constant of nonlinear term f is less than the absolute value of the top Lyapunov ex-
ponent for the linear flow � with f being monotone or anti-monotone, and the time delay is not very big, 
we show that the infinite-dimensional stochastic flow possesses a unique globally attracting random equi-
librium in the state space of continuous functions, which produces the globally stable stationary solution. 
Compared to the result of Jiang and Lv (2016) [24], we remove the assumption of boundedness for f .
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1. Introduction

This paper is devoted to the global stability of stationary solutions for a class of semilinear 
stochastic functional differential equations (SFDEs) with additive white noise. These stationary 
solutions are produced by the globally attracting random equilibria for infinite-dimensional ran-
dom dynamical systems (RDSs), which are generated by the solutions of SFDEs in the space 
of continuous functions. For the general theory on SFDEs and RDSs, we refer the reader to 
[1,11,31,34].

During the last three decades, the stability theory of stochastic differential equations (SDEs) 
and SFDEs has received a lot of attention in the areas of stochastic analysis and dynamical 
systems. Inspired by the pioneering works [26,27], all kinds of stability for SDEs and SFDEs 
have been extensively and intensively studied by many authors, see [7,9,30,32,35–37,46] and the 
references therein. Using the probability theory and the method of Lyapunov functionals, they 
have discussed the stability of solutions for SDEs and SFDEs, the existence of invariant measures 
and other properties.

In the meantime, more and more stochastic analysts and geometers want to use the theory of 
stochastic flows to investigate the finite or infinite dimensional stochastic systems. In fact, the 
finite-dimensional stochastic flows can arise from SDEs in the Euclidean space or other finite-
dimensional manifolds, see [1,4–6,11,15,16,28]. Furthermore, there are fewer results on the 
infinite-dimensional stochastic semi-flows, which can arrive naturally from SFDEs and stochas-
tic partial differential equations (SPDEs) with additive or multiplicative white noise. Here, we 
note that the problem on the existence of infinite-dimensional stochastic semi-flows (with general 
noise) is very hard. For more details, we refer the reader to [3,8,13,14,17–19,29,38–40]. Most 
of them dealt with the stochastic semi-flows generated by SPDEs, and [8,13,38,39] treated the 
stochastic semi-flows generated by SFDEs. To be specific, Mohammed and Scheutzow [38,39]
proved the existence of stochastic semi-flows and stable manifolds on a Hilbert space. On the 
other hand, motivated by the theory of deterministic functional differential equations, it is natural 
to choose the space of continuous functions as the state space, see [21,42]. This is the main reason 
that Chueshov and Scheutzow [13] considered the invariance and monotonicity of RDSs gener-
ated by stochastic delay differential equations in the space of continuous functions. Moreover, 
Caraballo, Garrido-Atienza and Schmalfuss [8] showed the existence of exponentially attract-
ing stationary solutions for stochastic delay evolution equations with multiplicative white noise, 
where they used a general random fixed point theorem and some sufficient conditions were given, 
see Theorem 6 in [8]. To the best of our knowledge, up to now, there are no results on the ex-
istence and the global stability of stationary solutions for infinite-dimensional RDSs, which are 
generated by semilinear SFDEs with additive white noise in the space of continuous functions.

In this paper, motivated by our recent works [24,25], we will do some efforts on this problem. 
We will show that if the nonlinear term f is monotone or anti-monotone and the global Lipschitz 
constant of f is less than the absolute value of the top Lyapunov exponent for the linear flow 
�, and the time delay is not very big, then the infinite-dimensional stochastic flow admits a 
unique globally stable random equilibrium in the space of continuous functions, which produces 
a stationary solution for semilinear SFDEs with additive white noise. The main contribution 
is that the conditions given in this paper are easy to verify and we remove the assumption of 
boundedness for f , which is a key point in [24,25]. During carrying out the ideas in [24,25], we 
will meet some difficulties coming from the infinite-dimensional space of continuous functions 
and the lack of boundedness for f . Note that if f is unbounded, in order to use the characteristic 
operator K defined in (2.14) for proving some inequalities in the sense of partial order, we need 
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to give some energy estimates for the pullback trajectories. To be more precise, the pullback 
trajectories are bounded by some tempered and integrable random variables, see Proposition A.1
in the appendix. Furthermore, due to the unboundedness of f , the work space for the Banach 
fixed point theorem is also different from that in [24] and we need to show that the bounds for 
pullback trajectories are tempered, integrable and measurable with respect to the past σ -algebra 
generated by the Brownian motion, which are proved in Proposition A.1 and Proposition A.2 in 
the appendix.

Our theory on the global stability of stationary solutions for semilinear SFDEs with additive 
white noise can be applied to various stochastic delay systems, such as stochastic delay posi-
tive feedback systems (neural networks and Othmer-Tyson systems), stochastic delay negative 
feedback systems (Goodwin systems) and stochastic systems with distributed delay, see Exam-
ples 5.1, 5.2 and 5.3. Besides this, the method and the thought used in this paper may bring 
some new sights to the research on the stability of more general infinite-dimensional stochastic 
systems, such as SPDEs and so on.

2. Formulation and main results

In this section, we aim to describe precisely the existence of stochastic flows and some hy-
potheses used in the subsequent content. Based on some preliminaries, we will present the main 
results at the end of this section. First, we shall recall some notations related to RDSs. The reader 
is referred to [1,11] for more details.

Let X be a complete separable metric space (i.e., Polish space) equipped with the Borel σ -
algebra B(X) and (�, F , P ) be a probability space.

Definition 2.1. A quadruple 
(
�, F , P , {θt , t ∈ R}) is called a metric dynamical system if θ is a 

measurable flow:

θ : R× � �→ �, θ0 = id, θt2 ◦ θt1 = θt1+t2

for all t1, t2 ∈ R, which is 
(
B(R) ⊗ F , F

)
-measurable. In addition, we assume that θtP = P

for all t ∈R.

Definition 2.2. An RDS on the state space X induced by a metric dynamical system 
(
�, F ,P ,

{θt , t ∈R}) is a mapping

ϕ :R+ × � × X �→ X, (t,ω, x) �→ ϕ(t,ω, x),

which is 
(
B(R+) ⊗ F ⊗ B(X), B(X)

)
-measurable such that for any ω ∈ �,

(i) ϕ(0, ω, ·) is the identity on X;
(ii) ϕ(t1 + t2, ω, x) = ϕ

(
t2, θt1ω, ϕ(t1, ω, x)

)
for all t1, t2 ∈R+ and x ∈ X;

(iii) the mapping ϕ(t, ω, ·) : X → X is continuous for all t ∈ R+.

Definition 2.3. A family 
{
D(ω), ω ∈ �

}
of nonempty subsets of the state space X is said to be 

a random closed (resp. compact) set if for each ω ∈ �, it is closed (resp. compact) and ω →
d
(
x, D(ω)

)
is measurable for each x ∈ X. Here, d(x, B) is the distance in X between the point 

x and the set B ⊂ X.
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Definition 2.4. Let X be a Banach space with a closed convex cone X+, which gives a partial 
order relation on X via x ≤ y if y − x ∈ X+. An element x ∈ X is called an upper bound for 
a subset A ⊂ X if y ≤ x for all y ∈ A. An upper bound x̄ is called the least upper bound (or 
supremum), denoted by x̄ = supA, if x̄ ≤ x for any other upper bound x. Moreover, the lower 
bound and the greatest lower bound (or infimum) can be defined similarly.

Definition 2.5. A cone X+ is said to be minihedral if every finite set M in X which is order-
bounded has a supremum. A cone X+ is called strongly minihedral if every set M in X which is 
order-bounded has a supremum.

Throughout this paper, we define the Euclidean norm |x| := (∑n
i=1 |xi |2

)1/2, x ∈ Rn, where 
Rn is the n-dimensional Euclidean space. For any matrix D = (Dij )n×m ∈ Rn×m, set ‖D‖ :=(∑n

i=1
∑m

j=1 |Dij |2
)1/2, where Rn×m denotes the set of all n × m-dimensional real matrices. 

Let τ > 0 and denote by Cτ := C
([−τ, 0], Rn

)
the Banach space of continuous functions ξ :

[−τ, 0] → Rn equipped with the supremum norm ‖ξ‖Cτ = sup−τ≤s≤0

∣∣ξ(s)
∣∣ and by C+

τ all the 
nonnegative continuous functions in Cτ . For any given x0, y0 ∈ Cτ , x0 ≤C+

τ
y0 means that y0 −

x0 ∈ C+
τ . Similarly, set Rn+ = {

x = (x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n
}
. For any given x, y ∈ Rn, 

x ≤Rn+ y means that y − x ∈ Rn+.
Now, we will show that an RDS can be generated by the following SFDEs with additive white 

noise

dx(t) = [
Ax(t) + f (xt )

]
dt + σdWt, (2.1)

with the initial value

x0 = ξ ∈ Cτ , (2.2)

where xt ∈ Cτ is defined by xt (s) = x(t + s) for −τ ≤ s ≤ 0, A = (aij )n×n is an n × n-
dimensional matrix, f : Cτ → Rn and σ = (σij )n×m is an n × m-dimensional matrix, Wt =
(W 1

t , . . . , Wm
t )T is an m-dimensional two-sided Wiener process on the canonical probability 

space (�, F , P ). For our purposes, we will give some conditions on the drift term:

(H1) A is cooperative in the sense that aij ≥ 0 for any i, j ∈ {1, . . . , n} with i �= j . Moreover, we 
assume that all real parts of eigenvalues of A are negative, i.e., there exist constants λ > 0
and CA > 0 such that

‖�(t)‖ �

⎛⎝ n∑
i=1

n∑
j=1

∣∣�ij (t)
∣∣2⎞⎠

1
2

≤ CAe−λt (2.3)

for all t ≥ 0. Here, �(t) is the fundamental matrix of the linear ordinary differential equa-
tions:

dx(t) = Ax(t)dt. (2.4)
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(H2) f : Cτ → Rn satisfies the global Lipschitz condition∣∣f (x0) − f (y0)
∣∣≤ L‖x0 − y0‖Cτ (2.5)

for all x0, y0 ∈ Cτ , where L > 0 is the Lipschitz constant such that CALeλτ

λ
< 1. Further-

more, we assume that f is monotone, i.e.,

x0 ≤C+
τ

y0 ⇒ f (x0) ≤Rn+ f (y0) for all x0, y0 ∈ Cτ ,

or anti-monotone, i.e.,

x0 ≤C+
τ

y0 ⇒ f (x0) ≥Rn+ f (y0) for all x0, y0 ∈ Cτ .

Note that the background for the monotonicity and anti-monotonicity comes from neural net-
works and biochemical reactions, which are presented in Section 5.

In what follows, we will consider a very important metric dynamical system driven by 
the Brownian motion. Let Wt = (W 1

t , . . . , Wm
t )T be an m-dimensional two-sided Brownian 

motion on the canonical probability space (�, F , P ). Here, F is the Borel σ -algebra of 
� = C0(R, Rm) = {

ω = (ω1, ω2, . . . , ωm) ∈ C(R, Rm), ω(0) = 0
}
, which is equipped with the 

following metric

�(ω,ω∗) :=
∞∑

k=1

1

2k

�k(ω,ω∗)
1 + �k(ω,ω∗)

, �k(ω,ω∗) = max
t∈[−k,k]

∣∣ω(t) − ω∗(t)
∣∣,

and P is the corresponding Wiener measure. On this set we take the shift operator θ = {θt , t ∈ R}, 
defined by θtω(·) = ω(t + ·) − ω(t) for t ∈R, which is an ergodic metric dynamical system.

In order to apply the theory of RDSs, we first need to transform SFDEs with additive white 
noise (2.1) into deterministic equations with random coefficients. To this end, we consider the 
auxiliary n-dimensional Ornstein-Uhlenbeck equations

dz(t) = Az(t)dt + σdWt . (2.6)

Direct computation shows that one stationary solution of (2.6) called the Ornstein-Uhlenbeck 
process is given by

z(t,ω) ≡ z(θtω) =
t∫

−∞
exp

{
A(t − u)

}
σdWu =

t∫
−∞

�(t − u)σdWu (2.7)

for all t ∈ R and ω ∈ �. In fact, using the integration by parts formula, we can rewrite the form 
of z(t, ω) as the following

z(t,ω) =
0∫

A�(−u)σWu+t (ω)du + σWt(ω) (2.8)
−∞
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for all t ∈ R and ω ∈ �. Therefore, by (H1), it is easily seen that the random variable z(ω) is 
tempered with respect to θ and z(θtω) is continuous on R for any ω ∈ �, see Lemma 2.5.1 in 
[11] or Proposition 3.1 in [12].

The existence and uniqueness of solutions for SFDEs (2.1) with the initial value condition 
(2.2) can be followed by [31,34]. To generate an RDS, we need to define y(t) = x(t) − z(θtω)

for all ω ∈ �, where x(t) is the solution of (2.1) and (2.2). Then, using Itô’s formula, it follows 
that y satisfies

dy

dt
= Ay + f

(
yt + z0(θtω)

)
, (2.9)

with the initial value

y0 = x0 − z0(ω), (2.10)

where yt ∈ Cτ is defined by yt (s) = y(t + s) for −τ ≤ s ≤ 0 and z0(ω) ∈ Cτ is defined by 
z0(ω)(s) := z(θsω) for −τ ≤ s ≤ 0 and ω ∈ �.

Under the local Lipschitz condition, it was proved in [2, Theorem 2.9] that the solutions of 
random functional differential equations can generate an RDS if and only if all its solutions can 
be extended to [0, +∞), which implies that (2.9) and (2.10) under the global Lipschitz condition 
can generate an RDS ψ(t, ω, y0) := yt (ω, y0) which is continuous with respect to (t, y0) for 
each fixed ω. Therefore, the same conclusion holds for the solution xt(ω, x0) of SFDEs (2.1) and 
(2.2).

Define ϕ(t, ω, x0) : R+ × � × Cτ → Cτ by

ϕ(t,ω, x0) := xt (ω, x0) = ψ(t,ω, x0 − z0(ω)
)+ z0(θtω) (2.11)

for all t ≥ 0, ω ∈ � and x0 ∈ Cτ . Then ϕ(t, ω, x0) : R+ × � × Cτ → Cτ is an RDS.
Next, we shall rewrite the form of solutions for SFDEs (2.1) and (2.2). Let t ≥ 0 and −τ ≤ s ≤

0. Using the variation of constants formula [31, Theorem 3.1], one can have that for all t + s ≥ 0,

ϕ(t,ω, x0)(s) = �(t + s)x0(0) + �(t + s)

t+s∫
0

�−1(u)f
(
ϕ(u,ω,x0)

)
du

+ �(t + s)

t+s∫
0

�−1(u)σdWu

= �(t + s)x0(0) +
t+s∫
0

�(t + s − u)f
(
ϕ(u,ω,x0)

)
du

+
t+s∫
0

�(t + s − u)σdWu. (2.12)
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If t + s ≤ 0, it is obvious that ϕ(t, ω, x0)(s) = x0(t + s) for all ω ∈ �. Combining the definition 
of θ and (2.12), it is clear that ϕ(t, θ−tω, x0)(s) = x0(t + s) for all t + s ≤ 0 and ω ∈ �, and

ϕ(t, θ−tω, x0)(s) = �(t + s)x0(0) +
t+s∫
0

�(t + s − u)f
(
ϕ(u, θ−tω, x0)

)
du

+
t+s∫
0

�(t + s − u)σdWu(θ−tω)

= �(t + s)x0(0) +
s∫

−t

�(s − u)f
(
ϕ(u + t, θ−tω, x0)

)
du

+
s∫

−t

�(s − u)σdWu, t + s ≥ 0, ω ∈ �. (2.13)

At the end of this section, motivated by our recent work [24], we will introduce an important 
characteristic operator associated with (2.13), which is given by

[
K(r)

]
(s,ω) =

s∫
−∞

�(s − u)r(θuω)du +
s∫

−∞
�(s − u)σdWu (2.14)

for all −τ ≤ s ≤ 0 and ω ∈ �. Here, r : � �−→ Rn is a tempered random variable with respect 

to the ergodic metric dynamical system θ , i.e., supt∈R
{
e−δ|t |∣∣r(θtω)

∣∣} < ∞ for all δ > 0 and 
ω ∈ �.

Remark 2.1. Following the same procedure in [24], by (H1) and (H2), it is easy to check that 
the characteristic operator K is well defined for all −τ ≤ s ≤ 0 and ω ∈ �. Moreover, for any 
fixed ω ∈ � and tempered random variable r , 

[
K(r)

]
(s, ω) is continuous with respect to s ∈

[−τ, 0]. We remind that 
[
K(r)

]
(•, ω) ∈ Cτ for each ω, which induces a mapping, still denoted 

by 
[
K(r)

] : � → Cτ .

Let L1
F− = L1(�, F−, P ; Rn) denote the space of all F−-measurable and integrable func-

tions r : � → Rn, where F− = σ
{
ω �→ Wt(ω) : t ≤ 0

}
is the past σ -algebra. In addition, define 

the operator Kf to be f ◦K, which means that 
[
Kf (r)

]
(ω) = f

([
K(r)

]
(•, ω)

)
for any random 

variable r : � �−→ Rn. With the help of the characteristic operator K, we can now state our main 
results.

Theorem 2.1. Suppose that (H1) and (H2) hold. Then there exists a unique fixed point r ∈ L1
F−

for the operator Kf : L1
F− → L1

F− , which gives that for any x0 ∈ Cτ

lim ϕ(t, θ−tω, x0)(•) = [
K(r)

]
(•,ω) P -a.s. (2.15)
t→∞
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in Cτ . Accordingly, ϕ
(
t, ω, 

[
K(r)

]
(•, ω)

)
(•) = [

K(r)
]
(•, θtω), P -a.s., t ≥ 0. To be more pre-

cise, 
[
K(r)

]
(•, ω) is an F−-measurable random equilibrium in Cτ for the stochastic flow ϕ, 

which yields that 
[
K(r)

]
(•, θtω) is a stationary solution for (2.1) and (2.2).

3. Estimates and monotonicity of the stochastic flow ϕ generated by SFDEs

In this section, we will establish some useful inequalities in the sense of partial order, which 
play the key role in the presentation of the dynamical behavior of stochastic flow ϕ generated by 
(2.1) and (2.2). We start with a lemma, which can be found in [33].

Lemma 3.1 ([33, Lemma A.2]). Let (xt )t∈� is a net in a normed space X associated with a solid, 
normal cone X+ ⊆ X. Assume that the net converges to a point x ∈ X, and that

xt := inf{xt̃ : t̃ ≥ t} and xt := sup{xt̃ : t̃ ≥ t}
exist for all t ∈ �. Then the nets (xt )t∈� and (xt )t∈� also converge to x.

Lemma 3.2. Suppose that (H1) and (H2) hold. For any t ≥ τ , define

a
f
t (ω) = inf

{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}

= inf
{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}

and

b
f
t (ω) = sup

{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}

= sup
{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}
,

where x0 ∈ Cτ and ω ∈ �. Here, inf and sup represent the infimum and the supremum in Rn, 
respectively. Then af

t (ω) and bf
t (ω) are two tempered F−-measurable random variables for all 

t ≥ τ .

Proof. Given any t ≥ τ , by (H2) and (A.2) in Proposition A.1 (See the appendix), it is easy to 
see that ∣∣∣f (ϕ(t, θ−tω, x0)

)∣∣∣≤ L
∣∣R̃(ω)

∣∣+ ∣∣f (0)
∣∣< ∞ (3.1)

for all ω ∈ � and x0 ∈ Cτ , where R̃(ω) is a tempered random variable defined in Proposition A.1. 

This implies that 
{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}

is a compact set in Rn, and then af
t (ω) and bf

t (ω)

are both well defined for all t ≥ τ , x0 ∈ Cτ and ω ∈ �. Here, we use the fact that Rn+ is a strongly 
minihedral cone, infA = infA and supA = supA, where A is a bounded set in Rn, see Lemma 
A.1 in [33]. In what follows, we will show that the mapping

t �−→ ϕ(t, θ−tω, x0)

is continuous from [τ, ∞) into Cτ for all ω ∈ � and x0 ∈ Cτ . By (2.11), it is obvious that

ϕ(t, θ−tω, x0) = ψ(t, θ−tω, x0 − z0(θ−tω)
)+ z0(ω) = yt

(
θ−tω, y0(θ−tω)

)+ z0(ω),
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which implies that we only need to prove the continuity of yt

(
θ−tω, y0(θ−tω)

)
for any fixed ω ∈

� and x0 ∈ Cτ . Since � is a metric space and θ(•, ω) : (R, | • |) �→ (�, �) is continuous for all 
ω ∈ �, see Proposition 3.2 in [25], using the quite same method as in the proof of the continuous 
dependence of solutions for functional differential equations with respect to the parameter “ω” 
and the initial value “y0”, it is sufficient to prove that z0(θtω) is continuous with respect to the 
time t for all ω ∈ �. By (2.7), it is easy to see that z(θtω) is continuous on R, which together 
with Lemma 2.1 in [21, Chapter 2] yields that this property is true. Therefore, by (H2), it is clear 
that

t �→ f
(
ϕ(t, θ−tω, x0)

)
is continuous

from [τ, ∞) into Rn for all ω ∈ � and x0 ∈ Cτ . Applying the same way as Proposition 3.5 in 
[25], we conclude that af

t (ω) and bf
t (ω) are two F−-measurable random variables for all t ≥ τ . 

Finally, by (3.1), it is evident that

−Rf (ω) ≤Rn+ a
f
t (ω) ≤Rn+ b

f
t (ω) ≤Rn+ Rf (ω) (3.2)

for all t ≥ τ and ω ∈ �, where Rf (ω) =
[
L
∣∣R̃(ω)

∣∣+ ∣∣f (0)
∣∣] · (1, . . . , 1)T. This shows that

∣∣af
t (ω)

∣∣≤ √
n
[
L
∣∣R̃(ω)

∣∣+ ∣∣f (0)
∣∣] and

∣∣bf
t (ω)

∣∣≤ √
n
[
L
∣∣R̃(ω)

∣∣+ ∣∣f (0)
∣∣] (3.3)

for all t ≥ τ and ω ∈ �, which together with Proposition A.1 implies that af
t (ω) and bf

t (ω) are 
both tempered for all t ≥ τ . The proof is complete. �
Lemma 3.3. Suppose that (H1) and (H2) hold. For any t ≥ τ , set

a
ϕ
t (ω) = inf

{
ϕ(u, θ−uω,x0)(•) : u ≥ t

}= inf
{
ϕ(u, θ−uω,x0)(•) : u ≥ t

}
and

b
ϕ
t (ω) = sup

{
ϕ(u, θ−uω,x0)(•) : u ≥ t

}= sup
{
ϕ(u, θ−uω,x0)(•) : u ≥ t

}
,

where x0 ∈ Cτ and ω ∈ �. Here, inf and sup represent the infimum and the supremum in Cτ , 
respectively. Then aϕ

t (ω) : � �→ Cτ is a well-posed F−-measurable function, and so also is 
b

ϕ
t (ω) for all t ≥ τ .

Proof. By Lemma 3.2 and Proposition A.1 in the appendix, we have that for any t ≥ τ , γ t
x0

(ω) :={
ϕ(u, θ−uω,x0) : u ≥ t

}
is a compact set in Cτ and for all ω ∈ � and x0 ∈ Cτ ,

u �−→ ϕ(u, θ−uω,x0) is a continuous mapping

from [t, ∞) into Cτ . Furthermore, it is easy to check that for all u ≥ t ≥ τ and x0 ∈ Cτ ,

ω �−→ ϕ(u, θ−uω,x0)is F−-measurable.
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Since C+
τ is a solid normal minihedral cone, using Proposition 1.5.3 and Theorem 3.2.1 in [11], 

we see at once that aϕ
t (ω) : � �→ Cτ and bϕ

t (ω) : � �→ Cτ are two well-posed F−-measurable 
functions. Here, we use the fact that infA = infA and supA = supA, where A is a relatively 
compact set in Cτ , see Theorem 3.1.2 in [11] and Lemma A.1 in [33]. The proof is complete. �
Lemma 3.4. Suppose that (H1) and (H2) hold. For any t ≥ τ , define

C
ϕ

t̃
(ω) �

•∫
t−t̃

�(• − u) inf
{
f
(
ϕ(v, θ−v+uω,x0)

)+ Rf (θuω) : v ≥ t
}
du

−
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0)

and

D
ϕ

t̃
(ω) �

•∫
t−t̃

�(• − u) sup
{
f
(
ϕ(v, θ−v+uω,x0)

)− Rf (θuω) : v ≥ t
}
du

+
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0),

where t̃ ≥ t + τ , ω ∈ � and x0 ∈ Cτ . Then,

[
K(a

f
t )
]
(•,ω) = lim

t̃→∞
t̃≥t+τ

C
ϕ

t̃
(ω) = lim

t̃→∞
t̃≥t+τ

c
ϕ

t̃
(ω) in Cτ , (3.4)

[
K(b

f
t )
]
(•,ω) = lim

t̃→∞
t̃≥t+τ

D
ϕ

t̃
(ω) = lim

t̃→∞
t̃≥t+τ

d
ϕ

t̃
(ω) in Cτ , (3.5)

C
ϕ

t̃
(ω) ≤ ϕ(t̃, θ−t̃ ω, x0) ≤ D

ϕ

t̃
(ω) in Cτ (3.6)

and

c
ϕ

t̃
(ω) ≤ a

ϕ

t̃
(ω) ≤ b

ϕ

t̃
(ω) ≤ d

ϕ

t̃
(ω) in Cτ . (3.7)

Here, ≤ means ≤C+
τ

,

c
ϕ

t̃
(ω) = inf

{
Cϕ

u (ω) : u ≥ t̃
}

(3.8)

and

d
ϕ
(ω) = sup

{
Dϕ

u (ω) : u ≥ t̃
}
. (3.9)
t̃
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Proof. By Lemma 3.3, it is evident that aϕ

t̃
(ω) : � �→ Cτ and bϕ

t̃
(ω) : � �→ Cτ are both well-

defined for all t̃ ≥ t + τ , ω ∈ � and x0 ∈ Cτ , where t ≥ τ . Moreover, we can observe that

lim
t̃→∞
t̃≥t+τ

t−t̃∫
−t̃

�(• − u)Rf (θuω)du = 0 (3.10)

in Cτ . In fact, by (H1), it is a simple matter to check that

sup
−τ≤s≤0

∣∣∣∣∣∣∣
t−t̃∫

−t̃

�(s − u)Rf (θuω)du

∣∣∣∣∣∣∣
≤ CA sup

−τ≤s≤0

∥∥�(s)
∥∥ t−t̃∫

−t̃

eλu
∣∣Rf (θuω)

∣∣du

≤ CA sup
−τ≤s≤0

∥∥�(s)
∥∥ · sup

u∈R

{
e− λ

2 |u|∣∣Rf (θuω)
∣∣} ·

t−t̃∫
−t̃

e
λ
2 udu

−→ 0

as t̃ → ∞, which together with Lemma 3.2 and Lebesgue’s dominated convergence theorem 
shows that

[
K(a

f
t )
]
(•,ω)

=
•∫

−∞
�(• − u) inf

{
f
(
ϕ(v, θ−v�, x0)

) : v ≥ t
}
(θuω)du +

•∫
−∞

�(• − u)σdWu

= lim
t̃→∞
t̃≥t+τ

⎧⎪⎨⎪⎩
•∫

t−t̃

�(• − u) inf
{
f
(
ϕ(v, θ−v+uω,x0)

)+ Rf (θuω) : v ≥ t
}
du

−
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0)

⎫⎪⎬⎪⎭
= lim

t̃→∞
t̃≥t+τ

C
ϕ

t̃
(ω) (3.11)

and

[
K(b

f
t )
]
(•,ω)
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=
•∫

−∞
�(• − u) sup

{
f
(
ϕ(v, θ−v�, x0)

) : v ≥ t
}
(θuω)du +

•∫
−∞

�(• − u)σdWu

= lim
t̃→∞
t̃≥t+τ

⎧⎪⎨⎪⎩
•∫

t−t̃

�(• − u) sup
{
f
(
ϕ(v, θ−v+uω,x0)

)− Rf (θuω) : v ≥ t
}
du

+
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0)

⎫⎪⎬⎪⎭
= lim

t̃→∞
t̃≥t+τ

D
ϕ

t̃
(ω). (3.12)

Applying the same argument in Proposition A.1, it follows that 
{
C

ϕ
u (ω) : u ≥ t +τ

}
and 

{
D

ϕ
u (ω) :

u ≥ t + τ
}

are two relatively compact sets in Cτ for all t ≥ τ , ω ∈ � and x0 ∈ Cτ . In addition, 
this can also be obtained from (3.11), (3.12) and the fact that Cϕ

t̃
(ω) and Dϕ

t̃
(ω) are continuous 

with respect to t̃ in Cτ . Consequently, by Lemma 3.1 and Theorem 3.1.2 in [11], we have[
K(a

f
t )
]
(•,ω) = lim

t̃→∞
t̃≥t+τ

inf
{
Cϕ

u (ω) : u ≥ t̃
}= lim

t̃→∞
t̃≥t+τ

inf
{
C

ϕ
u (ω) : u ≥ t̃

}
and [

K(b
f
t )
]
(•,ω) = lim

t̃→∞
t̃≥t+τ

sup
{
Dϕ

u (ω) : u ≥ t̃
}= lim

t̃→∞
t̃≥t+τ

sup
{
D

ϕ
u (ω) : u ≥ t̃

}
.

This yields that (3.4) and (3.5) are true.
Furthermore, by (3.2), we get that af

t (ω) + Rf (ω) ≥Rn+ 0 and bf
t (ω) − Rf (ω) ≤Rn+ 0 for all 

t ≥ τ and ω ∈ �. Since �(t)x ≥Rn+ 0 for all t ≥ 0 and x ∈Rn+, it follows immediately that

C
ϕ

t̃
(ω) ≤

•∫
t−t̃

�(• − u)
[
f
(
ϕ(t̃ + u, θ−t̃ ω, x0)

)+ Rf (θuω)
]
du

−
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0)

≤
•∫

−t̃

�(• − u)
[
f
(
ϕ(t̃ + u, θ−t̃ ω, x0)

)+ Rf (θuω)
]
du

−
•∫
�(• − u)Rf (θuω)du +

•∫
�(• − u)σdWu + �(t̃ + •)x0(0)
−t̃ −t̃

901



J. Jiang and X. Lv Journal of Differential Equations 367 (2023) 890–921
= ϕ(t̃, θ−t̃ ω, x0)(•)

=
•∫

−t̃

�(• − u)
[
f
(
ϕ(t̃ + u, θ−t̃ ω, x0)

)− Rf (θuω)
]
du

+
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0)

≤
•∫

t−t̃

�(• − u)
[
f
(
ϕ(t̃ + u, θ−t̃ ω, x0)

)− Rf (θuω)
]
du

+
•∫

−t̃

�(• − u)Rf (θuω)du +
•∫

−t̃

�(• − u)σdWu + �(t̃ + •)x0(0)

≤ D
ϕ

t̃
(ω) (3.13)

for all t̃ ≥ t + τ , ω ∈ � and x0 ∈ Cτ , which together with definitions of the infimum and supre-
mum implies that

c
ϕ

t̃
(ω) ≤ a

ϕ

t̃
(ω) ≤ b

ϕ

t̃
(ω) ≤ d

ϕ

t̃
(ω) in Cτ .

The proof is complete. �
Remark 3.1. Note that the positive cone C+

τ is not strongly minihedral, it is necessary to verify 
some compactness of the pullback trajectories in Cτ , see Proposition A.1. Moreover, since C+

τ

is not regular, which yields that the monotonicity and boundedness of a sequence can not imply 
its convergence. That is, the limit of aϕ

t̃
(ω) and bϕ

t̃
(ω) may not exist in Cτ as t̃ → ∞. Therefore, 

the conclusion presented in Lemma 3.4 is different from that in [24].

Lemma 3.5. Suppose that (H1) and (H2) hold. Set

[
limθf (ϕ)

]
(ω) � lim

t→∞a
f
t (ω) = lim

t→∞ inf
{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}

(3.14)

and

[
limθf (ϕ)

]
(ω) � lim

t→∞b
f
t (ω) = lim

t→∞ sup
{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t
}
. (3.15)

Thus

(i) If f is monotone, we deduce that for all t ≥ τ , ω ∈ �, x0 ∈ Cτ and k ∈ N ,

[
(Kf )k(a

f
t )
]
(ω) ≤ [

limθf (ϕ)
]
(ω) ≤ [

limθf (ϕ)
]
(ω) ≤ [

(Kf )k(b
f
t )
]
(ω). (3.16)
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(ii) If f is anti-monotone, we deduce that for all t ≥ τ , ω ∈ �, x0 ∈ Cτ and k ∈N ,[
(Kf )2k(a

f
t )
]
(ω) ≤ [

limθf (ϕ)
]
(ω) ≤ [

limθf (ϕ)
]
(ω) ≤ [

(Kf )2k(b
f
t )
]
(ω). (3.17)

Proof. First, combining (3.2) and the monotone convergence theorem, this induces that [
limθf (ϕ)

]
(ω) and 

[
limθf (ϕ)

]
(ω) are both well defined F−-measurable random variables. 

Next, we will show (3.16) and (3.17). For simplicity, we only show the case that f is monotone. 
For any t ≥ τ , ω ∈ � and x0 ∈ Cτ , it is immediate that[

Kf (a
f
t )
]
(ω) = f

([
K(a

f
t )
]
(•,ω)

)
= f

(
lim

t̃→∞
t̃≥t+τ

C
ϕ

t̃
(ω)

)
by (3.4)

= lim
t̃→∞
t̃≥t+τ

f
(
C

ϕ

t̃
(ω)

)
by (H2)

= lim
t̃→∞
t̃≥t+τ

inf
{
f
(
Cϕ

u (ω)
) : u ≥ t̃

}
by Lemma 3.1

≤ lim
t̃→∞
t̃≥t+τ

inf
{
f
(
ϕ(u, θ−uω,x0)

) : u ≥ t̃
}

by (3.6)

= [
limθf (ϕ)

]
(ω) (3.18)

and an argument similar to (3.18) gives that[
Kf (b

f
t )
]
(ω) ≥ [

limθf (ϕ)
]
(ω). (3.19)

Thus, (3.16) holds for k = 1. The rest proof can be obtained by mathematical induction. Suppose 
that (3.16) is true for some k ∈N , it follows from the monotonicity of K and f that[

(Kf )k+1(a
f
t )
]
(ω) ≤

[
Kf

(
limθf (ϕ)

)]
(ω)

=
[
Kf

(
lim

u→∞a
f
u

)]
(ω)

= f
(

lim
u→∞

[
K(a

f
u )
]
(•,ω)

)
by Lebesgue’s DCT

= lim
u→∞f

([
K(a

f
u )
]
(•,ω)

)
by (H2)

≤ [
limθf (ϕ)

]
(ω) by (3.18)

and similarly [
(Kf )k+1(b

f
t )
]
(ω) ≥ [

limθf (ϕ)
]
(ω).

The proof is complete. �
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Lemma 3.6. Suppose that (H1) and (H2) hold. It follows that the space L1
F− = L1(�, F−, P ;

Rn) is complete under the metric ‖r‖L1 = ∫
�

∣∣r(ω)
∣∣P (dω), r ∈ L1

F− and the operator Kf =
f ◦K : (L1

F− , ‖ · ‖L1) → (L1
F− , ‖ · ‖L1) is a contraction mapping.

Proof. By definition, it is clear that L1(�, F−, P ; Rn) is a Banach space with the norm

‖r‖L1 =
∫
�

∣∣r(ω)
∣∣P (dω).

Next, we can assert that Kf : L1
F− → L1

F− is well defined. Given any r ∈ L1
F− , since θ : R− ×

� �→ � is 
(
B(R−) ⊗ F−, F−

)
-measurable, see Proposition 3.3 in [25], which together with 

Fubini’s theorem induces that the mapping

ω −→ [
K(r)

]
(s,ω) =

s∫
−∞

�(s − u)r(θuω)du +
s∫

−∞
�(s − u)σdWu (3.20)

is F−-measurable for all −τ ≤ s ≤ 0. Here, from (3.20) and the fact that r is integrable, we can 
conclude that 

[
K(r)

]
(•, ω) exists almost surely due to (3.24). Combining this and Lemma II.2.1 

in [34], it follows that the function ω → [
K(r)

]
(•, ω) is 

(
F−, B(Cτ )

)
-measurable. Note that 

f : Cτ → Rn is continuous, and then ω → [
Kf (r)

]
(ω) is also F−-measurable. In addition, by 

(3.20), it is evident that

E

(∥∥∥[K(r)
]
(•,ω)

∥∥∥
Cτ

)

≤E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
s∫

−∞
�(s − u)r(θuω)du

∣∣∣∣∣∣
⎞⎠+E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
s∫

−∞
�(s − u)σdWu

∣∣∣∣∣∣
⎞⎠ .

(3.21)

Denote

I1 = E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
s∫

−∞
�(s − u)r(θuω)du

∣∣∣∣∣∣
⎞⎠

and

I2 = E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
s∫

−∞
�(s − u)σdWu

∣∣∣∣∣∣
⎞⎠ .

Therefore,
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I1 ≤ sup
−τ≤s≤0

∥∥�(s)
∥∥ ·E

⎛⎝ 0∫
−∞

∣∣�(−u)r(θuω)
∣∣du

⎞⎠

≤ CA sup
−τ≤s≤0

∥∥�(s)
∥∥ ·

0∫
−∞

eλuE
∣∣r(θuω)

∣∣du

= CA sup
−τ≤s≤0

∥∥�(s)
∥∥ ·E|r| ·

0∫
−∞

eλudu

= μCA

λ
‖r‖L1 , (3.22)

where μ = sup−τ≤s≤0

∥∥�(s)
∥∥. Moreover, observe that

Mt �
0∫

−t

�(−u)σdWu, t ≥ 0,

is a continuous martingale with respect to the filtration Gt = F 0−t = σ {Ws : −t ≤ s ≤ 0}, t ≥ 0. 
Then, using Doob’s martingale inequality (see Theorem 3.8 in [31]) and Hölder’s inequality, we 
have

I2 ≤ E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
0∫

−∞
�(s − u)σdWu

∣∣∣∣∣∣
⎞⎠+E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
0∫

s

�(s − u)σdWu

∣∣∣∣∣∣
⎞⎠

≤ μ

⎡⎣E
⎛⎝∣∣∣∣∣∣

0∫
−∞

�(−u)σdWu

∣∣∣∣∣∣
⎞⎠+E

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
0∫

s

�(−u)σdWu

∣∣∣∣∣∣
⎞⎠⎤⎦

≤ μ

⎡⎢⎢⎣
⎛⎜⎝E

⎛⎜⎝
∣∣∣∣∣∣

0∫
−∞

�(−u)σdWu

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2

+
⎛⎜⎝E

⎛⎜⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
0∫

s

�(−u)σdWu

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2
⎤⎥⎥⎦

= μ

⎡⎢⎢⎣
⎛⎜⎝E

⎛⎜⎝
∣∣∣∣∣∣

0∫
−∞

�(−u)σdWu

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2

+
⎛⎜⎝E

⎛⎜⎝ sup
−τ≤s≤0

n∑
i=1

⎛⎝ m∑
j=1

0∫
s

[
�(−u)σ

]
ij
dW

j
u

⎞⎠2⎞⎟⎠
⎞⎟⎠

1
2
⎤⎥⎥⎦
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≤ μ

⎡⎢⎢⎣
⎛⎜⎝E

⎛⎜⎝
∣∣∣∣∣∣

0∫
−∞

�(−u)σdWu

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2

+
⎛⎜⎝m

n∑
i=1

m∑
j=1

E

⎛⎜⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
0∫

s

[
�(−u)σ

]
ij
dW

j
u

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2
⎤⎥⎥⎦

≤ μ

⎡⎢⎢⎣
⎛⎜⎝E

⎛⎜⎝
∣∣∣∣∣∣

0∫
−∞

�(−u)σdWu

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2

+
⎛⎜⎝4m

n∑
i=1

m∑
j=1

E

⎛⎜⎝
∣∣∣∣∣∣

0∫
−τ

[
�(−u)σ

]
ij
dW

j
u

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2
⎤⎥⎥⎦

= μ

⎡⎢⎢⎣
⎛⎜⎝E

⎛⎜⎝
∣∣∣∣∣∣

0∫
−∞

�(−u)σdWu

∣∣∣∣∣∣
2⎞⎟⎠
⎞⎟⎠

1
2

+
⎛⎝4m

n∑
i=1

m∑
j=1

⎛⎝ 0∫
−τ

∣∣∣[�(−u)σ
]
ij

∣∣∣2 du

⎞⎠⎞⎠
1
2

⎤⎥⎥⎦

≤ μ

⎡⎢⎢⎣
⎛⎝ 0∫

−∞

∥∥�(−u)σ
∥∥2

du

⎞⎠
1
2

+
⎛⎝4m2n

⎛⎝ 0∫
−∞

‖�(−u)σ‖2 du

⎞⎠⎞⎠
1
2

⎤⎥⎥⎦

≤ μ
(
1 + 2m

√
n
)⎛⎝ 0∫

−∞

∥∥�(−u)σ
∥∥2

du

⎞⎠
1
2

≤ μ
(
1 + 2m

√
n
)
CA‖σ‖

⎛⎝ 0∫
−∞

e2λudu

⎞⎠
1
2

= μ
(
1 + 2m

√
n
)
CA‖σ‖√

2λ
, (3.23)

where we use the following inequality

(x1 + x2 + · · · + xm)2 ≤ m(x2 + x2 + · · · + x2
m), xi ≥ 0, i = 1, . . . ,m.
1 2
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Consequently, from (3.21), (3.22) and (3.23), we can obtain

E

(∥∥∥[K(r)
]
(•,ω)

∥∥∥
Cτ

)
≤ μCA

λ
‖r‖L1 + μ

(
1 + 2m

√
n
)
CA‖σ‖√

2λ
, (3.24)

which together with (H2) implies that

E
∣∣Kf (r)

∣∣≤ LE

(∥∥∥[K(r)
]
(•,ω)

∥∥∥
Cτ

)
+ ∣∣f (0)

∣∣
≤ L

(
μCA

λ
‖r‖L1 + μ

(
1 + 2m

√
n
)
CA‖σ‖√

2λ

)
+ ∣∣f (0)

∣∣
< ∞.

That is, Kf : L1
F− → L1

F− is well defined.

Now, we turn to prove that Kf : L1
F− → L1

F− is a contraction mapping. For any r1, r2 ∈ L1
F− , 

by (H1) and (H2), it is easy to see that

E
∣∣Kf (r1) −Kf (r2)

∣∣≤ LE

(∥∥∥[K(r1)
]
(•,ω) − [

K(r2)
]
(•,ω)

∥∥∥
Cτ

)

= LE

⎛⎝ sup
−τ≤s≤0

∣∣∣∣∣∣
s∫

−∞
�(s − u)

[
r1(θuω) − r2(θuω)

]
du

∣∣∣∣∣∣
⎞⎠

≤ CALE

⎛⎝ sup
−τ≤s≤0

s∫
−∞

e−λ(s−u)
∣∣r1(θuω) − r2(θuω)

∣∣du

⎞⎠

≤ CALeλτE

⎛⎝ 0∫
−∞

eλu
∣∣r1(θuω) − r2(θuω)

∣∣du

⎞⎠

= CALeλτ

⎛⎝ 0∫
−∞

eλuE
∣∣r1(θuω) − r2(θuω)

∣∣du

⎞⎠
= CALeλτ

λ
‖r1 − r2‖L1, (3.25)

where CALeλτ

λ
< 1. The proof is complete. �

4. Proof of Theorem 2.1

Proof. Assume that f is monotone or anti-monotone, by Lemma 3.5, it is clear that,

[
(Kf )2k(a

f
t )
]
(ω) ≤ [

limθf (ϕ)
]
(ω) ≤ [

limθf (ϕ)
]
(ω) ≤ [

(Kf )2k(b
f
t )
]
(ω) (4.1)
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for all t ≥ τ , ω ∈ � and k ∈ N . Combining Lemma 3.2, Proposition A.1 and Proposition A.2, 
we can easily check that af

t ∈ L1(�, F−, P ; Rn) and bf
t ∈ L1(�, F−, P ; Rn) for all t ≥ τ . 

This together with Lemma 3.6 and the Banach fixed point theorem shows that there is a unique 
random variable r ∈ L1(�, F−, P ; Rn) such that[

Kf (r)
]
(ω) = r(ω) P -a.s.

and

lim
k→∞E

∣∣∣(Kf )2k(a
f
t ) − r

∣∣∣= lim
k→∞E

∣∣∣(Kf )2k(b
f
t ) − r

∣∣∣= 0 (4.2)

for all t ≥ τ . Therefore, for any x0 ∈ Cτ , we can choose a subsequence {kj }j∈N such that

lim
j→∞

[
(Kf )2kj (a

f
t )
]
(ω) = r(ω) = lim

j→∞
[
(Kf )2kj (b

f
t )
]
(ω) P -a.s. (4.3)

for all t ≥ τ . From (4.1) and (4.3), we have that[
limθf (ϕ)

]
(ω) = [

limθf (ϕ)
]
(ω) = r(ω) P -a.s. (4.4)

That is,

lim
t→∞a

f
t (ω) = lim

t→∞b
f
t (ω) = r(ω) P -a.s.,

which together with Lebesgue’s dominated convergence theorem yields that

lim
t→∞

[
K(a

f
t )
]
(•,ω) = lim

t→∞
[
K(b

f
t )
]
(•,ω) = [

K(r)
]
(•,ω) P -a.s. (4.5)

in Cτ . Note that C+
τ is a normal cone, using (4.5) and Lemma 3.4, it follows easily that

lim
t→∞ϕ(t, θ−tω, x0)(•) = [

K(r)
]
(•,ω) P -a.s.

in Cτ . Finally, by the cocycle property, we get that 
[
K(r)

]
(•, ω) is an F−-measurable random 

equilibrium in Cτ . The proof is complete. �
5. Applications

In this section, we will give some examples to illustrate the effect of Theorem 2.1. For sim-
plicity, we assume that n = m = 3.

Example 5.1. First, we consider the following delayed positive feedback system with additive 
white noise, including neural networks [23,44,45] and Othmer-Tyson systems [41,43] as special 
cases, which is given by

dx(t) =
[
Ax(t) + f

(
x1(t − τ1), x2(t − τ2), x3(t − τ3)

)]
dt + σdWt, (5.1)
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with the initial value

x0 = ξ ∈ Cτ . (5.2)

Here,

A =
⎡⎣−2 1 0

1 −3 0
0 2 −4

⎤⎦ , (5.3)

x = (x1, x2, x3)
T ∈ R3, σ = (σij )3×3 is a 3 × 3-dimensional matrix, Wt = (W 1

t , W 2
t , W 3

t )T is a 
3-dimensional Brownian motion. In addition, set τ1, τ2 and τ3 are non-negative constants such 
that τ = τ1 ∨ τ2 ∨ τ3 ≤ 1

4 and f : R3 → R3 is a monotone function such that L ≤ 1
3 , where L is 

the global Lipschitz constant of f . Actually, f can be chosen such as the Arctan function, the 
Tanh function, the Rational function, the Linear function and so on. Direct computation shows 
that the eigenvalues of A are λ1 = −4, λ2,3 = −5±√

5
2 and the corresponding fundamental matrix 

is

�(t) =

⎡⎢⎢⎣
5+√

5
10 e

−5+√
5

2 t + 5−√
5

10 e
−5−√

5
2 t

√
5

5 e
−5+√

5
2 t −

√
5

5 e
−5−√

5
2 t

2e−4t + −5+3
√

5
5 e

−5+√
5

2 t − 5+3
√

5
5 e

−5−√
5

2 t

√
5

5 e
−5+√

5
2 t −

√
5

5 e
−5−√

5
2 t 0

5−√
5

10 e
−5+√

5
2 t + 5+√

5
10 e

−5−√
5

2 t 0

−4e−4t + 10−4
√

5
5 e

−5+√
5

2 t + 10+4
√

5
5 e

−5−√
5

2 t e−4t

⎤⎥⎥⎦ .

In order to prove that

∥∥�(t)
∥∥�

⎛⎝ 3∑
i=1

3∑
j=1

∣∣�ij (t)
∣∣2⎞⎠

1
2

≤ CAe
−5+√

5
2 t = √

7eλ2t (5.4)

for all t ≥ 0, we only need to verify that 
∣∣�31(t)

∣∣ ≤ e
−5+√

5
2 t and 

∣∣�32(t)
∣∣ ≤ e

−5+√
5

2 t for all 
t ≥ 0. The proof of the remaining components of �(t) is trivial. Observe that the matrix A is 
cooperative, it follows that �ij (t) ≥ 0 for all i, j = 1, 2, 3 and t ≥ 0, see Proposition 3.1.1 in 
[42]. This yields that it is sufficient to check that

�31(t) � �31(t)

e
−5+√

5
2 t

≤ 1 and �32(t) � �32(t)

e
−5+√

5
2 t

≤ 1 (5.5)

for all t ≥ 0. By (5.5), we see at once that

�31(t) = 2e
−3−√

5
2 t + −5 + 3

√
5 − 5 + 3

√
5
e−√

5t
5 5
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and

d�31(t)

dt
= −(3 + √

5)e
−3−√

5
2 t + (3 + √

5)e−√
5t ≥ 0

for all t ≥ 0. Since �31(0) = 0 and limt→∞ �31(t) = −5+3
√

5
5 < 1, it is immediate that �31(t) ≤

1 for all t ≥ 0. Similarly, we can get that

�32(t) = −4e
−3−√

5
2 t + 10 − 4

√
5

5
+ 10 + 4

√
5

5
e−√

5t

and

d�32(t)

dt
= 2(3 + √

5)e
−3−√

5
2 t − (4 + 2

√
5)e−√

5t

for all t ≥ 0. This together with �′
32(0) = 2 > 0 implies that there exists a unique local maximum 

point t0 > 0 such that �32(t0) is the biggest value of �32(t) for all t ≥ 0. Furthermore, it is a 
simple matter to get that 2

5 < t0 < 3
5 , and then

�32(t0) ≤ −4e
−3−√

5
2 · 3

5 + 10 − 4
√

5

5
+ 10 + 4

√
5

5
e−√

5· 2
5 ≈ 0.928689 < 1,

which induces that (5.4) and (5.5) hold. Finally, let L ≤ 1
3 , τ ≤ 1

4 , CA = √
7 and λ = 5−√

5
2 , we 

have that

CALeλτ

λ
≤ 2

√
7e

5−√
5

8

3(5 − √
5)

≈ 0.901520 < 1.

Consequently, using Theorem 2.1, there is a unique globally stable stationary solution (random 
equilibrium) for (5.1) and (5.2), which attracts all the pullback trajectories in the space Cτ .

Example 5.2. Secondly, we study the following delayed negative feedback system with additive 
white noise, including the Goodwin system [20,22] as a special case, which is modeled by⎧⎨⎩

dx1(t) = [−2x1(t) + f
(
x3(t − τ)

)]
dt + σ1dW 1

t ,

dx2(t) = [
x1(t) − 3x2(t)

]
dt + σ2dW 2

t ,

dx3(t) = [
x2(t) − 4x3(t)

]
dt + σ3dW 3

t ,

(5.6)

with the initial value

x0 = ξ ∈ Cτ , (5.7)

where the constants σ1, σ2 and σ3 represent the noise strength, the delay 0 ≤ τ ≤ 1
6 , Wt =

(W 1
t , W 2

t , W 3
t )T is a 3-dimensional Brownian motion and f : R → R is a decreasing function 

such that L ≤ 1
2 , where L is the global Lipschitz constant of f . The form of f can be determined 

similarly as that in Example 5.1. By (5.6), we can easily obtain that the eigenvalues of A are 
λ1 = −2, λ2 = −3 and λ3 = −4. Moreover, the fundamental matrix is
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�(t) =
⎡⎣ e−2t 0 0

e−2t − e−3t e−3t 0
e−2t

2 − e−3t + e−4t

2 e−3t − e−4t e−4t

⎤⎦ ,

which implies that

∥∥�(t)
∥∥�

⎛⎝ 3∑
i=1

3∑
j=1

∣∣�ij (t)
∣∣2⎞⎠

1
2

≤ CAe−2t = √
6eλ1t (5.8)

for all t ≥ 0. Set L ≤ 1
2 , τ ≤ 1

6 , CA = √
6 and λ = 2, it follows that

CALeλτ

λ
≤

√
6e

1
3

4
≈ 0.854635 < 1.

Applying Theorem 2.1, it is immediate that (5.6) and (5.7) possesses a unique globally attracting 
stationary solution (random equilibrium) in the space Cτ .

Example 5.3. Finally, we discuss the following 3-dimensional stochastic system with distributed 
delay and additive white noise, which is given by

dx(t) =
⎡⎣Ax(t) + h

⎛⎝ 0∫
−τ

G(s)x(t − s)ds

⎞⎠⎤⎦dt + σdWt, (5.9)

with the initial value

x0 = ξ ∈ Cτ . (5.10)

Here, A, σ and Wt are the same as that in Example 5.1, G(s) is a continuous matrix defined for 
s ∈ [−τ, 0] such that Gij (s) ≥ 0 (or Gij (s) ≤ 0) for all s ∈ [−τ, 0] and i, j = 1, 2, 3. In addition, 
h : R3 → R3 is a monotone (or anti-monotone) function such that Lh ≤ 1

2 , where Lh is the global 
Lipschitz constant of h. Then, we can have that

L ≤ Lh

0∫
−τ

∥∥G(s)
∥∥ds. (5.11)

Choose Lh ≤ 1
2 , sup−τ≤s≤0

∥∥G(s)
∥∥≤ 1, τ ≤ 1

2 , CA = √
7 and λ = 5−√

5
2 , it is evident that

CALeλτ

λ
≤

√
7Lhτeλτ

λ
≤

√
7e

5−√
5

4

2(5 − √
5)

≈ 0.955172 < 1.

Thus, by Theorem 2.1, the stochastic delay system (5.9) and (5.10) admits a unique globally 
stable stationary solution (random equilibrium) in the space Cτ .
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Appendix A. Compactness of the pullback orbits and the integrability for their bounds

Proposition A.1. Assume that (H1) and (H2) hold. For any x0 ∈ Cτ , there exists a tempered 
random variable R(ω) = R(ω, x0) such that

sup
t≥0

∥∥ϕ(t, θ−tω, x0)
∥∥

Cτ
≤ R(ω), (A.1)

where R(ω) = R̃(ω) 
∨

R̂(ω), R̂(ω) = supt∈[0,τ ]⋂Q R̃(θτ−tω) + ‖x0‖Cτ and

R̃(ω) = CAeλτ
∣∣x0(0)

∣∣+ CAeλτ sup
t≥0

{
e−(λ−CALeλτ )t

∣∣z(θ−tω)
∣∣}

+ CAeλτ

0∫
−∞

e(λ−CALeλτ )u
(
L
∥∥z0(θuω)

∥∥
Cτ

+ ∣∣f (0)
∣∣)du + ∥∥z0(ω)

∥∥
Cτ

for all ω ∈ �. Furthermore, γ τ
x0

(ω) is relatively compact in Cτ for all ω ∈ � and x0 ∈ Cτ , where 
γ u
x0

(ω) := {ϕ(t, θ−tω, x0)| t ≥ u} for u ≥ 0.

Proof. We shall first show the boundedness of the pullback trajectories and then prove their 
compactness.

The first issue is to show that there exists a tempered random variable R̃(ω) = R̃(ω, x0) such 
that

sup
t≥τ

∥∥ϕ(t, θ−tω, x0)
∥∥

Cτ
≤ R̃(ω) (A.2)

for all ω ∈ �. Observe that ϕ(t, θ−tω, x0) = yt

(
θ−tω, y0(θ−tω)

)+z0(ω). In order to prove (A.2), 
we only need to show that for any x0 ∈ Cτ , there exists a tempered random variable R1(ω) =
R1(ω, x0) such that

sup
t≥τ

∥∥∥yt

(
θ−tω, y0(θ−tω)

)∥∥∥
Cτ

≤ R1(ω) (A.3)

for all ω ∈ �. Using the variation of constants formula [31, Theorem 3.1], (2.9) and (2.10), it 
follows that for all −τ ≤ s ≤ 0, t ≥ τ and ω ∈ �, we have
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y
(
t + s,ω, y0(ω)

)
= �(t + s)

[
y0(ω)

]
(0) +

t+s∫
0

�(t + s − u)f
(
yu

(
ω,y0(ω)

)+ z0(θuω)
)
du. (A.4)

Combining (A.4), (H1) and (H2), it is clear that

sup
−τ≤s≤0

∣∣∣y(t + s,ω, y0(ω)
)∣∣∣

≤ CAeλτ e−λt
∣∣∣[y0(ω)

]
(0)

∣∣∣+ CALeλτ e−λt

t∫
0

eλu
(‖yu‖Cτ + ‖z0(θuω)‖Cτ

)
du

+ CAeλτ e−λt

t∫
0

eλu
∣∣f (0)

∣∣du

= CAeλτ e−λt
∣∣∣[y0(ω)

]
(0)

∣∣∣+ CAeλτ e−λt

t∫
0

eλu
(
L‖z0(θuω)‖Cτ + ∣∣f (0)

∣∣)du

+ CALeλτ e−λt

t∫
0

eλu‖yu‖Cτ du. (A.5)

That is,

eλt
∥∥∥yt

(
ω,y0(ω)

)∥∥∥
Cτ

≤ CAeλτ
∣∣∣[y0(ω)

]
(0)

∣∣∣+ CAeλτ

t∫
0

eλu
(
L‖z0(θuω)‖Cτ + ∣∣f (0)

∣∣)du

+ CALeλτ

t∫
0

eλu‖yu‖Cτ du (A.6)

for all t ≥ τ and ω ∈ �. Therefore, by the Gronwall inequality, we can easily see that

eλt
∥∥∥yt

(
ω,y0(ω)

)∥∥∥
Cτ

≤ CAeλτ
∣∣∣[y0(ω)

]
(0)

∣∣∣eCALeλτ t

+ CAeλτ

t∫
0

eλueCALeλτ (t−u)
(
L‖z0(θuω)‖Cτ + ∣∣f (0)

∣∣)du, (A.7)

and then
913



J. Jiang and X. Lv Journal of Differential Equations 367 (2023) 890–921
∥∥∥yt

(
ω,y0(ω)

)∥∥∥
Cτ

≤ CAeλτ
∣∣∣[y0(ω)

]
(0)

∣∣∣e−(λ−CALeλτ )t

+ CAeλτ

t∫
0

e−(λ−CALeλτ )(t−u)
(
L‖z0(θuω)‖Cτ + ∣∣f (0)

∣∣)du. (A.8)

Note that for all t ≥ 0 and ω ∈ �, 
[
y0(θ−tω)

]
(0) = x0(0) − z(−t, ω) = x0(0) − z(θ−tω). Since 

the random variable z(ω) is tempered with respect to θ and CALeλτ

λ
< 1, it follows that∥∥∥yt

(
θ−tω, y0(θ−tω)

)∥∥∥
Cτ

≤ CAeλτ
∣∣∣[y0(θ−tω)

]
(0)

∣∣∣e−(λ−CALeλτ )t

+ CAeλτ

t∫
0

e−(λ−CALeλτ )(t−u)
(
L
∥∥z0(θu−tω)

∥∥
Cτ

+ ∣∣f (0)
∣∣)du

≤ CAeλτ
(∣∣x0(0)

∣∣+ ∣∣z(θ−tω)
∣∣)e−(λ−CALeλτ )t

+ CAeλτ

t∫
0

e−(λ−CALeλτ )(t−u)
(
L
∥∥z0(θu−tω)

∥∥
Cτ

+ ∣∣f (0)
∣∣)du

≤ CAeλτ
∣∣x0(0)

∣∣+ CAeλτ sup
t≥0

{
e−(λ−CALeλτ )t

∣∣z(θ−tω)
∣∣}

+ CAeλτ

0∫
−t

e(λ−CALeλτ )u
(
L
∥∥z0(θuω)

∥∥
Cτ

+ ∣∣f (0)
∣∣)du

for all t ≥ 0 and ω ∈ �. Define

R1(ω) = CAeλτ
∣∣x0(0)

∣∣+ CAeλτ sup
t≥0

{
e−(λ−CALeλτ )t

∣∣z(θ−tω)
∣∣}

+ CAeλτ

0∫
−∞

e(λ−CALeλτ )u
(
L
∥∥z0(θuω)

∥∥
Cτ

+ ∣∣f (0)
∣∣)du, ω ∈ �, (A.9)

it is immediate that (A.3) holds. Here,

0∫
−∞

e(λ−CALeλτ )u
∥∥z0(θuω)

∥∥
Cτ

du

�
0∫

eηu
∥∥z0(θuω)

∥∥
Cτ

du (η = λ − CALeλτ > 0)
−∞
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=
0∫

−∞
eηu sup

−τ≤s≤0

∣∣z(θu+sω)
∣∣du

≤
0∫

−∞
eηu sup

−τ≤s≤0

{
e− η

2 (u+s)
}

sup
−τ≤s≤0

{
e

η
2 (u+s)

∣∣z(θu+sω)
∣∣}du

≤ e
η
2 τ sup

t≤0

{
e

η
2 t
∣∣z(θtω)

∣∣} 0∫
−∞

e
η
2 udu (A.10)

< ∞,

which implies that R1(ω) is well defined for all ω ∈ �.
Next, we will consider the temperedness of R1. For this purpose, by (A.9), we only need to 

prove that sup
t≥0

{
e−ηt

∣∣z(θ−tω)
∣∣} and 

∫ 0
−∞ eηu

∥∥z0(θuω)
∥∥

Cτ
du are both tempered. For any δ > 0, 

we see that

sup
t∈R

{
e−δ|t | sup

u≥0

{
e−ηu

∣∣z(θ−u ◦ θtω)
∣∣}}

≤ sup
t∈R

{
e−(δ∧η)|t | sup

u≥0

{
e−(δ∧η)u

∣∣z(θ−u+tω)
∣∣}}

≤ sup
t∈R

{
e−(δ∧η)|t | sup

u≥0

{
e−(δ∧η)|−u+t |+(δ∧η)|t |∣∣z(θ−u+tω)

∣∣}}

≤ sup
t∈R

{
e−(δ∧η)|t |∣∣z(θtω)

∣∣}
< ∞, (A.11)

which is due to the fact that z(ω) is tempered, where δ ∧ η = min{δ, η} > 0. Moreover, in order 
to examine that 

∫ 0
−∞ eηu

∥∥z0(θuω)
∥∥

Cτ
du is tempered, by (A.10), it is sufficient to show that 

supt≤0

{
e

η
2 t
∣∣z(θtω)

∣∣} is tempered, which can be done by the same method in (A.11).

To show (A.2), it remains to prove that 
∥∥z0(ω)

∥∥
Cτ

is tempered. For any δ > 0, it is obvious 
that

sup
t∈R

{
e−δ|t |∥∥z0(θtω)

∥∥
Cτ

}
= sup

t∈R

{
e−δ|t | sup

−τ≤s≤0

∣∣z(θs+tω)
∣∣}

≤ sup

{
e−δ|t | sup

−τ≤s≤0

{
eδ|s+t |} sup

−τ≤s≤0

{
e−δ|s+t |∣∣z(θs+tω)

∣∣}}

t∈R
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≤ eδτ sup
t∈R

{
e−δ|t |∣∣z(θtω)

∣∣}
< ∞.

Set R̃(ω) = R1(ω) + ∥∥z0(ω)
∥∥

Cτ
for all ω ∈ �, which leads to (A.2).

Secondly, we need to find a tempered random variable R̂(ω) = R̂(ω, x0) such that

sup
0≤t≤τ

∥∥ϕ(t, θ−tω, x0)
∥∥

Cτ
≤ R̂(ω). (A.12)

For any 0 ≤ t ≤ τ and ω ∈ �, it is clear that

∥∥ϕ(t, θ−tω, x0)
∥∥

Cτ

= sup
−τ≤s≤0

∣∣x(t + s, θ−tω, x0)
∣∣

≤ sup
−t≤s≤0

∣∣x(t + s, θ−tω, x0)
∣∣+ sup

−τ≤s≤−t

∣∣x(t + s, θ−tω, x0)
∣∣

≤ ∥∥ϕ(τ, θ−tω, x0)
∥∥

Cτ
+ sup

−τ≤s≤−t

∣∣x(t + s, θ−tω, x0)
∣∣

≤ ∥∥ϕ(τ, θ−tω, x0)
∥∥

Cτ
+ ‖x0‖Cτ . (A.13)

Furthermore, by (2.7) and (2.11), we have that

ϕ(τ, θ−tω, x0) = yτ

(
θ−tω, y0(θ−tω)

)+ z0(θτ−tω),

which together with Lemma 3.2 gives that ϕ(τ, θ−tω, x0) is continuous with respect to t ∈ [0, τ ]
for all ω ∈ �. Consequently, from (A.13) and (A.2), it is easy to see that

sup
0≤t≤τ

∥∥ϕ(t, θ−tω, x0)
∥∥

Cτ

≤ sup
0≤t≤τ

∥∥ϕ(τ, θ−tω, x0)
∥∥

Cτ
+ ‖x0‖Cτ

= sup
t∈[0,τ ]⋂Q

∥∥ϕ(τ, θ−tω, x0)
∥∥

Cτ
+ ‖x0‖Cτ

= sup
t∈[0,τ ]⋂Q

∥∥ϕ(τ, θ−τ ◦ θτ−tω, x0)
∥∥

Cτ
+ ‖x0‖Cτ

≤ sup
t∈[0,τ ]⋂Q

R̃(θτ−tω) + ‖x0‖Cτ

� R̂(ω).

Here, supt∈[0,τ ]⋂Q R̃(θτ−tω) guarantees the measurability of R̂. In fact, we can also conclude 
that R̂(ω) is tempered. For any δ > 0, it is evident that
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sup
t∈R

{
e−δ|t |R̂(θtω)

}

= sup
t∈R

{
e−δ|t |

(
sup

u∈[0,τ ]⋂Q
R̃(θτ−u+tω) + ‖x0‖Cτ

)}

≤ sup
t∈R

{
e−δ|t |

(
sup

u∈[0,τ ]⋂Q
eδ|τ−u+t | sup

u∈[0,τ ]⋂Q

{
e−δ|τ−u+t |R̃(θτ−u+tω)

})}
+ ‖x0‖Cτ

≤ sup
u∈[0,τ ]⋂Q

eδ|τ−u| sup
t∈R

{
e−δ|t |R̃(θtω)

}
+ ‖x0‖Cτ

≤ eδτ sup
t∈R

{
e−δ|t |R̃(θtω)

}
+ ‖x0‖Cτ

< ∞.

Therefore, let R(ω) = max
{
R̃(ω), R̂(ω)

} = R̃(ω) 
∨

R̂(ω) for all ω ∈ �, it follows that (A.1)
holds.

Finally, we will verify the relative compactness of γ τ
x0

(ω) in Cτ for all ω ∈ � and x0 ∈ Cτ . 
From (2.11) and the cocycle property, it follows that

γ τ
x0

(ω) = ψ
(
τ, θ−τω, γ 0

x0
(θ−τω) − z0(θ−τω)

)
+ z0(ω). (A.14)

Thus, by the boundedness of γ 0
x0

(θ−τω), it suffices to prove the mapping

ψ (τ, θ−τω,•) : Cτ → Cτ

is compact. Based on the Arzela-Ascoli theorem, we only need to check that for any bounded 
subset B ⊂ Cτ and ω ∈ �,
(i) 
⋃τ

t=0 ψ (t,ω,B) is bounded; and
(ii) all functions in ψ (τ,ω,B) are equicontinuous.
Both can be obtained by the global Lipschitz condition and standard priori estimations, which 
are omitted here. The proof is complete. �
Proposition A.2. Let R̃ be defined in Proposition A.1, i.e.,

R̃(ω) = CAeλτ
∣∣x0(0)

∣∣+ CAeλτ sup
t≥0

{
e−(λ−CALeλτ )t

∣∣z(θ−tω)
∣∣}

+ CAeλτ

0∫
−∞

e(λ−CALeλτ )u
(
L
∥∥z0(θuω)

∥∥
Cτ

+ ∣∣f (0)
∣∣)du + ∥∥z0(ω)

∥∥
Cτ

.

Then R̃ ∈ L1(�, F−, P ; Rn).
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Proof. Since

z(t,ω) ≡ z(θtω) =
t∫

−∞
�(t − u)σdWu,

which shows that z(•, ω) : R �→ Rn is continuous for all ω ∈ � and z(t, •) : � �→ Rn is 
F−-measurable for all t ≤ 0. From this and Lemma II.2.1 in [34], we have that z0(θ•ω) :R �→ Cτ

is continuous for all ω ∈ � and z0(θt•) : � �→ Cτ is F−-measurable for all t ≤ 0. Using Lemma 
3.14 in [10], it is obvious that z0(θtω) : R− × � �→ Cτ is B(R−) ⊗ F−-measurable, which 
together with Fubini’s theorem yields that R̃ is F−-measurable.

Next, we will prove that E
∣∣R̃∣∣< ∞. In fact, for any δ > 0, we can assert that

E

(
sup
t≤0

eδt |Wt |
)

< ∞.

Note that

E

(
sup
t≤0

eδt |Wt |
)

≤
m∑

i=1

E

(
sup
t≤0

eδt |Wi
t |
)

=
m∑

i=1

E

(
sup
n∈N

sup
−n−1≤t≤−n

eδt |Wi
t |
)

≤
m∑

i=1

∞∑
n=0

E

(
sup

−n−1≤t≤−n

eδt |Wi
t |
)

≤
m∑

i=1

∞∑
n=0

e−δn

(
E

(
sup

−n−1≤t≤−n

|Wi
t |2
)) 1

2

≤
m∑

i=1

∞∑
n=0

e−δn
(

4E
(|Wi

−n−1|2
)) 1

2

= 2m

∞∑
n=0

e−δn
√

n + 1

< ∞,

where we use Hölder inequality and Doob’s martingale inequality. In what follows, define Cδ =
E
(
supt≤0 eδt |Wt |

)
for any δ > 0. By (2.8), it is immediate that

z(t,ω) =
0∫

−∞
A�(−u)σWu+t (ω)du + σWt(ω). (A.15)

Write η = λ − CALeλτ > 0, we have
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sup
t≥0

{
e−ηt

∣∣z(θ−tω)
∣∣}

≤ ‖A‖ · ‖σ‖ sup
t≥0

⎧⎨⎩e−ηt

0∫
−∞

∥∥�(−u)
∥∥ · ∣∣Wu−t (ω)

∣∣du

⎫⎬⎭+ ‖σ‖ sup
t≥0

{
e−ηt

∣∣W−t (ω)
∣∣}

≤ CA‖A‖ · ‖σ‖ sup
t≥0

⎧⎨⎩e−ηt

0∫
−∞

eλu
∣∣Wu−t (ω)

∣∣du

⎫⎬⎭+ ‖σ‖ sup
t≥0

{
e−ηt

∣∣W−t (ω)
∣∣}

≤ CA‖A‖ · ‖σ‖ sup
t≥0

{
e− η∧λ

2 t
∣∣W−t (ω)

∣∣} 0∫
−∞

e
λ
2 udu + ‖σ‖ sup

t≥0

{
e−ηt

∣∣W−t (ω)
∣∣}.

This implies that

E

(
sup
t≥0

{
e−ηt

∣∣z(θ−tω)
∣∣})

≤ 2

λ
CA‖A‖ · ‖σ‖E

(
sup
t≥0

{
e− η∧λ

2 t
∣∣W−t (ω)

∣∣})+ ‖σ‖E
(

sup
t≥0

{
e−ηt

∣∣W−t (ω)
∣∣})

≤ 2

λ
CACη∧λ

2
‖A‖ · ‖σ‖ + Cη‖σ‖

< ∞. (A.16)

In order to check R̃ ∈ L1(�, F−, P ; Rn), it remains to show that

E

⎛⎝ 0∫
−∞

eηu
∥∥z0(θuω)

∥∥
Cτ

du

⎞⎠< ∞

and

E
∥∥z0(ω)

∥∥
Cτ

< ∞.

By definition of ‖ · ‖Cτ and (A.16), we have

E

⎛⎝ 0∫
−∞

eηu
∥∥z0(θuω)

∥∥
Cτ

du

⎞⎠

= E

⎛⎝ 0∫
eηu sup

−τ≤s≤0

∣∣z(u + s,ω)
∣∣du

⎞⎠

−∞
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= E

⎛⎝ 0∫
−∞

e
η
2 u sup

−τ≤s≤0
e

η
2 (u+s)e− η

2 s
∣∣z(θu+sω)

∣∣du

⎞⎠
≤ 2

η
e

η
2 τE

(
sup
t≥0

{
e− η

2 t
∣∣z(θ−tω)

∣∣})
< ∞

and

E
∥∥z0(ω)

∥∥
Cτ

= E

(
sup

−τ≤s≤0

∣∣z(s,ω)
∣∣)

≤ eητE

(
sup

−τ≤s≤0

{
eηs
∣∣z(θsω)

∣∣})

≤ eητE

(
sup
t≥0

{
e−ηt

∣∣z(θ−tω)
∣∣})

< ∞.

The proof is complete. �
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