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GLOBAL STABILITY OF FEEDBACK SYSTEMS WITH
MULTIPLICATIVE NOISE ON THE NONNEGATIVE ORTHANT*
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Abstract. We investigate the dynamical behavior of pull-back trajectories for feedback systems
with multiplicative noise and prove that there exists a globally stable positive random equilibrium
in the nonnegative orthant R%, where the global stability means that all pull-back trajectories
originating from nonnegative orthant converge to this positive random equilibrium almost surely.
The output functions (feedback functions) are assumed to either possess bounded derivatives or
be uniformly bounded away from zero. In the first case, we first prove the joint measurability of
the metric dynamical system 6 with respect to the o-algebra Z(R_) ® #_, where #_ = o{w —
Wi(w) : t < 0} is the past o-algebra and Wi(w) is an R%valued two-sided Wiener process, and
then combine the £!-integrability of the tempered random variable coming from the definition of the
top Lyapunov exponent and the independence between the past o-algebra and the future o-algebra
F4 = o{w — Wi(w) : t > 0} to obtain a globally stable random equilibrium by constructing the
contraction mapping on an .%_-measurable, £1-integrable, and complete metric input space; in the
second case, the sublinearity of output functions (feedback functions) and the part metric play the
main roles in the existence and uniqueness of globally attracting positive fixed point in the part of a
normal, solid cone. Our results can be applied to a well-known stochastic Goodwin negative feedback
system, Othmer—Tyson positive feedback system, and Griffith positive feedback system as well as
other stochastic cooperative, competitive, and predator-prey systems.
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1. Introduction. Feedback (positive and negative) loops play distinctively di-
verse roles in many biochemical control systems, which often occur in the study of
the reaction process in cellular signalling, such as [4, 5, 29, 30]. It is well known that
positive feedback can promote multistability, which is a necessary dynamic feature of
control systems having multiple stable steady states; see [37]. Negative feedback con-
trol systems frequently describe biological systems whose synthesis rates cannot keep
growing and which have a level of saturation. For instance, the operon in the lactose
system [15, 16, 29] or in the bacterium E. coli [30] is under negative control (e.g.,
Goodwin system), i.e., some specific proteins are devoted to inhibiting the translation
of the DNA to RNA. Stability analysis of nonlinear deterministic feedback systems
has been extensively and intensively studied in [15, 18, 19, 20, 27, 36, 38]. However,
real world systems are rife with stochastic fluctuation. At the cellular level, it has been
recognized that biochemical reactions inside a cell are discrete and exhibit inherent
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randomness. For example, noise may perform as a trigger for phenotypic variability
and different types of dynamics; see [11, 26]. Rather than considering deterministic
ordinary differential equations, noise-perturbed systems for continuous-time are usu-
ally described by stochastic differential equations. For practical purposes, one of the
main goals in the analysis of stochastic feedback systems is to consider the long-term
behavior of solutions and establish various types of stochastic stability, including ex-
ponential stability in mean square, globally asymptotical stability in probability, and
almost sure stability; see [9, 10, 24, 25, 28, 39, 40, 42], where the main method used
is to construct Lyapunov functions.

This paper will make use of the theory of random dynamical systems (RDS) es-
tablished by Ludwig Arnold and others, [1, 6]. If the stochastic system admits the
stochastic comparison principle, i.e., the system is cooperative or monotone, the pow-
erful theory of monotone random dynamical systems can be applied to investigate
the global stability of stochastic flows; see [1, 6]. However, if the stochastic flow is
not monotone, the global stability analysis still is a challenging work. Recently, the
theory of random dynamical systems has been developed to investigate the stabil-
ity of feedback systems involving real noise perturbation by Marcondes de Freitas
and Sontag [12, 13, 14], providing new insights to consider nonmonotone systems.
Specifically, they proved the existence of a globally attractive random equilibrium for
random systems with inputs and outputs by iterating the gain operator K" (u); this
random equilibrium is usually nontrivial and only qualitatively exists. However, their
methods and results cannot directly be applied to investigate stochastic feedback sys-
tems driven by Brownian motion. The biggest difficulty is the perfection of the crude
cocycle p(t,w,z,u) for nonautonomous stochastic systems with input u, as analyzed
in Remark 3 of [21]. Motivated by [14], the present authors [21] considered the global
stability of nonlinear stochastic feedback systems driven by additive white noise. Sup-
pose that the output function is either order-preserving or anti-order-preserving in the
usual vector order and the global Lipschitz constant of the output function is less than
the absolute of the negative principal eigenvalue of linear matrix; we directly consider
the existence and uniqueness of globally attracting fixed points of stochastic feedback
systems via the Banach fixed point theorem.

When we investigate the feedback problems originating from biology, ecology, and
biochemistry, etc., it is more realistic to restrain the state space on the nonnegative or-
thant ]Ri. For these problems, we have to consider stochastic feedback systems driven
by multiplicative white noise, which usually preserve the invariance for solutions on
the nonnegative orthant Ri. These types of SDEs often appear in some applications
including diffusion models in population dynamics [3]. In the study of such SDEs, one
of the most interesting things is to consider the existence, uniqueness, and domain of
attraction of stationary solutions (or quasi-stationary distributions), which represent
some absorbing states; see [3]. This paper is a continuation of the paper [21]. We
will assume that the output functions (feedback functions) possess bounded deriva-
tives or are uniformly bounded away from zero. In both cases, we will prove that
there exists a globally stable positive random equilibrium (stationary solution) in the
nonnegative orthant Ri for the corresponding random dynamical systems, where the
global stability means that all pull-back trajectories originating from nonnegative or-
thant converge to this positive random equilibrium (stationary solution) almost surely.
Our results can be successfully applied to a well-known stochastic Goodwin negative
feedback system, Othmer—Tyson positive feedback system, and Griffith positive feed-
back system as well as other stochastic cooperative, competitive, and predator-prey
systems.
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The remainder of this paper is organized as follows. Section 2 contains the con-
sidered problem, some preliminary definitions, notation, and the definition for the
input-to-state characteristic map. Section 3 specifies the measurability of pull-back
trajectories and the metric dynamical system 6 and the dynamical behavior of stochas-
tic flows, and shows some relative order-preserving results. Section 4 presents two
stochastic stability theorems, which are applied to a series of examples. Section 5
ends this paper with some concluding remarks and discussions.

2. Problem and preliminaries. In this section, we will investigate a stochastic
biochemical model consisting of d interacting components, which may be more realistic
for describing and simulating the dynamical behavior of biochemical networks under
fluctuations of intrinsic and extrinsic noise. Let X; represent the ith variable of
biochemical reactions (protein concentrations or levels of gene expression), which can
be modeled by the following nonlinear stochastic system with multiplicative white
noise

d
(2.1) dX, = [AX, + W(X)]dt + > o X dWF,
k=1
where A = (a;j)qxq and oy, = (ag)d 4 are (d x d)-dimensional matrices, k =1,...,d,
h:RL — RY, and Wi(w) = (Wl(w),..., W(w)) is an R%-valued two-sided Wiener
process on the probability space (£2, 9 IE”) Where Z is the Borel o-algebra of Q =
Co(R,RY) = {w = (w1,ws,...,wq) € C(R,RY), w(0) = 0} induced by the compact-

open topology, which is generated by the following metric:

1 Qn w, w*) . N
am 1 7 N n 9 - t - t b
E: on on( 5’ on(w,w™) teII[lagfn] |w(t) —w*(t)]

and P is the corresponding Wiener measure. Furthermore, we will be concerned
with the dynamical behavior of stochastic differential equations on the nonnegative
orthant Ri. For this purpose, we assume that o, k = 1,...,d, has the following form
throughout this paper:

1
Ok

(2.2) o) = , ol €R, kyi=1,...,d.
o
For the convenience of readers, we will give some definitions and notation of
random dynamical systems for later use; see [1, 6] for more details.
In this work, let X be a Polish space endowed with the Borel o-algebra %(X),
i.e., a separable complete metric space, and (§2,.%#,P) a probability space.

DEFINITION 2.1. 0 = (2, .Z,P,{0,,t € R}) is called a metric dynamical system if
(i) 0:RxQ—Qis (BR)® F,F)-measurable;

(ii) B9 = id is the identity on Q2 and 0; 0 05 = 014 for all t,s € R;

(iii) ;P =T for allt € R, i.e., 6, preserves the probability measure P for allt € R.

DEFINITION 2.2. A random dynamical system on the Polish space X consists of
two elements: a metric dynamical system 0 = (Q, F,P,{0;,t € R}) and the mapping

PRy xOx X=X, (tw,x)— ot,w, ),
which is (B(Ry) @ F @ B(X), B(X))-measurable and satisfies the following:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/18 to 58.40.253.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

GLOBAL STABILITY OF STOCHASTIC FEEDBACK SYSTEMS 2221

(i) p(t,w,): X = X is continuous for allt € Ry and w € §;
(ii) the mappings p(t,w) := p(t,w,-) satisfy the cocycle (over 6) property:

p(0,w) =id, @(t +s,w) = o(t,0:w) 0 p(s,w)

forallt,s € Ry and w € Q.

DEFINITION 2.3. The multifunction D : Q — 2X\{@} is said to be a random set
if the mapping w — distx (v, D(w)) is measurable for any x € X, where distx (z, B)
means the distance in X between the point x and the set B C X. If D(w) is closed
(resp., compact) in X for each w € §, the mapping w — D(w) is called a random
closed (resp., compact) set.

Motivated by the work of [14, 21], the above stochastic model can be rewritten
as a stochastic system with inputs

d
(2.3) dX; = [AX; + u(t)ldt + > or X dW}
k=1
together with outputs
u(t) = h(Xy).

From this viewpoint, we can regard the nonlinear feedback function u(t) = h(X;) as
a known stochastic process, which results in the fact that the stochastic system (2.1)
will become a linear nonhomogeneous stochastic differential equation.

Let us first consider the corresponding linear homogeneous stochastic It6 type
differential equation

d
(2.4) dX; = AXydt + ) 0, X, dWF,
k=1

which is equivalent to the following system of Stratonovich stochastic differential
equations:

d
1
(2.5) X, = <A - 50) Xydt + Y op Xy 0 dWY,
k=1

where we write C in the form
v
> (o)
k=1
(2.6) C =
4 e
> (o})
k=1

In order to make use of the technique of monotone systems, it is necessary to
make the following assumption on A:

(A) Ais cooperative, i.e., a;; > 0 for all 4,5 € {1,...,d} and i # j.

We will denote by ®(t) = (®1(t),...,P4(t)) = (Pij(t))dxa the fundamental ma-
trix of (2.4), where ®;(t) = (®1;(t),...,®4(t))T is the solution of (2.4) with initial
value z(0) = ej, j = 1,...,d. By the classical existence and uniqueness of solutions
for stochastic differential equations and the theory of monotone random dynamical

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/18 to 58.40.253.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2222 JIFA JIANG AND XIANG LV

systems, it is clear that (2.4), i.e., (2.5) generates a linear order-preserving random
dynamical system (6, ®) in R% (see [6, Proposition 6.2.2, p. 186]), where 6 is the time
shift on €, i.e.,
bw(-) i=w(t+-) —w(t), teR.
That is, ® satisfies the cocycle property: ®(t + s,w) = ®(¢,0sw) o P(s,w) for all
t,s € Ry, we Q, and ®(t,w)z >Rt ®(t,w)y for all z,y € RY such that x >Rt Y,
where x ZRi y means that x —y € R‘j_. Furthermore, the following assumption on
(0, ®) will be needed in what follows:
(L) The top Lyapunov exponent for the linear random dynamical system (6, ®)
is a negative real number, i.e., there exist a constant A > 0 and a tempered
random variable R(w) > 0 such that

(2.7) |®(t,w)]| := max{|®;;(t,w)| :4,j =1,...,d} < R(w)e ™

holds for all t > 0, w € Q.
Here, a random variable R(w) > 0 is called tempered if

sup {e*”w |R(9tw)|2} <oo forallweQandy >0,
teR

where || = (Z‘ii:l |z;)2)2, € R%. Throughout this paper, we will use the norm
2| == max{|z;| :i=1,...,d}, v € R and ||®]|2 := (X7, [®4*)F, & € RIxC,

In the remainder of this section, we are concerned with the existence and unique-
ness of solutions for (2.1) and its pull-back trajectories; we shall make the following
assumption on h, which is abstracted from the Othmer—Tyson positive feedback model
[38] and the Goodwin negative feedback model [15]:

(Hy) h e CY(R%,R% \ {0}) and is bounded in R%. Moreover, we assume that h is
monotone, i.e.,

T <t T2 = h(z1) <m¢ h(z2) for all x1,z, € R
or antimonotone, i.e.,
T Spe T2 = h(z1) ZRd h(z2) for all z1,z2 € Ri.

By (H;), it is easy to check that (2.1) satisfies the conditions of local Lipschitz and
linear growth (since h is bounded in R% ) in R%. Motivated by the proof of Proposition

6.2.1n [6], let 2 be an extension of h from R? to R such that h satisfies the conditions
of local Lipschitz and linear growth in R?%; we thus have the existence and uniqueness
of global solutions for

d
dX, = [AX, + M(X)|dt + > op Xy dWF
k=1

(see [28, 32]), which is equivalent to the Stratonovich interpretation of stochastic
differential equations

d
1 ~
dXt = |:<A — §O>Xt + h(Xt):| dt + ZUkXt O thk,

k=1
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where C' is defined in (2.6) and generates a random dynamical system in R%; see
[1, Chapter 2], [6, Chapter 2]. In the same manner of Proposition 6.2.1 in [6], we
can see that there exists a unique (indistinguished) random dynamical system (6, )
generated by (2.1) such that the set R% is forward invariant, i.e., p(t,w)RL C RY for
allt € Ry, w € Q, and ¢(t,w)r = x(t,w, ) is the unique solution of equations (2.1)
for each initial value z(0) = z € RY.

Combining the variation-of-constants formula [28, Chapter 3, Theorem 3.1] and
the cocycle property of ®, it follows that

o(t,w)r = (t,w)x + @(t,w)/o O (s,w)h(p(s,w)x)ds
(2.8) =®(t,w)z + /t O(t — s,0sw)h(p(s,w)x)ds, t>0, w el
0

By the definition of 6, a similar analysis as in [21] shows that the pull-back
trajectories of (0, ¢) are as follows

t
o(t, 0_tw)x = O(t,0_w)x + / D(t — s,05_1w)h(p(s,0_1w)x)ds
0

0
(2.9) =®(t,0_w)x +/ D(—s,0,w)h(p(t + s,0_w)x)ds, t >0, w e Q.

—t

Regarding the feedback function h as an input term, we define the input-to-state
characteristic map K associated with given inputs in R‘i as follows:

0
(2.10) K(w)](w) = / O(—s,0sw)u(fsw)ds, w e Q,

— 0o

where v is an Ri—valued and tempered random variable with respect to 6.

Remark 1. Since the top Lyapunov exponent of ® is negative, it is evident that IC
is well defined. We first observe the fact that | ®(t,w)||2 < d||®(t,w)| < dR(w)e™ ™,
A > 0. According to the above definition, we have

‘/OOO O(—s,0,w)u(fsw)ds

2

0
< / |D(—s, Osw)u(fsw)|, ds

0
<d / R(Bsw)e™ M u(.w)|2ds
) A A 0 A
< dsup {e_zlt‘ |u(9tw)|2} sup {e_z‘”R(Qtw)} . / e 25l gs,
teR teR —00

< 00, w E Q,

which together with the Lebesgue’s monotone convergence theorem [7] implies that

0
lim O(—s,0,w)u(fsw)ds

t—o0 ¢

exists for all w € Q and Ri—valued u by the order-preserving property of ®. Further-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/18 to 58.40.253.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2224 JIFA JIANG AND XIANG LV

more, due to the boundedness of h and (L), we similarly have that {o(¢,0_tw)x : t >
0} is a bounded set for all w € Q and x € R%, which plays an important role in the
subsequent sections.

3. Measurability and behavior of random dynamical system generated
by SDEs. In this section, we will divide the proof of our main results into a sequence
of lemmas and establish some propositions related to the measurability of the metric
dynamical system 6 with respect to the product o-algebra Z(R_) ® Z_ and the
dynamical behavior of pull-back trajectories. In what follows, we may repeat some
known results without proof to make our exposition self-contained. We start with
definitions of future and past o-algebras, which can be found in [6, §].

PROPOSITION 3.1. Define the future and the past o-algebras for (6, ®) and (6, @)
as follows:
Fi =o{w O(1,0w)r:x €RY, t,7 >0},

Fl=c{lw d(r,0_w)z:xc Ri, 0<7 <t}
F2 = o{w— o(r,0w)z : x € R, t,7 >0},
F2 =c{w p(r,0_w)r:zeRL, 0< 7 <t}

Then, we have

(3.1) ﬁ}r C Fy, FLc 7,
and
(3.2) ﬁi C Fy, F2CcF_.

Here, %, and %_ are defined by
Fy=c{w—Wi(w):t >0} and F_ =oc{w— Wi(w):t <0}

Proof. We only give the proof of (3.1), (3.2) can be obtained analogously. By the
theory of stochastic differential equations, it is clear that ®(¢,w)z is adapted to the
filtration Z¢ = o{w — Wi(w) : 0< s <t},t>0,x € Ri. Consequently, for fixed
zeRL, t,7 >0, it follows that

o{w s ®(1,0w)x} C 0, F]
=c{wr— W(bw):0< s <7}
=o{w = Wp(w) —Wi(w): 0< s <7}
C Fy,

which implies that .#} C %, . Similarly, for any given z € R‘i, 0 <7 <t, we have

o{w = O(1,0_w)z}y C O +.F]
=c{w— W(0_w):0<s< 7}
=of{w— W (w) = W_(w): 0< s <7}
Cc 7,

which gives that Z1 C Z_, and (3.1) is proved. The same proof works for (3.2). O
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By definitions of # and the metric ¢ on the space Q = Cy(R,R?), it follows
immediately that 6 : R x Q +— € is continuous; see [1, Chapter 2, pp. 74-75]. For the
purpose of readability and making this paper self-contained, we present a proof of the
continuity of 8(-,w) : R — Q for all w € Q, which is sufficient for our discussion.

PROPOSITION 3.2. For any w € Q, 6(,w) : (R,]-]) — (2, 0) is continuous.

Proof. Given fixed tg € R and w € , let {tx}ren be a sequence in R such that
tx — to as k — co. We only need to show that o(f;,w,0,w) — 0, i.e., o(w(tr + ) —
w(tr),w(to + ) — w(to)) — 0. Observe that for all £ > 0, there exists N = N(¢) € N
such that

=1 t—I—)—w(t),w(t +)—w =1
232_ k k 0 22_

—I— on(wlty + ) — wlty),w(to+ ) —w to
The proof is completed by showing that for all 1 < n < N, we have
on (w(ty + ) — w(ty),w(to + ) —w(ty)) =0, as k — oo.

Since t — to, it is obvious that {¢j}ren is bounded, which yields that there exists
My > 0 such that |t;+t| < My and |to+t| < My uniformly for all k € N, ¢ € [-n,n],
1 <n < N. On the other hand, we note that any continuous function on a closed and
bounded interval [a, ] is uniformly continuous, which reveals that for all 1 <n < N,

on (W(te + ) — w(tr),w(to + ) — w(to))

= ter[nax lw(ty + 1) — w(ty) —w(to +t) + w(to)]

< max folti o+ 1) ot + 0] + (te) — w(to)

—0, as k— .

The proof is complete. O

PROPOSITION 3.3. 0 : R_ X Q — Q is (B(R_) @ F_,.F_)-measurable and 0 :
Ry x Q= Qis (B(Ry) ® Fy\, Fy)-measurable.

Proof. The proof of this proposition is mainly motivated by the proof of Lemma
3.14 in [2]. For convenience, we only deal with the case of time R_, and the rest of
this proposition can be obtained analogously. First, for any ¢ < 0, we have

0, 7_ =0 o{w— W,(w):s5<0}
=co{w— Ws(fw) : s <0}
=o{wr Wepi(w) = Wi(w) : s < 0}
C F_,

which implies that 6(¢,-) : (Q,.7#_) — (£, .%_) is measurable for any ¢ € R_. More-
over, let {t,}52,; denote a dense sequence in R_. For any p > 1, p € N, define
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Op(t,w) = O(t,,w), where n is the smallest integer such that ¢ belongs to the open
interval B(t,, %) ={s e R_:[s—t,| < %} Note that 6, is equal to the map
(t,w) — O(t,,w) on [B(tn,%) - Um<nB(tm,%)] x Q, and so for any F € Z_, it

follows that
w=O{mrn{[s(e) - U o)) o))
{ mgnB( . —)] X ang}

)®F_.

C8

This yields that 6, is (Z(R_) ® .Z_,.#_)-measurable. It is well known that F#_ =

P, (§2), which is the Borel o-algebra generated by open sets with respect to the

pseudometric o~ ; see [1, 22]. Here, the pseudometric o~ is defined as follows:

_ . 1 0, (w,w*) _ . .
:_ e g t - t .
0 (w,w") nE T+ g (@) 0, (w,w") [ |w(t) —w*(t)]

Therefore, 0, is (B(R-) ® F_,%,- (2))-measurable for all p € N. By Proposition
3.2, it is clear that under the metric g, 0,(t,w) — 0(t,w) as p — oo for all ¢ € R_
and w € Q, which together with the fact that o~ (w,w*) < o(w,w*) imply that under
the pseudometric o~, 8,(t,w) — 0(t,w) as p — oo for all t € R_ and w € Q. Then
by Theorem 21.3 in [35], it follows that 6 : R_ x Q — Q is (B(R_) ® F_, Z,-(Q))-
measurable, i.e., (B(R_) ® #_,.#_)-measurable. The proof is complete. O

PROPOSITION 3.4. For any .%_-measurable tempered random variable u in R‘i,
K(u) is a random variable with respect to the o-algebra F.

Proof. By Proposition 3.3, it is immediate that § : R_ x Q — Q is (B(R_) ®
F_,.Z_)-measurable, which shows that u(fiw) is (Z(R_)®.%_, (R ))-measurable.
Moreover, it is known that

(t,x) — ®(t,0_w)x is continuous, w € €,

from Ry xRY into RY ; see Remark 1.5.1in [6]. Thus, ¢ — ®(t,0_4w) is also continuous
from R, into RiXd, w € Q. This, together with the fact that w — ®(¢,0_w),
t € Ry, is #_-measurable by Proposition 3.1, yields that ®(t,0_.w) is (Z(R1) ®
F_, BRY*?))-measurable by Lemma 3.14 in [2]. Combining the definition of K
and Fubini’s theorem, it is easy to get the measurability of C(u). We complete the
proof. a

PROPOSITION 3.5. For any 7 > 0, define

M (w) = inf {h(p(t,0_w)x) : t > 7}

and

nt(w) =sup {h(pt, 0_w)z): t > 7}, z€RL, we.

Here inf and sup represent the greatest lower bound and the least upper bound, respec-
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tively. Then " (w) and n*(w) are F_-measurable random variables. More precisely,
they are random variables with respect to F2.

Proof. First, we claim that £?(w) and 1 (w) are random variables with respect to
Z. The proof is similar in spirit to Proposition 3.2 in [21], and we omit it here. Since
h(p(t,0—w)z) is an F2-measurable random variable, t > 0, z € R%, by the virtue
of the proof of Proposition 3.2 in [21], we have £"(w) and n(w) are .#2-measurable,
and due to Proposition 3.1 we can obtain the required conclusion. The proof is
complete. a

LEMMA 3.6 (see [14, Lemma A.2]). Assume that (x4)aeca @S a net in a normed
space X with a solid, normal cone X1 C X, which defines a partial order on X.
Furthermore, suppose that the net converges to an element xo, € X, and

+

x, =inf{ry 1 > a} and z} :=sup{zy :d > a}
exist for every a € A. Then the nets (z,, )aer and (x})aeca also converge to ro.

LEMMA 3.7. Let assumptions (A), (L), and (Hy) hold. Then
(3.3) K(0 —1lim h(p)) <0 —1lim ¢ <0 —1lim ¢ < K(0 — lim h(yp)) for all w € €,
where

[0 —lim h(p)](w) := lim &(w) = lim inf{h(p(t, 0_w)z):t>7}, 2RI, we,

T—00 T—>00

and

[0—Tim h(p))(w) == lim n*(w) = lim sup{h(p(t,0_w)z): t>7}, z€RL, we.
T—00

T—>00

In this way, 6 — lim ¢ and @ —lim ¢ can be defined similarly.

Proof. To prove (3.3), we start with the first inequality in (3.3). We first observe
that

inf{p(t,0_w)z 1t > 7} =inf {p(t,0_w)z: t > 7}, zeR!, we,

and

inf{h(p(t,0_w)z) : t > 7} = inf {h(p(t,0_w)z) : t > 7}, 2RI, we,

by Lemma A.1 in [14]. By the boundedness of pull-back trajectories for (2.1) and
h, in the same manner as the proof of Proposition 3.5, we can see that well-defined
6 — lim h(y) and 6 — lim ¢ are two (Z_, Z(R%))-measurable random variables. Due
to the boundedness of h, § — lim h(y) is a tempered random variable. Hence, (0 —
lim h(yp)) is an (F_, B(R4))-measurable random variable by Proposition 3.4.

It follows from the definition of 6 — lim h(y) that

[0 —lim A(p)](w) = lim & (w), we,

T—>00

which together with the Lebesgue’s dominated convergence theorem [7] implies that
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K(6 ~lim h(p)) = lim K(&),

where &, (w) = inf{h(p(t,0_w)z) : t > 7}, v € RY, w € Q. Now we choose an
increasing sequence of time {7, } nen such that 7, T oo and it is sufficient to show that

K& )<0-limyp, weN, neN.

It is evident that for all z € R%, w € Q, hm O(t,0_tw)x = 0. Therefore, for any
7, > 0, by the definition of I, it follows that

(K (& )](w)
0
= [ O (—s,0sw) inf{h(p(t,0_10)x) : t > 7, }(Osw)ds

0
= / O(—s, 0sw) inf{h(p(t,0_t1sw)x) : t > 7 }ds

— 00

0
= lim {@(f, 0_jw)x —|—/ D(—s, 0w)inf{h(p(t,0_t1sw)z) : t > Tn}ds}
t—o00 T f
t>7,

0
= lim inf {(b(f, 0_sw)x +/ B(—s, Ouw) inf{h(p(t, 0_11w)z) : t > T }ds i T > T}

n—t

n—t

T>Th

IN

0
Jim_inf {(b(f, 0_sw)x +/ B(—s,0sw)h(p(t + 5, 0_jw)z)ds : T > 7'}

T>T, Tn—t
~ 0 ~ ~
< lim inf {q)(t, 0_;w)x —|—/ D(—s,0:w)h(p(t +s,0_jw)x)ds : t > T}
T—>00 7{

= [0 — lim ¢|(w) for all w € Q.

Here, the above inequality follows by Lemma 3.6, the order-preserving property of
® and the positivity of h. The rest proof of (3.3) runs as before. The proof is
complete. ad

LEMMA 3.8. Let assumptions (A), (L), and (Hy) hold. Then h possesses the
following properties:
(i) If h is monotone, then
(3.4)
h(0 —lim ¢) < 0 — lim h(p) < 0 —lim h(p) < h(f —lim ¢) for all w € Q.

1. If h is anti-monotone, then
(35) L
h(6 —Tim ¢) < 6 — lim h(p) < 6 —Tim h(p) < k(0 —lim ¢) for all w € Q.

Proof. The proof of this lemma is very similar to that of Lemma 3.4 in [21], and
we omit it here. 0

LEMMA 3.9. Let assumptions (A), (L), and (Hy) hold. Then
(3.6) K" <6 —1lim o <6 —lim ¢ < K(n) for all w e Q and 7 > 0.

Here £"(w) and n®(w) are defined in Proposition 3.5. Moreover, let K" := hoK. Then
the following hold:
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(i) If h is monotone, then for any 7 >0 and k € N

(3.7) (KM g") < 0~ lim h(w) < 0 — T A(p) < (K" (n") for all w € Q.
1. If h is anti-monotone, then for any 7 > 0 and k € N

(3.8) (KM2(€M) < 0 — Tim h(g) < 0 —Tim h(g) < (K")*(5") for all w € Q.

Proof. The proof of this lemma is very similar to that of Lemma 3.5 in [21], and
we omit it here. 0

4. Global stability theorems. In this section, we mainly consider two kinds of
output functions (feedback functions): one is that derivatives of h are bounded and the
other is that h is uniformly bounded away from zero. We shall establish two theorems
for guaranteeing the existence and uniqueness of positive random equilibrium and
almost surely global stability of pull-back trajectories.

4.1. Type one: Derivatives of h are bounded. In this subsection, we will
state a global stability theorem in the case that derivatives of h are bounded and
apply it to well-known stochastic feedback systems. In what follows, we shall propose a
natural condition that the tempered random variable R(w) given in (L) is independent
of the o-algebra #_ = o{w — Wi(w) : t < 0}. Assume that (L) holds. Then it is
easy to see that the random variable R(w) := sup{e*||®(¢,w)|| : t > 0} is measurable
with respect to the o-algebra #4 = o{w — Wi(w) : ¢ > 0}, which is independent of
F_ = o{w— Wi(w) : t <0} by the definition of the two-sided Wiener process; see [1,
Chapter 2, p. 107]. This implies that such an R is independent of .%_. Nevertheless,
we still put this independence in our condition (R) because other choices of R(w) may
not be %, -measurable. Moreover, we assume that the tempered random variable
R € LY, #,,P), which will be illustrated in our examples.

LEMMA 4.1. Let assumptions (A), (L), and (Hy) hold. Assume additionally that
the following conditions on R and h are satisfied:
(R) Let R e LY(Q, Z,P;Ry) and be independent of the o-algebra F— = o{w
Wi(w) : t <0}.
(Ha) Let M = max{supgﬁeﬂ{dz+ |ag;(jz)|,i,j = 1,...,d} such that w < 1,
where |R| ;1 =ER = [, R(w)P(dw).
Denote by LY = £Y(Q,.Z_,P;[0,1]) the space of all F_-measurable functions f :
Q — [0,T] (which must be integrable), where I' = (I'y,...,T'q), I'; = SUp, Rt |hi ()],

i=1,...,d. Then the space is complete under the metric ||u|z» = Elu|, u € L and
the operator K" = ho K : (LY |||+ |lz1) = (L% || - |lz1) is a contraction mapping.
Proof. Since [0,T] is closed in R%, it is clear that || - |1 defines a metric on

L£1(Q, Z_,P;[0,T]) and the space endowed with this metric is complete.

We now turn to prove that " : LY — LY is a contraction mapping. Let us
first point out that K" : LY — LY is well defined by Propositions 3.3 and 3.4, i.e.,
given any .#_-measurable random variable u in £} , K"(u) is an .#_-measurable

random variable in £, . Next, we observe that

sup || Dh(z)]| < M,

d
z€RY

where Dh(x) is the Jacobian of h. Note that |®z| < d||®| - |z| for all z € R? and
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® € R4*4 and then for any fi, f2 € £L1(Q, #_,P;[0,T]), we have

1
1" (1) = K (£2)ll 1 = El /O Dh[K(f2) + p(K(f1) = K(f2)ldp - [K(fr) = K(f2)]]
< d sup [|[Dh(z)[| - E[K(f1) = K(f2)]

d
z€RY

0 0
< MdE / O(—s,0,w) f1(0sw)ds — / O(—s,0,w) f2(0sw)ds

— 00 — 00

0
< Md*E / 10(=5, 0.0)]| - |f1(Bu) — fo(Bu0)lds

— 0o

0
< Md®E / A R(030) | f1(0s0) — fo(Bs0)|ds

— 0o

0
= M2 / o /Q R(@)|f1(w) — folw)|P(dw)ds

0
= Md°ER-E|f, — f2|/ eMds

MR
= S - Bl

where the third-to-last equality holds because of 8;P = P, ¢t € R, while the second-to-
last equality has used the independence between R and .%_. The proof is complete. 0

Suppose that there exists a random equilibrium v(w) such that lim;_, o (¢, 0_sw)x
= v(w). Then v must be .#_-measurable. Thus, the most right choice is to choose
input space to be a subspace of .#_-measurable space. Measurability with respect
to (BR_) ®@ F_,.7_) for 6 : R_ x Q — Q (see Proposition 3.3) makes us obtain
Z_-measurability for the input-to-state characteristic operator K(u) if u is tempered
and .#_-measurable (see Proposition 3.4). By choosing £}, to be the input space,

the operator K" : £, — £ is well defined. With the help of the condition (Hz)
and the independence between R and the past o-algebra .%_, we get the contraction
for the operator K. Let u be the fixed point of the operator X". Then the image of
the input-to-state characteristic operator IC(u) for this fixed point will be a globally
attracting positive random equilibrium for the pull-back flow of (2.1), which will be

confirmed in the following global stability theorem.

THEOREM 4.2 (global stability theorem I). Let assumptions (A), (L), (Hy), (Ha),
and (R) hold. Then there exists a unique fized point u € L*(Q, F_,P;[0,T]) for the
operator K" such that for any x € R‘j_

(4.1) tlggo ot 0_w)z = [K(u)](w) P-a.s.

Furthermore, we have o(t,w)[K(u)](w) = [K(u)](brw), P-a.s., t > 0, i.e., [K(u)](:) is
a globally attracting positive random equilibrium in Ri.
Proof. Fix 7 > 0. Whenever h is monotone or antimonotone, for convenience, by
Lemma 3.9, it follows immediately that
(4.2) L
(K™M)2R (€M) < 0 —lim h(p) < 0 —Tim h(p) < (KM)?*(n") for all w € Q and k € N.

Clearly, ¢" and n” are bounded .#_-measurable variables in £1(Q,.Z_,P;[0,T]) by
Proposition 3.5. Combining the Banach fixed point theorem [41] and Lemma 4.1,
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there exists a unique random variable v € £1(Q,.Z_,P;[0,T]) such that
[K"(w))(w) = uw(w) P-as.
and

(4.3) Tim E[(K")?(€h) — ] = lim E|(K") (1) — u| =0,

1 1
Le., (KM)2*(€h) £ w and (K")2¢(nh) < u, which implies that (K?)2%(€") & u and
(KCh)2k () B, 4. Therefore, for any « € R, there exists a subsequence {k;};en such
that

(4.4) lim [(KC")? (€1)](w) = u(w) = lim [(K*)*5 (n}))(w) P-as.
j—oo j—oo

The proof of (4.1) follows by the similar arguments as in Theorem 4.2 in [21]. Fi-

nally, we show that [IC(u)](w) > 0 for all w € Q. Combining the fact that u(w

[K" (u)](w) > 0 for all w € Q and Proposition 6.2.2 in [6], it follows that [C(u)](w)

for all w € Q. The proof is complete.

Remark 2. If h € C'Y(R4,intR%), by Corollary 6.3.1 in [6], it is clear that
o(t,w)(RE\{0}) C intR<. This implies that ¢(t, 6_w)[K(u)](0_w) = [K(u)](w) > 0,
w €, t>0. Here, x > y means that x —y € intR"} for all z,y € R™.

Remark 3. Assume that h € C'(RY,R%) and h(0) = 0. Then the origin is an
equilibrium for (2.1). Theorem 4.2 still holds in this case, that is, if all conditions in
Theorem 4.2 are satisfied except h(x) # 0, then the origin is globally attracting. The
proof is the same.

) =
>0

]

Usually, almost all feedback systems in gene regulation mainly focus on the exis-
tence and global stability of nontrivial positive stationary motion, such as the positive
equilibrium or closed orbit, rather than the trivial solution zero. For these kinds of
positive and negative feedback systems perturbed by multiplicative white noise, re-
searchers are mainly interested in the existence and global stability of nontrivial posi-
tive stationary solution. In what follows, we will show the efficiency of our result. Our
Theorem 4.2 works for the stochastic Goodwin negative feedback system, Othmer—
Tyson positive feedback system, and Griffith positive feedback system as well as other
stochastic competitive systems with multiplicative noise. Our main task is to check
the conditions (L) and (R) in order to use Theorem 4.2; in other words, we need to
choose a suitable A > 0 and .%,-measurable random variable R € £1(Q, .7, ,P;R)
such that (Hz) holds. During this process, the key point is to estimate the expectation
of R.

Now we consider stochastic single loop feedback system

(4 5) dry = [—a1$1 + f(ﬁn)]dt + lel.thl,
) dr; = [{Eifl — Oéiﬁi]d/t + Uiﬁithl, 2 <1< n,

where o; >0 fori=1,...,n and f € C}(Ry,Ry), i.e., f and its derivative are both
bounded in R;. Moreover, we assume that f is increasing or decreasing in Ry. The
corresponding linear homogeneous stochastic It6 type differential equations is

(4.6)

dry = —oqz1dt + lelthl,
dr; = [{Eifl — Oéiﬁi]d/t + Uiﬁithi, 2 <1 <n.
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By the variation-of-constants formula, we can easily calculate the fundamental matrix
D(t,w) of (4.6) as follows.

P11 (t,w) 0 e 0

(I)Ql(t, w) ‘I)Qz(t,w) s 0
(4.7) O(t,w) = . .

D1 (t,w) Ppa(t,w) - Pun(t,w)
for all £ > 0 and w € Q, where
(4.8) it w) = e~ (@itzoDiHa W),

t
(49) @ij(t,w) = @ii(t,w)/ @;1(87w)@i,1)j (s,w)ds, 1 S] S i — 1,
0

foralli=1,...,n. Let A = min{aq,...,a,}. Then it is easy to check that

1
n+1
Dii(t,w) < o~ [+ DA+ L 02t 0 W ()
— o (A BoR oW () (1)
(4.10) SN

for all £ > 0 and w € €2, where

1 ,
(4.11) R;(w) = supexp <—(i)\—|— gaf)t—I—Uthl(w)) , i1=1,...,n.
t>0
Next, we show that R;(w) is a tempered random variable for all i = 1,...,n. For any

w € Q and v > 0, by (4.11), it follows that

sup {677‘7‘ |Ri(9To.))|}

TER
1 , .
= sup {sup exp <—’y|T| - (i)\ + —01-2) t+ oW, (w) — crl-WTZ(w)) }
TeR L t>0 2
A B; . ABi .
< sup {sup exp <—7 P [t + 7|+ athﬁrT(w)) exp (—7 p || — crl-WTz(w)) }
rek Lt>0 2 2
N D . N D i
< sup exp (_7 p t] + othZ(w)> sup exp (_7 p |7 — oiWT(w)>
teR 2 T€R 2
< 00,

where B; = i\ + %01.2 for all i = 1,...,n and the last inequality holds because of the
law of the iterated logarithm of Brownian motion. In what follows, we claim that

(412) (I)ij (t, OJ) < Rj (w)EjJrl (w) . Ri(w)ef(nJrlfi))\t

forall 1 < j <i—1, where

(4.13) Ri(w) = /0 h Ri(O.w)eds
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is also a tempered random variable for all ¢ = 1,...,n. Indeed, given any w € € and
~v > 0, from (4.13), we can see that

sup {eﬂm ’ﬁi(eTw) ‘} = sup {evm /O°° eAsRi(aerTw)ds}

< sup{/ e~ e 2 IstTIR, (93+Tw)ds}
0

TER

< sup {e‘¥|7| |Ri(97w)|}/0 e~ % ds

TER
< 00,

where the last inequality holds because of the temperedness of R;(w) for all 4
1,...,n. In order to check (4.12), we only present the proof of ®o; (¢, w) and P31 (¢, o.))
the rest can be analogously completed by induction. Combining (4.8), (4.9), (4.10),
and (4.11), it is clear that

t
(I)gl (t,w) = / (I)gg(t — S, st)cbll(s,w)ds
0

t
S/ e—[(n+1)A+%o§](t—s)+02WE_s(GSw)Rl(w)e—n)\sds
0
t
g/ Ra(fow)e” mDAE=I Ry (w)e ™o ds
0
ge*("*l))‘tRl(w)/ Ry (B,w)e™ds
= Ri(w)Ry(w)e (m 1N
and
t
<I>31(t,w):/ CI>33(t—s,93w)<I>21(s,w)ds
0
t
< / DA+ a3 WL (0.0) B (1) By (w)e— ("D
0
t
S/ R3(6‘Sw)e*("72))‘(t s R( )RZ( ) (n— l)Ast
0

Sef("%))‘tﬁ’l(w)ég(w)/ R3(O,w)e™*ds
0

= Ry (w)Ry(w)Rsg(w)e ("2

for all t > 0 and w € Q. Furthermore, we note that for all w € Q, R;(w) > 1, which
implies that R;(w) > 1 and

ij(t,w) < Rj(w) Ry (w) -+ Ry(w)e (=X
SANTRj(W) R () - Ri(w) Riga (w) -+ R (w)e ™
< max{1, A" IR (w) Rj11 (W) - Ri(w)Riga(w) -+ Ry (w)e ™
forall1<j<i—1,i=1,...,n. Let

(4.14) R(w) := max{1, \"~ 1}\/R JRji1(w)- - Ry(w),
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which yields that R(w) is tempered and
@ (t,w)|| == max{|®;;(t,w)| :4,j =1,...,n} < R(w)e ™™, ¢>0, we.

Next, we will show that R € L£Y(Q,.%,,P;R,). In fact, for all i = 1,...,n,
it is obvious that R; is #%-measurable, where % = o{w + W}(w) : t > 0}. Con-
sequently, R; is .%,-measurable for all 4 = 1,...,n. Furthermore, for fixed ¢t > 0,
it is obvious that e~ (M 3od)tHoi (Wi (@) =W'() ig continuous for all w € € and
e~ (At 309)t+0i (Wi ()=WI() is o7 measurable for all s > 0 and i = 1,...,n, which
together with Lemma 3.14 in [2] implies that for any ¢t > 0

(s,w) — e~ A 3oDtHo (WL @)-WIW) o> ueq,
is (B(R4) ® o, B(R))-measurable. Then, by (4.11), it follows that

(s,w) = R;(0sw) = sup e_(i)‘+%‘73)t+‘”(W?i+s(”)_W§(”)), $>0, we
>0

is also (B(Ry) ® o, B(Ry))-measurable. Combining this and Fubini’s theorem, it
is clear that R;(w) is #-measurable, and so is .%,-measurable for all i = 1,...,n.
The above analysis implies that R is %, -measurable. Now, we will prove that R
is L£1'-integrable. Combining the fact that an n-dimensional Brownian motion has n

independent components, (4.13) and (4.14), it follows that

ER < max{l, /\nil} Z E{RJ‘RJ‘_H s ]A:L;n}

J=1

= max{1,\""'} zn: Anl_i ﬁERj
i=1 j=i

— n—1 J
(4.15) = max{1, \ };:1 i | | <1 + 2].)\) )

j=i

where the last equality holds because of the property of geometric Brownian motion,
Le., Esup,sqexp (—(u+ 502)t + oWy (w)) =1+ %, where 1 > 0 and o € R; see [17,
p. 585] and [34, p. 1639].

Let h(z) = (f(zn),0,...,007, 2 € R7, I} = sup,, cr, |f(@n)], I'i = 0 for all
df(zn)

dz,

2<i<nand M =sup, cg, . Then employing Theorem 4.2 and Remark 3,

we conclude the following.

COROLLARY 4.3. Let a; >0 fori=1,...,n and f € C}(Ry,Ry). Assume that
f is increasing or decreasing in Ry. If

n

Mn?||R||;r _ Mn? s 1 02
4.16 < 1, A" : 14+ L 1
(4.16) : < —— max{l, };XHH t35) <

j=i

holds, then the stochastic single loop feedback system (4.5) admits a unique globally
attracting random equilibrium in R} .

Ezample 4.1 (stochastic Goodwin system). Consider n-dimensional stochastic
Goodwin negative feedback system

— \%4
(4.17) dzy = [~oaw1 + gpldt + ormadW},
dz; = [xi-1 — auzg]dt + oy dWy, 2 <i<m,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/18 to 58.40.253.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

GLOBAL STABILITY OF STOCHASTIC FEEDBACK SYSTEMS 2235
wherem > 1, K > 1,V >0, and o; > 0 for i = 1,...,n. It is clear that (4.17) is

a nonmonotone stochastic system, which can be regarded as the stochastic Goodwin
model; see [15, 19]. Moreover, an easy computation shows that

mVagm—t } {mV(l +a™) } mV
M= sup { — 22— 1< sup § —r— et o < ——.
ﬂCnEng { (K +ap)? ) — zne£+ (K+ap)? )]~ K

Applying Corollary 4.3, we get that if

n 2
(4.18) m—vmax{l A" 1}ZM - H <1+ o A) <1

=1

is satisfied, then stochastic Goodwin negative feedback system (4.17) possesses a glob-
ally attracting nontrivial random equilibrium in R’ . Here, (4.18) holds for V' suffi-
ciently small or K sufficiently large. Moreover, we can have that the unique random
equilibrium K(u) is strongly positive, i.e., [K(u)](w) > 0 for all w € Q. Noting
that f(x,) = %ﬂn > 0 for all z, € Ry, it follows that u(w) = [K'(u)](w) =
(u1(w),0,...,0) and ui(w) > 0 for all w € Q. Combining (4.7), (4.8), and (4.9), it is
clear that given any ¢t > 0, ®;1(t,w) >0 forall i = 1,...,n and w € Q. This together
with the definition of X implies that [K(u)](w) > 0 for all w € Q.

Ezample 4.2 (stochastic Othmer—Tyson system). Consider the following n-dimen-
sional stochastic Othmer—Tyson positive feedback system:

K+r;1"

(4.19) dry = [—oqry + M]dt + o1x dW},
. dr; = [l'ifl — Oéiﬁi]dt + Uiﬁithi, 2 <41 <n,

where kg > 0, K > 1, m > 1, and o; > 0 for i = 1,...,n. This model can be found
in [33, 38|, which is a stochastic cooperative system. By the direct calculation, it is
obvious that

B mko(K — 1)z ! mko(K —1)(1+z]) mko(K — 1)
M= { (K +ap)? }< S { (K +ap)? }< K

Tn €R+ o Tn €R+

As long as the condition (Hs)

mkon?(K — 1) e 1 o7
4.2 —_— 1,A" . 14+ — 1
(4.20) e max{L,A };AMH +2 5] <

j=i

holds, stochastic Othmer—Tyson positive feedback system (4.19) possesses a unique
globally attracting nontrivial random equilibrium in R”} for pull-back flow by Corol-
lary 4.3. It is easy to see that the condition (4.20) is true for ko small enough.
Furthermore, the strong positivity of the unique random equilibrium K(u) can be
obtained by the same argument in Example 4.1.

Ezample 4.3 (stochastic Griffith system). Next, we study the following n-dimen-
sional stochastic Griffith positive feedback system:

— Kt 1
(4.21) dﬂ:l = [—0112131 + m]dt + Ulﬂ.Jlth s .
dr; = [l'ifl — Oéiﬁi]d/t + Uiﬁithl, 2 <1 <n,
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where m > 1, K > 0 and a; > 0 for i = 1,...,n; see [18]. An easy computation shows
that
m—1
M mKzm! mKxmt VKm+1)?2 (m—1\ "
= su = = )
rn€£+ (1+ Kxm)? 14+ Kam)?| . m— 4dm m+1

n — K(m+1)

If K is small enough, the condition (Hs)

m—=1

VEn*(m+ 1) (m—1\ ™ "1 G o?
4.22 LAt , 1+ L 1
(422) Imx <m n 1) max{l, }; w1 rgn) <

j=i

holds. Using Corollary 4.3 and Remark 3, it follows that the zero solution is the
unique globally attracting random equilibrium in R’} for stochastic Griffith positive
feedback system (4.21).

Ezxample 4.4. We consider an n-dimensional stochastic competitive system

(4.23) dz; = [—aizi + hi(z)|dt + oz, dW,
where a; > 0 for alli =1,...,n and
1
(4.24) hi(z) : zreRY, i=1,...,n,

Ko+t

where m > 1 and K; > 1 for all i = 1,...,n. Then, h is a C'-decreasing function
from R} to R}\{0}. It follows immediately that (4.23) is a stochastic competitive
system. By the direct computation, we obtain

(4.25) O(t,w) = diag [P11(t,w), ..., Ppn(t,w)]
for all £ > 0 and w € €2, where

(4.26) Byi(t,w) = e (itzod)itoiWi(w),
Consequently, it is evident that

(4.27) || @(t,w)| := max{|®;(t,w)| : 4,5 =1,...,n} < R(w)e ™, t>0, weQ,

where A = 2 min{oy, ..., a,} and
n 1 ) ;
(4.28) R(w) = \/ supexp [ — ( A+ z0; |t + oW/ (w) ).
i=1 120 2

It follows that R(w) is .%#;-measurable and independent of .%_. Similar to the analysis
for system (4.5), we claim that R(w) is tempered and belongs to £'(Q, Z,,P;R).
In fact, a simple calculation shows that

ER < ZEiglgexp (— ()\—i— 501-2) t+ oWy (w)) = Z <1 + 2—/\) .
=1 12 i=1

Furthermore, we see that

ma™ ! m
M = max ¢ sup - . 5.6 =1...,np < —<

=
SE
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where K = min{Kj;,i =1,...,n}. Therefore, the condition (Hs) is

Mn?||R|zr  mn? & o?
< 1+2) <1,
N ook 2\ T

which must hold when A or K is large enough. According to Theorem 4.2 and Remark
2, stochastic competitive system (4.23) admits a unique globally asymptotically stable
positive random equilibrium in R, to which all the pull-back trajectories of (4.23)
converge.

Remark 4. Observe that the condition (Hs) involves in the expectation of the
random variable R(w). So we need to provide the exact representation of R(w) in
the definition (L) of the top Lyapunov exponent. We point out that the choice of A
and R in the condition (L) is not unique. Usually, the bigger A makes ER bigger.
As for the linear homogeneous stochastic differential equations (4.6), we choose A =
n%rl min{aq,...,a,} and R as (4.14) whose estimation is given in (4.15). We note
that during this process we lose a lot. For a concrete example, even if the condition
(4.16) fails, we can trace our idea by choosing other A and R such that Theorem 4.2
still holds, which is shown in the following three-dimensional stochastic Othmer—Tyson
positive feedback system

doy = [-8x1 + ¢ - 4—erw;,,]dt + fxdW},
3 3
(4.29) dze = [z1 — 9z2]dt + LxedW2,
1 i

drg = [v2 — 10x3]dt + $x3dWE.

In fact, an easy computation shows that

mko(K — 1)zm~1 } x2
M= s n — n
oveRs { (K + )2 6(3 +a3)?

In Corollary 4.3, A = 2 in this case. Thus

3 3 2
1 o;
2 § II J 2 _
max{l,)\ } ,\3—1' <1+2j—)\> ‘)\:222 +2+1—7,
i=1 j=1

J=t

which implies that o (%)2/3 x 3 x 7> 1. That is, the condition (4.16) does not work.
In what follows, we will prove that the condition (4.16) can hold by changing the
choice of A and R suitably. It is clear that @11 (f,w) = (=8~ T3V @) Py (t,w) =
e(=9= st (W) Pas(t,w) = e(710= )t Wi (W) and

t
Pa1(t, w) =/ (=3 (=) (W@ =W W) g (5, w)ds,
0

t
B3, (t,w) = / e(_lo_l_ls)(t_sH'%(Wg(w)_WS(w))q)zi(S,W)ds, i=1,2.
0
Hence, it is easy to check that

(4.30) Bt w) < Ri(w)e WDt =123,
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for all £ > 0 and w € €2, where

Ry (w) = sup exp ((—5 - é) t+ %th(w)> ,

t>0

— 1 Lo
Ry(w) = i\;}gexp (( 7 32> t+ 4Wt (o.)))
and ) )
Rsy(w) =supexp (-9 — — |t + W23 (w) .
t>0 18 3

It follows that

t
@21@7@:/ o(—9= ) (=) HEWE L (0.) . (5. ) ds
0
t
Ry ) [ el TRV 0,
0

e_QtRl(w)/ e *Ro(Osw)ds
0
= e ¥ Ri(w)Ra(w),

Dy (t,w) < e 'Ry (w) R (w) /0 - ~*Rs(fsw)ds = et Ry (w)Ra(w) Rs(w),
and
Bao(t,w) < e "Ry (w) /O h e *R3(0sw)ds = e Ro(w) Rs(w).

In order to verify the condition (Hs), we choose A =1 and

(w)\/ Ra(w \/R3 )\ Ri(w)Ra(w) \/ Ri(w)Ra(w)R3(w) \/ Ra(w)Rs(w)
= R3 \/Rg 3 OJ \/Rl w 2 w)ﬁg(w),

where the last equality holds based on the fact that for all w € Q, Ri(w) > 1, i = 2, 3.
Consequently, it is obvious that

163 41 225 163 225 163
ER<E E E E E E —_—— 2
R Rs+ER;-ERy - ER3+ERy-ER3 = 162+40 594 162+224 162 < 3.0528.

Therefore, we have that

Mi?| Rl _ 1 (2
- 24

2/3
3 3) x 9 x 3.0528 < 1.

That is, the condition (4.16) holds. This reveals that the choice of A and R plays a
key role in the proof of our result.

Remark 5. According to Chueshov [6, p. 221], the stochastic Othmer—Tyson pos-
itive feedback system (4.19) with m = 1 is sublinear and admits a globally asymp-
totically attracting positive random equilibrium in R’}. As far as we know, all other
results in Examples 4.1-4.4 are new.
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4.2. Type two: h is uniformly bounded away from zero. In this subsec-
tion, we will prove another global stability theorem in the case that A is uniformly
bounded away from zero and present some examples. First, we give some notation
and preliminaries. Letting V' be a real Banach space, a closed subset V, C V is said
to be a cone if V is convex and oV} C Vi for all « € Ry, and V. N (=Vy) = {0}.
We denote a partial order on V by = < y if y — x € V, which is compatible with the
structure of linear vector space V. A cone V, is said to be solid if it has nonempty
interior points intVy. A cone V. is said to be normal if there exists a constant ¢ > 0
such that ||z|| < ¢|ly|| whenever 0 < z < y. Next, we will introduce definitions of part
and part (Birkhoff) metric.

DEFINITION 4.4 (part (Birkhoff) metric).

(i) An equivalence relation is defined by x ~ y if there exists ¢ > 0 such that
clr < y < cx, and then the equivalence classes on the cone Vi are called
the parts of V.

(ii) Let C be any nonzero part of V. Then
(4.31) p(z,y) :==inf{logc: c e <y <eczx}, z,yeC,

is called the part metric (or Birkhoff metric) of C.

It is clear that intV, is a part and any part is a cone in V. Let £®(;R%) :=
L>(Q,.7,P;RY) denote the Banach space of Re-valued, .#-measurable, essentially
bounded functions defined on 2 almost surely with the essential supremum norm
|| flloo := inf{B : |f| £ B P-a.s.}. The nonnegative functions in £(£;R%) form a
normal, solid cone £5°(€2;R?); see [23, sections 1.5 and 5.2], where int£LP(Q;RY) =
{f : there extis e = (€1,...,€q) € intR? such that f > e P-a.s.}, which consists of the
family of functions essentially bounded away from zero. To prove our main results,
we start with a lemma.

LEMMA 4.5. Let assumptions (A), (L), and (Hy) hold. Assume additionally that
(H3) h:RL — [6,T] C intRL, where § = (61,...,84) > 0. That is, h is uniformly
bounded away from zero. Furthermore, we assume that there exists a constant

T > 1 such that hr is sublinear, i.e.,

Mr(z) < hp(Az) for all z € RY and A € [0, 1],

where hy(z) = h(z) — 6, € RL, or there exists a constant S > 1 such that
hgl is sublinear, i.e.,

Mgl(z) < hg'(A\r) for all z € RY and A € [0,1],

where hgl(a:) = (—hll(w) — SLFI, el —hdl(w) — SLFd), T € Ri.

The operator K" = ho K : int£2(Q; R?) — int L (4 R?) is defined by

d

[Kh(u)](w):{hi ( /O @(—s,osw)u(esw)ds)] . we mtLE(QRY),

—o0 i=1

where u is the representative such that u is bounded for all w € Q. Then int L3 (€Y R%)
is complete with respect to the Birkhoff metric p. Moreover, the operator K" = hoK :
(int L (Q;RY), p) — (int L2 (Q;RY), p) is a contraction mapping.
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Proof. For any 0 <z <y, z,y € LL(Q;R?), it is easily seen that [|z]/oc < [|ylloc,
which yields that £5°(€2; R?) is a normal cone. Then, it follows that (int£%°(€; R?), p)
is a complete metric space; see Proposition 3.1.1 in [6] or [23].

Now, we will show that K" = ho K : (intL° (4 R?), p) — (intL2(Q;RY), p) is a
contraction mapping. By (Hgs), it is clear that

(Ty,...,Tq) =T > [K"(w)](w) > 6 = (01,...,0q) forallwec Qandu € intEf(Q;Rd).
That is, K" is well defined from intLP (2;R?) into itself. In what follows, we will
denote by H the mapping

d

H(u):[hi (/0 @(—S,HSw)u(Gsw)ds)] ., u € intLP (G RY),

—0o0 =1

d
and let H 1 (u) = [#(u)} - for all u € intLP (Q;RY). Given any u,v € int L (4 RY),
if hp is sublinear, then there exists a constant 0 < Ly = L1(6,1,T) < 1 such that

U0, H) =p (3 + ) - 3.3+ 0 - 1)
(1.32) < Lp (B - 3. HE) - 1)

see [14, Lemma 5.2] or [31, Theorem 2.6, p. 59]. Combining the definition of H and
the sublinearity of hr, it is clear that [H — &](u) = H(u) — & : intLP (U RY) —
intLSro(Q;]Rd) is also sublinear. That is, H — % is nonexpansive with respect to the

Birkhoff metric p. By (4.31) and (4.32), it follows that

p(K" (), K () = p(H (), H(v)) < Lap (H(u) 0 Hw) - 3) < Lip(u.v)

T T

for all u,v € intﬁf(Q;Rd). On the other hand, while hgl is sublinear, then there
exists a constant 0 < Lo = Lo(4,T,.5) < 1 such that

p(H(u),H(v)) = p (H " (u), H}(v))

1 1 1 1
_ —F_l H—l _ _I\—l —F_l H—l _ —F_l
p(Gr 0 - G T ) -
1 1
(4.33) <Lop | H 'u)— =T"Y H Yv) — =T,
S S
where I'~! = (Fil, s Fld), see [14, Lemma 5.2] or [31, Theorem 2.6, p. 59]. Since hg'

is sublinear, this guarantees the sublinearity of [H ™' — T '|(u) = H*(u) — £ ' :
int£LP (Q; R?) — intLP (4 RY), ie., H-' — $T'~! is nonexpansive with respect to the
Birkhoff metric p. From (4.31) and (4.33), it is easily seen that

1 1
PO (). K () = p(F (), H(0)) < Lap (72 (0) = T 00 = g7
S L2p (ua U)
for all u,v € int L3P (€ R?). The proof is complete. d
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THEOREM 4.6 (global stability theorem IT). Let assumptions (A), (L), (Hy), and
(H3) hold. Then the operator K" admits a unique fized point u € int L3 (S R?) such
that for all x € R‘i

(4.34) tlggo ot 0_w)z = [K(u)](w) P-a.s.

Moreover, we have o(t,w)[K(u)](w) = [K(u)](frw), P-a.s., t > 0, i.e., [K(u)](-) is a
globally stable strongly positive random equilibrium in Ri.

Proof. Fix 7 > 0. Without loss of generality, by Lemma 3.9, it is easy to see that
(4.35) L
[KM2R(el) < 6 —lim h(p) < 0 —Tim h(p) < [KM**(nP)  for all w € Q and k € N.

pa

Observe that h : R‘i — [6,T] is uniformly bounded away from zero. This implies that
€M and 1! both belong to intLP(0;R?). Using the Banach fixed point theorem [41],
by Lemma 4.5, there exists a unique globally attracting fixed point u € intL3 (€; R%)
such that [K"(u)](w) = u(w) P-a.s. and

(4.36) lim p ([P (€1),u) = Tim p (P (1), u) = 0.
k—o0 k—o00
It is obvious that the norm || - || is monotone, i.e., 0 < x < y implies that ||z <

[ly|loo- Consequently, by Remark 3.1.1 in [6], we have

h12k (ghy o, _ h12k (ghy o
I (E) — ullow < (2eP(ITHED ) omr (K1 (ER0) 1)

-min{ [ (€)oo, lluloc}

< (2ep(vc’l12’“<&¢>>u) — e P(K D) _ 1) Nl

— 0, as k— oo,
which implies that
(4.37) lim [(K™)2*(eM)](w) = u(w) P-as.

k— o0

Applying the same argument, then
(4.38) lim [(K™)2*(n"))(w) = u(w) P-a.s.

k—o0
The remainder of the proof can be handled like that of Theorem 4.2 in [21]. Further-
more, by the fact that A is uniformly bounded away from zero and Remark 2, it is
clear that KC(u) is a strongly positive random equilibrium. The proof is complete. 0O

Let us now illustrate Theorem 4.6 by discussing a few examples. In what fol-
lows, we will explain that our main results can be applied to stochastic cooperative,
competitive and predator-prey systems with multiplicative noise, and other nonmono-
tone stochastic systems. For the sake of convenience, we only present some third-
dimensional stochastic systems here.

Ezxample 4.5. First, we consider the three-dimensional stochastic cooperative sys-
tem

3
(4.39) dX; = [AX, + h(X)|dt + ) Gi X, dW,

=1
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where
-1 1 0 500 -3 0 0

A=| 3 L+ 0 |, Gi=|0 2 0]|,G=| 0 =2 0 |,Gs=2Is,
0 1 —% 00 2 0 0 -2

and

(4.40) hi(z) := 2+ gi(z;), weRY, i=1,2,3,

where g;(z;) = 1ifm is a C'l-increasing sublinear function from Ry to R, i = 1,2, 3.

It is clear that (4.39) is a stochastic cooperative system. Let ¢ = (2,2,2) and T =
(3,3,3). It is easy to check that h : R} — [§,T] is an order-preserving and bounded
function. Moreover, choose T’ = 2, and it is clear that hr(z) = h(z) — 30 = 36 + g(z)
is sublinear, where g;(z) = g;(z;), ¢ = 1,2, 3. In order to use Theorem 4.6, we need to
prove that the top Lyapunov exponent is negative. By Theorem 2.4.4 in [6], it follows
that for any = € R%\ {0}, there exists the Lyapunov exponent

1 *
(4.41) Az) = t—lg-noo n log |®(t,w)x| for all w € QF,
where Q* is a #-invariant set of full measure. In fact, we can choose the indistinguish-
able from of ®(¢,w) and extend the existence of Lyapunov exponents to the whole
Q; see Remark 1.2.1 in [6]. Moreover, it is known that A := max,cge\ (o} A(¥) is the
top Lyapunov exponent; see Theorem 2.4.4 and Definition 1.9.1 in [6]. Therefore, in
order to prove (L), it suffices to show that there exists a constant Ly > 0 such that

1
(4.42) lim sup n log |®(t,w)z| < —L) P-as.

t—4o0
for all z € R?\ {0}. Let us discuss the corresponding linear homogeneous stochastic
It6 equations of (4.39), i.e.,

3
dX; = AXydt + Y G X dW},

i=1

Hence,
125
|Azl2 < [|Allzlz]2 =/ S |2l2 < 2lal2,
& 61 61
Z |Giz|2 = Zx% + 1223 + 1223 < le@
i=1
and

& 9 41
> laT Gial? = S} + 4laf3 + 4lels = Tlal, @€ R
i=1
Then by Theorem 5.1 in [28, Chapter 4], it follows easily that

1 41 61 5
1 p— < — _— _ — = —— -a.SsS.
limfgj) ; log |®(t,w)zx| < ( 1 2 5 > 3 P-a.s.,

which implies that (4.42) holds. By Theorem 4.6, stochastic cooperative system (4.39)
admits a unique globally attracting strongly positive random equilibrium in Ri for
all pull-back trajectories.
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The same conclusion can be obtained if we replace g;(x;) by ¢;(x1 + x2 + x3) or

let hi(z) = m, where g;(2;) = 95, i = 1,2,3.

Ezxample 4.6. Next, we shall study the three-dimensional stochastic competitive
system

3
(4.43) dX; = [AX, + h(X)|dt + ) Gi X, dW,

=1

where

. 1 . 3 . 111
A= dlag |:_17 571:| ) Gl = dla'g |:17 571:| ) G2 = _2I3><37 G3 = dlag |:_§7 17 §:| )

and
(4.44) hi(z) ! cR3, i=1,2,3
. i) '= Y y t=1,4,9,
1+ gi(wi—1) +
where g;(x;-1) = 1;;; is a Cl-increasing sublinear function from Ry to R (zg =

x3), i = 1,2,3. It is a simple matter to see that h : R? — intR3 is an anti-order-
preserving and bounded function, which yields that (4.43) is a stochastic competitive
system. Furthermore, it is easily seen that h : R3 — [§,T], where § = (%, %, %) and
I'=(1,1,1). Let S =2, and it follows that hg'(z) = + §(z) — 4T = 3T + g() is
sublinear, where §;(z) = gi(zi—1), i« = 1,2,3. For the purpose of using Theorem 4.6,
it remains to verify (L). As the analysis in Example 4.5, we are now in a position to
show that

1
(4.45) limsup = log |®(¢t,w)z| < —Ly P-as.,

t—+o0 t

where L > 0 is independent of w € Q and 2 € R?\ {0}. A simple computation gives

that
9 3
Acle < | Alklels = /21t = Slal,
3
21 101 46 101
; |Gizl3 = Iﬁ + 1_6963 + gﬂfg = 1—6|9C|§
and

3
Z |27 Giz|? > |z|3 + 4|z|3 = 5|z|3, = € R
i=1

This implies that

1 11
limsup = log|®(t,w)z| < — (5 — —= — = | = —— P-as.
t—too t 32

by Theorem 5.1 in [28, Chapter 4]. Applying Theorem 4.6, we conclude that there ex-
ists a unique globally stable strongly positive random equilibrium in Ri for stochastic
competitive system (4.43).
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The same conclusion can be obtained if we replace g;(x;—1) by gi(x1 + x2 + x3)
or let hi(z) =2+ 1+zm , where m > 1,i=1,2,3.

Ezample 4.7. Finally, we investigate the three-dimensional stochastic predator-
prey system

3

(4.46) dX; = [AX, + h(X)|dt + ) Gi X, dW,
=1

where

0 1 500 -2 0 0
A=|1 =1 0 |,G =33, G,=|0 2 0|,Gs=| 0 -3 0 [,

0 1 1 0 0 1 0 0 -2
and

1 3 .

(4.47) hi(x) == reRy, i=1,2,3,

3+ gi(zip1)

1 . . .
where g;(zi11) = 224 is a O'l-increasing sublinear function from Ry to Ry (x4 =

24z, it+1
z1), i = 1,2,3. Write f(z) = Az + h(z), = € R3. Then a%ci—l(a:) =1>0and
af; . .
Bzil (x) = —(3+gi(ii+1))2 . (2+I1i+1)2 < 0 fori=1,2,3 (x0 = x3,24 = x1). This
implies that (4.46) is a stochastic predator-prey system. Consider § = (%, %, %) and
I' = (3,5,3). It is obvious that h : R} — [4,I] is an anti-order-preserving and

bounded function. Set S = 2, it is evident that hg'(z) = ['"! + g(z) — i~ =
$T71 + g(z) is sublinear, where I'"* = (3,3,3) and §;(z) = gi(zit1), i = 1,2,3.
Furthermore, we can see that

493
|[Az]2 < ||All2|z|2 = m|$|2 < 2|zla,

35, 313, , _ 313
Z|G$|2 1+16 3 +1dag < 16||2

and
3

Z leTGix|> > 9|3 + |z|3 + 4|z)5 = 14|z]3, = € RY,
i=1

which together with Theorem 5.1 in [28, Chapter 4] implies that

313 71
Jim sup + log | ® < (4= )
m sup 7 log [@(t, w)a] ( 32 ) 33

In the same way as above, we have that (L) holds. In view of Theorem 4.6, the stochas-
tic predator-prey system (4.46) admits a unique strongly positive random equilibrium
in Rﬁ_ which attracts all pull-back trajectories.

Furthermore, if we define h;(z) = 3 + ﬁ, where m > 1, i = 1,2, 3, the same
i+1
result still holds.
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5. Discussion. In this paper, we have considered the stochastic stability of a
nonlinear stochastic control system with inputs and outputs driven by multiplicative
white noise and established two global stability theorems. That is, there exists a
unique globally attracting nonnegative random equilibrium C(u) in R‘i for the random
dynamical system generated by those stochastic feedback systems, such as a stochastic
Goodwin negative feedback system, Othmer—Tyson positive feedback system, Griffith
positive feedback system, and so on. Motivated by the idea in [21], the key point
in this paper is to construct a suitable complete metric space as the input space
such that the operator K" is contractive on it. However, the fundamental matrix
®(t,w) depends on w € Q. This yields that we cannot give a uniform estimate of
O(t,w) for all w € © and the problem will become more difficult to study than that
in additive white noise [21]. To overcome this difficulty, in the case that derivatives
of output functions are bounded, the joint measurability of the metric dynamical
system 6 : R_ x Q — Q with respect to the product o-algebra Z(R_) ® .Z_ is
first established; see Proposition 3.3. This helps us to successfully receive the .%_-
measurability for the input-to-state characteristic operator K(u) while w is tempered
and .#_-measurable; see Proposition 3.4. It is just because these measurabilities are
obtained that the operator K" : £1, — £, is well defined. Combining the condition
(Hz2) and the independence between R and the past o-algebra .%_, we finally proved
that the operator K" is a contraction mapping on the input space £ . Here, the
choice of the input space seems to be the best, since any globally attracting random
equilibrium v(w), i.e., lim; o @(t, 0_tw)x = v(w), must be F_-measurable.

In the use of Theorem 4.2, the most important task is to verify the condition
(Hz2) in Lemma 4.1. For this purpose, we should give suitable estimation of the upper
bound for %, where the positive constant A and the tempered random variable
R are defined in the condition (L). In fact, it is interesting and difficult to get the
optimal upper bound of % for high-dimensional stochastic control systems. Even
if the exact expression of the solution is given, this is not an easy issue. For example,
in the model of stochastic single loop feedback system (4.5), our bound such as (4.16)
is conservative. : If n = 1, then the optimal bound of % can be calculated. That
is, we study the following scalar SDE:

dr = —axdt + oxdWy,

where a > 0 and o # 0. It is well known that ®(¢,w) = e(""*L;)t*"W‘(“’), t >0, and
w € . Consequently, in order to verify the condition (Hg), we can let 0 < A < «
and R(w) = sup;>qexp[—(a — A+ "—;)t + oW (w)], w € Q. This implies that % =

1 o2 : [RIl;1 1 o2 _ (2a+02)7a'\/20¢+a2
3t ooy and minocrca T3 = 55+ axgiaTxgyy Where do = 2 '

oy . 2
Then, the condition (Hz) (n = 1) can be interpreted as M - [%0 + m] < 1.
However, in general (n > 2), we have no good idea to get this best estimation. This
will be left for future consideration. To our knowledge, our new theory provides some
new insights to investigate the stochastic stability of stochastic nonmonotone control
systems.

Acknowledgments. The authors are greatly indebted to several anonymous ref-
erees for very careful reading and providing lots of valuable comments and suggestions
which led to much improvement of the earlier version of this paper. The authors are
also very grateful to the editor Professor Zhang Qing for his helpful suggestions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/18 to 58.40.253.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2246 JIFA JIANG AND XIANG LV

31]

REFERENCES

L. ARNOLD, Random Dynamical Systems, Springer Monogr. Math., Springer, Berlin, 1998.
C. CASTAING AND M. VALADIER, Conver Analysis and Measurable Multifunctions, Lecture
Notes in Math. 580, Springer, Berlin, 1977.
P. CarTiaUX, P. COLLET, A. LAMBERT, S. MARTINEZ, S. MELEARD, AND J. SAN MARTIN,
Quasi-stationary distributions and diffusion models in population dynamics, Ann. Probab.,
37 (2009), pp. 1926-1969.
O. CINQUIN AND J. DEMONGEOT, Roles of positive and negative feedback in biological systems,
C. R. Biol., 325 (2002), pp. 1085-1095.
O. CINQUIN AND J. DEMONGEOT, Positive and negative feedback: Striking a balance between
necessary antagonists, J. Theoret. Biol., 216 (2002), pp. 229-241.
I. CHUESHOvV, Monotone Random Systems Theory and Applications, Lecture Notes in
Math. 1779, Springer, Berlin, 2002.
D. L. CoHN, Measure Theory, Birkhduser, Boston, 1980.
H. CrRAUEL, Random point attractors versus random set attractors, J. Lond. Math. Soc., 63
(2001), pp. 413-427.
V. DRAGAN, A. HALANAY, AND A. STOICA, A small gain theorem for linear stochastic systems,
Systems Control Lett., 30 (1997), pp. 243-251.
V. DRAGAN, T. MOROZAN, AND A. STOICA, Mathematical Methods in Robust Control of Linear
Stochastic Systems, Vol. 50, 2nd ed., Springer, Berlin, 2013.
A. ELDAR AND M. B. ELowiTz, Functional roles for noise in genetic circuits, Nature, 467
(2010), pp. 167-173.
M. MARCONDES DE FREITAS AND E. D. SONTAG, A class of random control systems: Mono-
tonicity and the convergent-input convergent-state property, in Proceedings of the Ameri-
can Control Conference, 2013, pp. 4564—4569.
M. MARCONDES DE FREITAS AND E. D. SONTAG, Random dynamical systems with inputs, in
Nonautonomous Dynamical Systems in the Life Sciences, Lecture Notes in Math. 1202, P.
E. Kloeden and C. Poetzsche, eds., Springer, Berlin, pp. 41-87.
M. MARCONDES DE FREITAS AND E. D. SONTAG, A small-gain theorem for random dynamical
systems with inputs and outputs, STAM J. Control Optim., 53 (2015), pp. 2657-2695.
C. GOODPWIN, Oscillatory behavior in enzymatic control processes, Adv. Enzyme Regul., 3
(1965), pp. 425-438.
. C. GOODWIN, Temporal Organization in Cells, Academic Press, New York, 1963.
E. GRAVERSEN AND G. PESKIR, Optimal stopping and mazimal inequalities for geometric
Brownian motion, J. Appl. Probab., 35 (1998), pp. 856-872.
S. GRIFFITH, Mathematics of cellular control processes I1. Positive feedback to one gene, J.
Theoret. Biol., 20 (1968), pp. 209-216.
. HAsTINGS, J. TYSON, AND D. WEBSTER, Existence of periodic solutions for negative feedback
cellular control systems, J. Differential Equations, 25 (1977), pp. 39-64.
M. W. HirscH, Systems of differential equations that are competitive or cooperative 1I: Con-
vergence almost everywhere, STAM J. Math. Anal., 16 (1985), pp. 423-439.
J. F. JIaANG AND X. Lv, A small-gain theorem for nonlinear stochastic systems with inputs and
outputs I: Additive white noise, STAM J. Control Optim., 54 (2016), pp. 2383-2402.
I. KARATZAS AND S. E. SHREVE, Brownian Motion and Stochastic Calculus, Grad. Texts in
Math. 113, Springer, Berlin, 1988.
M. A. KRASNOSEL’SK1J, J. A. LIFSHITS, AND A. V. SOBOLEV, Positive Linear Systems—The
Method of Positive Operators, Sigma Ser. Appl. Math. 5, Heldermann Verlag, Berlin, 1989.
S. J. Liu, Z. P. JIANG, AND J. F. ZHANG, Global output-feedback stabilization for a class of
stochastic non-minimum-phase nonlinear systems, Automatica, 44 (2008), pp. 1944-1957.
S. J. Liu, J. F. ZHANG, AND Z. P. JIANG, Decentralized adaptive output-feedback stabilization
for large-scale stochastic nonlinear systems, Automatica, 43 (2007), pp. 238-251.
R. Losick AND C. DESPLAN, Stochasticity and cell fate, Science, 320 (2008), pp. 65-68.
J. MALLET-PARET AND H. L. SMITH, The Poincaré—Bendizson theorem for monotone cyclic
feedback systems, J. Dynam. Differential Equations, 2 (1990), pp. 367-421.
X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, UK,
1997.
J. MonNoD, J. CHANGEAUX, AND F. JAcoB, Allosteric proteins and cellular control systems, J.
Mol. Biol., 6 (1963), pp. 306-329.
M. NoMURA, R. COURSE, AND G. BAUGHMAN, Regulation of the synthesis of ribosomes and
ribosomal components, Annu. Rev. Biochem., 53 (1984), pp. 75-117.
R. D. NUussBAUM, Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math.
Soc., 75 (1988).

ZE- I

[

wn

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/18 to 58.40.253.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

GLOBAL STABILITY OF STOCHASTIC FEEDBACK SYSTEMS 2247

B. OKSENDAL, Stochastic Differential Equations: An Introduction with Applications, 5th ed.,
Springer, Berlin, 1998.

H. G. OTHMER, The qualitative dynamics of a class of biochemical control circuits, J. Math.
Biol., 3 (1976), pp. 53-78.

G. PESKIR, Optimal stopping of the mazimum process: The mazimality principle, Ann.
Probab., 26 (1998), pp. 1614-1640.

E. SCHECHTER, Handbook of Analysis and Its Foundations, Academic Press, New York, 1997.

J. F. SELGRADE, Asymptotic behavior of solutions to single loop positive feedback systems, J.
Differential Equations, 38 (1980), pp. 80-103.

E. H. SNoussl, Necessary conditions for multistationarity and stable periodicity, J. Biol. Sys-
tems, 6 (1998), pp. 3-9.

J. J. TysoNn AND H. G. OTHMER, The dynamics of feedback control circuits in biochemical
pathways, Progr. Theor. Biol., 5 (1978), pp. 1-62.

Z. J. Wu, H. R. KARIMI, AND P. SHI, Dissipativity-based small-gain theorems for stochastic

network systems, IEEE Trans. Automat. Control, 61 (2016), pp. 2065-2078.
Z.J. Wu, X. J. XIE, AND S. Y. ZHANG, Adaptive backstepping controller design using stochastic
small-gain theorem, Automatica, 43 (2007), pp. 608-620.
. YOSHIDA, Functional Analysis, 6th ed., Springer, Berlin, 1980.
. Yu, X. J. XiE, AND N. DUAN, Small-gain control method for stochastic nonlinear systems
with stochastic iISS inverse dynamics, Automatica, 46 (2010), pp. 1790-1798.

<A

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Problem and preliminaries
	Measurability and behavior of random dynamical system generated by SDEs
	Global stability theorems
	Type one: Derivatives of h are bounded
	Type two: h is uniformly bounded away from zero

	Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


