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1. Introduction and main results 

The aim of this paper is to study the following second-order Hamiltonian systems 

ü − L (t) u + W u (t, u ) = 0 , ∀ t ∈ R (HS)

where u = (u 1 , u 2 , . . . , u N ) ∈ R 

N , W ∈ C 1 (R × R 

N , R ) and L ∈ C(R , R 

N×N ) is a symmetric matrix-valued function. We usually

say that a solution u of (HS) is homoclinic (to 0) if u ∈ C 2 (R , R 

N ) , u ( t ) → 0 and ˙ u (t) → 0 as t → ±∞ . Furthermore, if u �≡ 0 ,

then u is called nontrivial. 

In the applied sciences, Hamiltonian systems can be used in many practical problems regarding gas dynamics, fluid me-

chanics and celestial mechanics. It is clear that the existence of homoclinic solutions is one of the most important problems

in the theory of Hamiltonian systems. Recently, more and more mathematicians have paid their attention to the existence

and multiplicity of homoclinic orbits for Hamiltonian systems, see [1–21] . 

For the case of that L ( t ) and W ( t , x ) are either independent of t or periodic in t , there have been several excellent results,

see [1–3,7,8,12–16] . More precisely, in the paper [16] , Rabinowitz has proved the existence of homoclinic orbits as a limit of

2 kT -periodic solutions of (HS). Later, using the same method, several results for general Hamiltonian systems were obtained

by Izydorek and Janczewska [8] , Lv et al. [12] . 

If L ( t ) and W ( t , x ) are not periodic with respect to t , it will become more difficult to consider the existence of homoclinic

orbits for (HS). This problem is quite different from the case mentioned above, due to the lack of compactness of the Sobolev

embedding. In [17] , Rabinowitz and Tanaka investigated system (HS) without periodicity, both for L and W . Specifically, they

assumed that the smallest eigenvalue of L ( t ) tends to + ∞ as | t | → ∞ , and showed that system (HS) admits a homoclinic

orbit by using a variant of the Mountain Pass theorem without the Palais–Smale condition. Inspired by the work of Rabi-

nowitz and Tanaka [17] , many results [4,6,10,11,14,15,18,20,21] were obtained for the case of aperiodicity. Most of them were 
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presented under the following condition that L ( t ) is positive definite for all t ∈ R , 

(L (t) u, u ) > 0 , ∀ t ∈ R and u ∈ R 

N \{ 0 } . 
Motivated by [6,20] , in this article we will study the existence of infinitely many homoclinic solutions for (HS), where

L ( t ) is not necessarily positive definite for all t ∈ R and the growth rate of potential function W can be in (1, 3/2). The main

tool is the variant fountain theorem established in [22] . Our main results are the following theorems. 

Theorem 1.1. Assume that L and W satisfy the following conditions: 

(L1) There exists an α < 1 such that 

l(t ) | t | α−2 → ∞ as | t | → ∞ 

where l(t) := inf 
| u | =1 ,u ∈ R N 

(L (t) u, u ) is the smallest eigenvalue of L ( t ) ; 

(L2) There exist constants ā > 0 and r̄ > 0 such that 

(i) L ∈ C 1 (R , R 

N×N ) and | L ′ (t) u | ≤ ā | L (t) u | , ∀ | t| > r̄ and u ∈ R 

N , or 

(ii) L ∈ C 2 (R , R 

N×N ) and 
(
(L 

′′ 
(t) − ā L (t)) u, u 

)
≤ 0 , ∀ | t| > r̄ and u ∈ R 

N , 

where L 
′ 
(t) = (d /d t ) L (t ) and L 

′′ 
(t) = (d 2 /dt 2 ) L (t ) ; (W) W (t , u ) = a (t) | u | ν where a : R → R 

+ is a continuous func-

tion such that a ∈ L μ(R , R ) , 1 < ν < 2 is a constant, 2 ≤ μ ≤ ν̄ and 

ν̄ = 

⎧ ⎨ 

⎩ 

2 

3 − 2 ν
, 1 < ν < 

3 

2 

∞ , 
3 

2 

≤ ν < 2 

Then (HS) possesses infinitely many homoclinic solutions. 

Remark 1.2. When we choose ν ∈ (1 , 3 2 ) , it is easy to see that W satisfies the condition (W) of Theorem 1.1 but does not

satisfy the corresponding conditions in [6,20] . Furthermore, the constant μ can be change in [2 , ν̄] . 

2. Preliminaries 

In this section, for the purpose of readability and making this paper self-contained, we will show the variational setting

for (HS), which can be found in [6,20] . In what follows, we will always assume that L ( t ) satisfies (L1). Let A be the selfadjoint

extension of the operator −(d 2 /dt 2 ) + L (t) with domain D(A ) ⊂ L 2 ≡ L 2 (R , R 

N ) . Let us write { E(λ) : −∞ < λ < + ∞} and

|A| for the spectral resolution and the absolute value of A respectively, and denote by |A| 1 / 2 the square root of |A| . Define

 = I − E(0) − E(−0) . Then U commutes with A , |A| and |A| 1 / 2 , and A = U|A| is the polar decomposition of A (see [9] ).

We write E = D(|A| 1 / 2 ) and introduce the following inner product on E 

(u, v ) 0 = (|A| 1 / 2 u, |A| 1 / 2 v ) 2 + (u, v ) 2 
and norm 

‖ u ‖ 0 = (u, u ) 1 / 2 
0 

. 

Here, ( ·, ·) 2 denotes the usual L 2 -inner product. Therefore, E is a Hilbert space. Since C ∞ 

0 
(R , R 

N ) is dense in E , it is obvious

that E is continuous embedded in H 

1 (R , R 

N ) (see [6] ). Furthermore, we have the following lemmas by [6] . 

Lemma 2.1. If L satisfies (L1), then E is compactly embedded in L p ≡ L p (R , R 

N ) for all 1 ≤ p ∈ (2 / (3 − α) , ∞ ] . 

Lemma 2.2. Let L satisfies (L1) and (L2), then D(A ) is continuously embedded in W 

2 , 2 (R , R 

N ) , and consequently, we have 

| u (t) | → 0 and | ̇ u (t) | → 0 as | t| → ∞ , ∀ u ∈ D(A ) . 

From [6] , combining (L1) and Lemma 2.1 , we can prove that A possesses a compact resolvent. Consequently, the spec-

trum σ (A ) consists of eigenvalues, which can be arranged as λ1 ≤ λ2 ≤ ��� → ∞ (counted with multiplicity), and the

corresponding system of eigenfunctions { e n : n ∈ N } , A e n = λn e n , which forms an orthogonal basis in L 2 . Next, we define 

n 

− = # { i | λi < 0 } , n 

0 = # { i | λi = 0 } , n̄ = n 

− + n 

0 

and 

E − = span { e 1 , . . . , e n −} , E 0 = span { e n −+1 , . . . , e n̄ } = Ker A , E + = span { e n̄ +1 , . . . } . 
Here, the closure is taken in E with respect to the norm ‖·‖ 0 . Then 

E = E − � E 0 � E + . 

Furthermore, we define on E the following inner product 

(u, v ) = (|A| 1 / 2 u, |A| 1 / 2 v ) 2 + (u 

0 , v 0 ) 2 , 
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and norm 

‖ u ‖ 

2 = (u, u ) = ‖|A| 1 / 2 u ‖ 

2 
2 + ‖ u 

0 ‖ 

2 
2 , 

where u = u − + u 0 + u + and v = v − + v 0 + v + ∈ E − � E 0 � E + . It is clear that the norms ‖·‖ 0 and ‖·‖ are equivalent by [6] .

From now on, we will take ( E , ‖·‖ ) instead of ( E , ‖·‖ 0 ) as the working space without loss of generality. 

Remark 2.3. We note that the decomposition E = E − � E 0 � E + is also orthogonal with respect to inner products ( ·, ·) and

( ·, ·) 2 . Moreover, we will denote by E = E − � E 0 � E + the orthogonal decomposition with respect to the inner products ( ·, ·)
unless otherwise stated. 

Remark 2.4. Since the norms ‖·‖ 0 and ‖·‖ are equivalent, by Lemma 2.1 , for any 1 ≤ p ∈ (2 / (3 − α) , ∞ ] , there exists a

constant βp > 0 such that 

‖ u ‖ p ≤ βp ‖ u ‖ , ∀ u ∈ E, (2.1) 

where ‖ u ‖ p denotes the usual norm of L p and βp is independent of u . 

Let 

O(u, v ) = (|A| 1 / 2 Uu, |A| 1 / 2 v ) , ∀ u, v ∈ E 

be the quadratic form associated with A , where U is the polar decomposition of A . Given any u ∈ D(A ) and v ∈ E, we can

get 

O(u, v ) = 

∫ 
R 

( ( ̇ u , ˙ v ) + (L (t) u, v ) ) dt. (2.2) 

Note that D(A ) is dense in E , we have (2.2) holds for all u, v ∈ E. Furthermore, by definition, it follows that 

O(u, v ) = 

(
(P + − P −) u, v 

)
= ‖ u 

+ ‖ 

2 − ‖ u 

−‖ 

2 (2.3) 

for all u = u − + u 0 + u + ∈ E, where P ±: E → E ± are the respective orthogonal projections. 

Combining (2.2) and (2.3) , we define the functional � on E by 

�(u ) = 

1 

2 

∫ 
R 

(‖ ̇

 u ‖ 

2 + (L (t) u, u ) 
)
d t −

∫ 
R 

W (t, u ) d t 

= 

1 

2 

‖ u 

+ ‖ 

2 − 1 

2 

‖ u 

−‖ 

2 −
∫ 
R 

W (t, u ) dt 

= 

1 

2 

‖ u 

+ ‖ 

2 − 1 

2 

‖ u 

−‖ 

2 − �(u ) , 

(2.4) 

where �(u ) = 

∫ 
R 

W (t, u ) dt = 

∫ 
R 

a (t ) | u | νdt for all u = u − + u 0 + u + ∈ E = E − � E 0 � E + . 

Remark 2.5. From (W) with Lemma 2.1 , we can easily see that � and � are well defined. We will consider two cases as

follows. 

Case i If 2 ≤ μ < ∞ , then 

| �(u ) | = 

∣∣∣
∫ 
R 

W (t , u ) dt 

∣∣∣ = 

∣∣∣
∫ 
R 

a (t ) | u | νdt 

∣∣∣
≤

(∫ 
R 

| a (t ) | μdt 

) 1 
μ
(∫ 

R 

| u | νμ∗
dt 

) 1 
μ∗

= ‖ a ‖ μ‖ u ‖ 

ν
νμ∗ < ∞ 

where 1 
μ + 

1 
μ∗ = 1 , νμ∗ ≥ 1. 

Case ii If μ = ∞ , then | �(u ) | ≤ ‖ a ‖ ∞ 

‖ u ‖ νν < ∞ . 

Lemma 2.6. Let (L1), (L2) and (W) hold. Then � ∈ C 1 (E, R ) and � ′ : E → E ∗ is compact, and consequently � ∈ C 1 (E, R ) . More-

over, 

� ′ (u ) v = 

∫ 
R 

( W u (t, u ) , u ) dt = 

∫ 
R 

(
νa (t) | u | ν−2 u, v 

)
dt (2.5) 

�′ (u ) v = (u 

+ , v + ) − (u 

−, v −) − � ′ (u ) v 

= (u 

+ , v + ) − (u 

−, v −) −
∫ 
R 

( W u (t, u ) , v ) dt 
(2.6) 

for all u = u − + u 0 + u + and v = v − + v 0 + v + ∈ E − � E 0 � E + . Moreover, all critical points of � on E are homoclinic solutions of

(HS) satisfying u ( t ) → 0 and ˙ u (t) → 0 as | t | → ∞ . 
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Proof. We first show that (2.5) holds by definition. If 2 ≤ μ < ∞ , then 1 < μ∗ ≤ 2, where 1 
μ + 

1 
μ∗ = 1 . For any given

u, v ∈ E, by the Mean Value Theorem and the Hölder inequality, we have 

∣∣∣
∫ 
R 

[
W (t, u + v ) − W (t, u ) −

(
W u (t, u ) , v 

)]
dt 

∣∣∣ = 

∣∣∣∣
∫ 
R 

[∫ 1 

0 

(
W u (t, u + θv ) − W u (t, u ) , v 

)
dθ

]
dt 

∣∣∣∣
≤ 2 ν

∫ 
R 

| a (t) | (| u | + | v | ) ν−1 | v | dt 

≤ 2 ν

∫ 
R 

| a (t) | (| u | ν−1 + | v | ν−1 ) | v | dt 

≤ 2 ν
(∫ 

R 

| a (t ) | μdt 

) 1 
μ
(∫ 

R 

| u | μ∗(ν−1) | v | μ∗
dt 

) 1 
μ∗

+2 ν
(∫ 

R 

| a (t ) | μdt 

) 1 
μ
(∫ 

R 

| v | μ∗νdt 

) 1 
μ∗

≤ 2 ν‖ a ‖ μ

(∫ 
R 

| u | 2 dt 

) ν−1 
2 

(∫ 
R 

| v | 2 μ∗
2+ μ∗−μ∗ν dt 

) 2+ μ∗−μ∗ν
2 μ∗

+ 2 ν‖ a ‖ μ‖ v ‖ 

ν
μ∗ν

= 2 ν‖ a ‖ μ‖ u ‖ 

ν−1 
2 ‖ v ‖ 2 μ∗

2+ μ∗−μ∗ν
+ 2 ν‖ a ‖ μ‖ v ‖ 

ν
μ∗ν

≤ 2 νβ 2 μ∗
2+ μ∗−μ∗ν

‖ a ‖ μ‖ u ‖ 

ν−1 
2 ‖ v ‖ + 2 νβν

μ∗ν‖ a ‖ μ‖ v ‖ 

ν → 0 , 

as v → 0 in E (2.7)

where 2 μ∗
2+ μ∗−μ∗ν ≥ 1 and the second inequality holds by the fact that if 0 < p < 1, then (| a | + | b| ) p ≤ | a | p + | b| p , ∀ a, b ∈ R .

If μ = ∞ , then similar to the proof of (2.7) , we can obtain ∣∣∣
∫ 
R 

[
W (t, u + v ) − W (t, u ) −

(
W u (t, u ) , v 

)]
dt 

∣∣∣ ≤ 2 ν‖ a ‖ ∞ 

(‖ u ‖ 

ν−1 
∞ 

+ ‖ v ‖ 

ν−1 
∞ 

) 

∫ 
R 

| v | dt 

≤ 2 ν‖ a ‖ ∞ 

βν−1 
∞ 

β1 (‖ u ‖ 

ν−1 + ‖ v ‖ 

ν−1 ) ‖ v ‖ → 0 , as v → 0 in E (2.8)

where the last inequality holds by (2.1) and β∞ 

, β1 are constants there. Combining (2.7) and (2.8), (2.5) holds immediately

by the definition of Fréchet derivatives. Consequently, (2.6) also holds due to the definition of �. 

Next, we verify that � ′ : E → E ∗ is compact. Let u n ⇀ u 0 (weakly) in E , by Lemma 2.1 , we have u n → u 0 in L p for all

1 ≤ p ∈ (2 / (3 − α) , ∞ ] . If 2 ≤ μ < ∞ , using the Hölder inequality, we can obtain 

‖ � ′ (u n ) − � ′ (u 0 ) ‖ E ∗ = sup 

‖ v ‖ =1 

‖ (� ′ (u n ) − � ′ (u 0 )) v ‖ 

= sup 

‖ v ‖ =1 

∣∣∣
∫ 
R 

(
W u (t, u n ) − W u (t, u 0 ) , v 

)
dt 

∣∣∣
≤ sup 

‖ v ‖ =1 

[(∫ 
R 

| W u (t, u n ) − W u (t , u 0 ) | μdt 

) 1 
μ ‖ v ‖ μ∗

]

≤ βμ∗

(∫ 
R 

| W u (t, u n ) − W u (t , u 0 ) | μdt 

) 1 
μ

, ∀ n ∈ N 

(2.9)

where the last inequality holds by (2.1) and β∗
μ is the constant there, 1 

μ + 

1 
μ∗ = 1 . Next, we will prove that W u ( t , u n ) →

W u ( t , u 0 ) in L μ(R , R 

N ) . Observing that u n is bounded in L ∞ , then by the Jensen inequality, we have 

∫ 
R 

| W u (t, u n ) − W u (t, u 0 ) | μdt ≤ 2 

μ−1 νμ

∫ 
R 

| a (t) | μ(| u n | μ + | u 0 | μ) dt 

≤ 2 

μ−1 νμ

∫ 
R 

| a (t) | μ(‖ u n ‖ 

μ
∞ 

+ ‖ u 0 ‖ 

μ
∞ 

) dt 

≤ 2 

μ−1 νμM 

∫ 
R 

| a (t) | μdt 

where M = 2 max {‖ u 0 ‖ μ∞ 

, ‖ u n ‖ μ∞ 

, ∀ n ∈ N } . Combining the fact that u n → u 0 in L ∞ and the Lebesgue’s Dominated Conver-

gence Theorem, 

(∫ 
R 

| W u (t, u n ) − W u (t , u 0 ) | μdt 

) 1 
μ → 0 , as n → ∞ . 

Next, we will deal with the case of μ = ∞ (i.e. ν > 

3 
2 ), this part is mainly motivated by the proof of Lemma 2 in [14] . By

the Hölder inequality, we have 
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‖ � ′ (u n ) − � ′ (u 0 ) ‖ E ∗ ≤ sup 

‖ v ‖ =1 

[(∫ 
R 

| W u (t, u n ) − W u (t , u 0 ) | 2 dt 

) 1 
2 ‖ v ‖ 2 

]

≤ β2 

(∫ 
R 

| W u (t, u n ) − W u (t , u 0 ) | 2 dt 

) 1 
2 

, ∀ n ∈ N 

(2.10) 

We note that by Lemma 2.1 , u n → u 0 in L 2(ν−1) for ν > 

3 
2 , passing to a subsequence if necessary, it can be assumed that 

∞ ∑ 

n =1 

‖ u n − u 0 ‖ 2(ν−1) < + ∞ , 

which implies that 

∞ ∑ 

n =1 

| u n (t) − u 0 (t) | = g(t) ∈ L 2(ν−1) (R , R ) . 

Since ν > 

3 
2 , then 

∫ 
R 
| W u (t, u n ) − W u (t, u 0 ) | 2 dt ≤

∫ 
R 

2 ν2 | a (t) | 2 (| u n | 2(ν−1) + | u 0 | 2(ν−1) ) dt 

≤
∫ 
R 

2 ν2 | a (t) | 2 (2 

2 ν−3 | u n − u 0 | 2(ν−1) + (2 

2 ν−3 + 1) | u 0 | 2(ν−1) ) dt 

≤ 2 

2 ν−1 ν2 ‖ a ‖ 

2 
∞ 

∫ 
R 

(| g(t) | 2(ν−1) + | u 0 | 2(ν−1) ) dt 

≤ 2 

2 ν−1 ν2 ‖ a ‖ 

2 
∞ 

(‖ g‖ 

2(ν−1) 
2(ν−1) 

+ β2(ν−1) 
2(ν−1) 

‖ u 0 ‖ 

2(ν−1) ) 

Applying the Lebesgue’s Dominated Convergence Theorem, we have (∫ 
R 

| W u (t, u n ) − W u (t , u 0 ) | 2 dt 

) 1 
2 → 0 , as n → ∞ . 

Consequently, � ′ is weakly continuous, and so � ′ is continuous. Therefore � ∈ C 1 (E, R ) and hence � ∈ C 1 (E, R ) . Moreover,

� ′ is compact due to the weak continuity of � ′ and the fact that E is a Hilbert Space. 

Finally, we will prove that all critical points of � on E are homoclinic solutions of (HS). By the standard procedure, we

can see that any critical points of � on E satisfy (HS) and u ∈ C 2 (R , R 

N ) . We note that if 1 < ν < 

3 
2 , then 2 ≤ μ ≤ 2 

3 −2 ν . For

μ = 2 , by (HS), we have 

‖A u ‖ 

2 
2 = 

∫ 
R 

| W u (t, u ) | 2 dt 

≤ ν2 ‖ u ‖ 

2(ν−1) 
∞ 

∫ 
R 

| a (t) | 2 dt 

≤ ν2 β2(ν−1) 
∞ 

‖ u ‖ 

2(ν−1) 

∫ 
R 

| a (t) | μdt < ∞ . 

(2.11) 

In the case of 2 < μ ≤ 2 
3 −2 ν , then 

‖A u ‖ 

2 
2 = 

∫ 
R 

| W u (t, u ) | 2 dt 

≤ ν2 
(∫ 

R 

| a (t ) | μdt 

) 2 
μ
(∫ 

R 

| u | 2 ̄μ(ν−1) dt 

) 1 
μ̄

≤ ν2 ‖ u ‖ 

2(ν−1) 
2 ̄μ(ν−1) 

(∫ 
R 

| a (t ) | μdt 

) 2 
μ

≤ ν2 β2(ν−1) 
2 ̄μ(ν−1) 

‖ u ‖ 

2(ν−1) 
(∫ 

R 

| a (t ) | μdt 

) 2 
μ

< ∞ , 

(2.12) 

where 2 
μ + 

1 
μ̄ = 1 and 2 ̄μ(ν − 1) ≥ 1 because of μ ≤ 2 

3 −2 ν . If 3 
2 ≤ ν < 2 , combining the fact that 2(ν − 1) ≥ 1 and Hölder

inequality, similar to the proof of (2.11) and (2.12) , we can get the same result. Consequently, u ∈ D(A ) and hence u is a

homoclinic solution of (HS) by Lemma 2.2 . The proof is complete. �

In the next argument, the following variant fountain theorem will be used to prove our main results. Let E be a Banach

space with the norm ‖·‖ and E = 

⊕ 

j∈ N X j with dim X j < ∞ for any j ∈ N . We write Y k = 

⊕ k 
j=1 X j and Z k = 

⊕ 

j= k X j . The

C 1 -functional �λ : E → R is given by 

�λ(u ) := A (u ) − λB (u ) , λ ∈ [1 , 2] . 

Theorem 2.7 ( [22] , Theorem 2.2) . Assume that the functional �λ defined above satisfies 

(F1) �λ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2] . Furthermore, �λ(−u ) = �λ(u ) for all 

( λ, u ) ∈ [1, 2] × E; 
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(F2) B ( u ) ≥ 0 ; B ( u ) → ∞ as ‖ u ‖ → ∞ on any finite dimensional subspace of E; 

(F3) There exist ρk > r k > 0 such that 

a k (λ) := inf 
u ∈ Z k , ‖ u ‖ = ρk 

�λ(u ) ≥ 0 > b k (λ) := max 
u ∈ Y k , ‖ u ‖ = r k 

�λ(u ) , ∀ λ ∈ [1 , 2] 

and 

d k (λ) := inf 
u ∈ Z k , ‖ u ‖≤ρk 

�λ(u ) → 0 as k → ∞ uni f ormly f or λ ∈ [1 , 2] . 

Then there exist λn → 1, u λn 
∈ Y n such that 

�′ 
λn 

| Y n (u λn 
) = 0 , �λn 

(u λn 
) → c k ∈ [ d k (2) , b k (1)] as n → ∞ . 

In particular, if { u λn 
} has a convergent subsequence for every k , then �1 has infinitely many nontrivial critical points { u k }

∈ E \ {0} satisfying �1 (u k ) → 0 − as k → ∞ . 

In order to make use of Theorem 2.7 , we consider the functionals A , B and �λ on the working space defined E =
D(|A| 1 / 2 ) by 

A (u ) = 

1 

2 

‖ u 

+ ‖ 

2 , B (u ) = 

1 

2 

‖ u 

−‖ 

2 + 

∫ 
R 

W (t , u ) dt , (2.13)

and 

�λ(u ) = A (u ) − λB (u ) = 

1 

2 

‖ u 

+ ‖ 

2 − λ
(

1 

2 

‖ u 

−‖ 

2 + 

∫ 
R 

W (t , u ) dt 

)
(2.14)

for all u = u − + u 0 + u + ∈ E and λ ∈ [1, 2]. By Lemma 2.6 , it is clear that �λ ∈ C 1 (E, R ) for all λ ∈ [1, 2]. Let X j :=
R e j = span{ e j }, j ∈ N , where { e j , j ∈ N } is the system of eigenfunctions and the orthogonal basis in L 2 below Lemma 2.2 .

Furthermore, it is evident that �1 = �, where � is the functional defined in (2.4) . 

3. Proof of theorems 

Lemma 3.1. Let (L1), (L2) and (W) hold, then B ( u ) ≥ 0 . Moreover, B ( u ) → ∞ as ‖ u ‖ → ∞ on any finite dimensional subspace

of E. 

Proof. By definitions of the functional B and (W), B ( u ) ≥ 0 holds obviously. Next we will prove that B ( u ) → ∞ as ‖ u ‖ →
∞ on any finite dimensional subspace of E . First we claim that for any finite dimensional subspace F ⊂ E , there exists ε > 0

such that 

meas { t ∈ R : a (t) | u (t) | ν ≥ ε‖ u ‖ 

ν} ≥ ε, ∀ u ∈ F \{ 0 } . (3.1)

The proof of (3.1) is very similar as that of [18] . We omit it here. Now, let 

u = { t ∈ R : a (t) | u (t) | ν ≥ ε‖ u ‖ 

ν} , ∀ u ∈ F \{ 0 } , (3.2)

where ε is given in (3.1) . From (3.1) , we can obtain that 

meas (u ) ≥ ε, ∀ u ∈ F \{ 0 } , (3.3)

Combining (W) and (3.3) , for all u ∈ F \ {0}, we can see that 

B (u ) = 

1 

2 

‖ u 

−‖ 

2 + 

∫ 
R 

W (t, u ) dt 

≥
∫ 
u 

a (t) | u (t) | νdt 

≥ ε‖ u ‖ 

νmeas (u ) ≥ ε 2 ‖ u ‖ 

ν . 

(3.4)

This implies B ( u ) → ∞ as ‖ u ‖ → ∞ on any finite dimensional subspace of E . If μ = ∞ , similar to the case of 2 ≤ μ < ∞ ,

by the standard procedure, we can prove that there exists ε 1 > 0 such that 

meas { t ∈ R : a (t) | u (t) | ν ≥ ε 1 ‖ u ‖ 

ν} ≥ ε 1 , ∀ u ∈ F \{ 0 } . (3.5)

Therefore, by (3.4) , we can conclude that B ( u ) → ∞ as ‖ u ‖ → ∞ on any finite dimensional subspace of E . The proof is

complete. �

Lemma 3.2. Under the conditions in Theorem 1.1 , then there exists a sequence ρk → 0 + as k → ∞ such that 

a k (λ) := inf 
u ∈ Z k , ‖ u ‖ = ρk 

�λ(u ) ≥ 0 , ∀ λ ∈ [1 , 2] , k ≥ n̄ + 1 , 

and 

d k (λ) := inf 
u ∈ Z k , ‖ u ‖≤ρk 

�λ(u ) → 0 as k → ∞ uni f ormly f or λ ∈ [1 , 2] . 
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where Z k = 

⊕ 

j= k X j for all k ∈ N . 

Proof. By the definition of n̄ below the Lemma 2.2 , we can know that Z k ⊂ E + for all k ≥ n̄ + 1 . Therefore, for all k ≥ n̄ + 1 ,

from (W) and (2.14) , it follows that 

�λ(u ) = 

1 

2 

‖ u ‖ 

2 − λ

∫ 
R 

W (t, u ) dt 

≥ 1 

2 

‖ u ‖ 

2 − 2 

∫ 
R 

W (t, u ) dt 

= 

1 

2 

‖ u ‖ 

2 − 2 

∫ 
R 

a (t ) | u | νdt , ∀ (λ, u ) ∈ [1 , 2] × Z k . 

(3.6) 

If 2 ≤ μ < ∞ , let ηk := sup 

u ∈ Z k , ‖ u ‖ =1 

‖ u ‖ νμ∗ , where 1 
μ + 

1 
μ∗ = 1 . By Lemma 2.1 , we can conclude that ηk → 0 as k → ∞ .

Therefore, combining (3.6) with (W), we have 

�λ(u ) ≥ 1 

2 

‖ u ‖ 

2 − 2 ‖ a ‖ μ‖ u ‖ 

ν
νμ∗ ≥ 1 

2 

‖ u ‖ 

2 − 2 ην
k ‖ a ‖ μ‖ u ‖ 

ν, ∀ (λ, u ) ∈ [1 , 2] × Z k . (3.7)

Let ρk := (8 ην
k 
‖ a ‖ μ) 1 / (2 −ν) 

, the rest of proof is very similar as that of [18] . We omit it here. For the case of μ = ∞ , similar

to the above procedure, the same result can be obtained. We omit it here. The proof is complete. �

Lemma 3.3. Assume that (L1), (L2) and (W) hold, then for the sequence { ρk } k ∈ N obtained in Lemma 3.2 , there exists a sequence

{ r k } k ∈ N such that ρk > r k > 0 for ∀ k ∈ N and 

b k (λ) := max 
u ∈ Y k , ‖ u ‖ = r k 

�λ(u ) < 0 , ∀ λ ∈ [1 , 2] . (3.8)

where Y k = 

⊕ k 
j=1 X j = span { e 1 , . . . , e k } for ∀ k ∈ N . 

Proof. For ∀ k ∈ N , it is clear that Y k is a finite dimensional subspace of E . Therefore, for ∀ λ ∈ [1, 2], from (W), (3.2),

(3.3) and (3.5) , let ε 0 = min { ε, ε 1 } , we have 

�λ(u ) = 

1 

2 

‖ u 

+ ‖ 

2 − λ
(

1 

2 

‖ u 

−‖ 

2 + 

∫ 
R 

W (t , u ) dt 

)

≤ 1 

2 

‖ u ‖ 

2 −
∫ 
R 

W (t, u ) dt 

≤ 1 

2 

‖ u ‖ 

2 −
∫ 
u 

a (t) | u | νdt 

≤ 1 

2 

‖ u ‖ 

2 − ε 0 ‖ u ‖ 

νmeas (u ) 

≤ 1 

2 

‖ u ‖ 

2 − ε 2 0 ‖ u ‖ 

ν , ∀ u ∈ Y k , k ∈ N . 

(3.9) 

For ∀ k ∈ N , we choose 0 < r k < min { ρk , ε 
2 

2 −ν
0 

} . From (3.9) , an easy computation shows that 

b k (λ) := max 
u ∈ Y k , ‖ u ‖ = r k 

�λ(u ) ≤ − r 2 
k 

2 

< 0 , ∀ k ∈ N . 

The proof is complete. �

Next we will present the proof of our main result. 

Proof of Theorem 1.1. Combining Remark 1.2 and (2.14) , it is clear that the condition (F1) in Theorem 2.7 holds obviously.

By Lemma 3.1 , 3.2 and 3.3, we can easily see that conditions (F2) and (F3) in Theorem 2.7 hold for all k ≥ n̄ + 1 . Conse-

quently, from Theorem 2.7 , for all k ≥ n̄ + 1 , there exist λn → 1, u λn 
∈ Y n such that 

�′ 
λn 

| Y n (u λn 
) = 0 , �λn 

(u λn 
) → c k ∈ [ d k (2) , b k (1)] as n → ∞ . (3.10)

In what follows, the fist step is to show that { u λn 
} is bounded in E . For the case of 2 ≤ μ < ∞ , since �′ 

λn 
| Y n (u λn 

) = 0 ,

by (2.6) and (2.14) , we have 

�′ 
λn 

| Y n (u λn 
) u 

+ 
λn 

= ‖ u 

+ 
λn 

‖ 

2 − λn 

∫ (
W u (t, u λn 

) , u 

+ 
λn 

)
dt = 0 . (3.11)
R 
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Therefore, using (W) and the Hölder inequality, it follows that 

‖ u 

+ 
λn 

‖ 

2 = λn 

∫ 
R 

(
W u (t, u λn 

) , u 

+ 
λn 

)
dt 

≤ 2 

∫ 
R 

| a (t) || u λn 
| ν−1 | u 

+ 
λn 

| dt 

≤ 2 

(∫ 
R 

| a (t ) | μdt 

) 1 
μ
(∫ 

R 

| u λn 
| μ∗(ν−1) | u 

+ 
λn 

| μ∗
dt 

) 1 
μ∗

≤ 2 ν‖ a ‖ μ

(∫ 
R 

| u λn 
| 2 dt 

) ν−1 
2 

(∫ 
R 

| u 

+ 
λn 

| 2 μ∗
2+ μ∗−μ∗ν dt 

) 2+ μ∗−μ∗ν
2 μ∗

= 2 ν‖ a ‖ μ‖ u λn 
‖ 

ν−1 
2 ‖ u 

+ 
λn 

‖ 2 μ∗
2+ μ∗−μ∗ν

≤ M 1 ‖ a ‖ μ‖ u λn 
‖ 

ν

(3.12)

for some M 1 > 0, where 1 
μ + 

1 
μ∗ = 1 , 2 μ∗

2+ μ∗−μ∗ν ≥ 1 and the last inequality holds because of (2.1) . Furthermore, combing

(2.6) with (3.10) and the Hölder inequality, we have 

−�λn 
(u λn 

) = 

1 

2 

�′ 
λn 

| Y n (u λn 
) u λn 

− �λn 
(u λn 

) 

= λn (1 − ν

2 

) 

∫ 
R 

| a (t) || u λn 
| νdt 

≥ 1 

2 

ν−1 
λn (1 − ν

2 

) 

∫ 
R 

| a (t) || u 

−
λn 

+ u 

0 
λn 

| νdt − λn (1 − ν

2 

) 

∫ 
R 

| a (t) || u 

+ 
λn 

| νdt 

≥ ε 2 

2 

ν−1 
λn (1 − ν

2 

) ‖ u 

−
λn 

+ u 

0 
λn 

‖ 

ν − λn (1 − ν

2 

) ‖ a ‖ μ‖ u 

+ 
λn 

‖ 

ν
μ∗ν

(3.13)

where the last inequality holds by the fact that dim (E − � E 0 ) < ∞ and (3.1) . Note that 1 < ν < 2, then (3.12) and (3.13) im-

plies that {‖ u + 
λn 

‖} is bounded. Next, we just have to show that {‖ u −
λn 

+ u 0 
λn 

‖} is also bounded. Consequently, from (3.13) and

(2.1) , we get 

‖ u 

−
λn 

+ u 

0 
λn 

‖ 

ν ≤ −M 2 �λn 
(u λn 

) + M 3 ‖ u 

+ 
λn 

‖ 

ν
μ∗ν ≤ −M 2 �λn 

(u λn 
) + M 4 ‖ u 

+ 
λn 

‖ 

ν (3.14)

for some positive constants M 2 , M 3 and M 4 . Notice that {‖ u + 
λn 

‖} is bounded, by (3.10) , we can conclude that {‖ u −
λn 

+ u 0 
λn 

‖}
is also bounded. Therefore, there exists M 5 > 0 such that ‖ u λn 

‖ 2 = ‖ u + 
λn 

‖ 2 + ‖ u −
λn 

+ u 0 
λn 

‖ 2 ≤ M 5 , i.e. { u λn 
} is bounded in E . 

Finally, we prove that { u λn 
} has a strong convergent subsequence in E . The proof of this assertion can be accomplished

as that of [20] . We omit it here. 

Now by the last conclusion of Theorem 2.7 , we obtain that � = �1 has infinitely many nontrivial critical points. Conse-

quently, (HS) possesses infinitely many homoclinic solutions by Lemma 2.6 . The proof of Theorem 1.1 is complete. �

Remark 3.4. In this paper, we have considered the existence of infinitely many homoclinic solutions for a class of sub-

quadratic second-order Hamiltonian systems, where 1 < ν < 

3 
2 is allowed. We view this result as merely one first step in

the theory for the case of 1 < ν < 

3 
2 , there are still many problems to pursue. For example, when 1 < ν < 

3 
2 , the upper

bound of μ whether can be ∞ , what we will discuss in the future study. 
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