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A New Approach to Stability Analysis for
Stochastic Hopfield Neural Networks

With Time Delays
Xiang Lv

Abstract—This article is devoted to the existence and
the global stability of stationary solutions for stochastic
Hopfield neural networks with time delays and additive
white noises. Using the method of random dynamical sys-
tems, we present a new approach to guarantee that the
infinite-dimensional stochastic flow generated by stochas-
tic delay differential equations admits a globally attracting
random equilibrium in the state-space of continuous func-
tions. An example is given to illustrate the effectiveness
of our results, and the forward trajectory synchronization
will occur.

Index Terms—Random dynamical systems, stability,
stationary solutions, stochastic delay neural networks.

I. INTRODUCTION

THE analysis of stability in artificial neural networks plays
an important role in the control theory, due to its many

applications in physics, ecology, biology, and engineering, such
as image recognition and stock market prediction. During the
past 35 years, the study on the dynamics of neural networks
has advanced greatly. Among the existing works, one of the
most popular models was proposed by Hopfield [28], which can
be described by the following ordinary differential equations
(ODEs):

Ci
dxi(t)

dt
= −xi(t)

Ri
+

n∑
j=1

Tijgj
(
xj(t)

)
+ Ii, i = 1, . . . , n

(1)
on t ≥ 0, where n ≥ 2 is the number of neurons. Here, the
variable xi(t) represents the voltage on the input of the ith
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neuron; Ci > 0 and Ri > 0 are the input capacitance and re-
sistance associated with the ith neuron, respectively; Ii is the
constant external input; the matrixT = (Tij)n×n shows the con-
nection strengths between neurons; and gj are neuron activation
functions. Motivated by [28], Hopfield neural networks have
been widely studied and applied to many areas, such as signal
processing, pattern recognition, combinatorial optimization, and
associative memory; see, for examples, [13], [15], [34], [38],
[51].

In the pioneer work [28], neurons are assumed to communi-
cate and feedback instantaneously. With the in-depth research,
time delays are introduced in various models, due to the finite
switching speed of amplifiers, the axonal signal transmission
time, and the distance between neurons, which may lead to
some undesired dynamical behaviours of neural networks, such
as instability and oscillation. Therefore, the global stability prob-
lem for delayed neural networks has attracted a lot of attention;
see [2], [3], [8], [9], [11], [12], [17], [20]–[23], [25], [27], [37],
[40], [41], [44], [45], [52], [53]. They mainly considered the
following system of delay differential equations (DDEs):

Ci
dxi(t)

dt
= − xi(t)

Ri

+

n∑
j=1

Tijgj
(
xj(t− τj)

)
+ Ii, i = 1, . . . , n.

(2)

Besides the effect of time delays, Hopfield [28] pointed out
that “...the time evolution of the state of such systems should
be represented by a differential equation (perhaps with added
noise)” (p. 3088). Actually, in real nervous systems, the synaptic
transmission between neurons is a noisy process due to random
fluctuations from the release of neurotransmitters and other
causes, see [26]. Contrary to intuition, in some nonlinear systems
driven by weak inputs, noise generated externally or intrinsically
may have beneficial effects to spontaneous activity [19] and
stability of neural networks [4], [5], [39]. Therefore, one of the
main concerns in the study of neural networks is to consider the
presence of the noise and the global stability of stochastic neural
networks, which has received considerable attention in the past
few years, such as [4], [5], [7], [10], [29]–[31], [39], [48]–[50].

In [6], [29], the authors pointed that the external drive can
be decomposed into a constant input and a white noise term,
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such as (14) and (52) in [6]. Moreover, evidence for such ran-
domly fluctuating inputs has been found in experimental studies
of oscillations in the olfactory bulb [24]. Motivated by their
works, this article is devoted to investigate the global stability
of stochastic Hopfield neural networks with time delays

Cidxi(t) =

⎡⎣−xi(t)

Ri
+

n∑
j=1

Tijgj
(
xj(t− τj)

)
+ Ii

⎤⎦ dt

+

m∑
j=1

σijdWj(t), i = 1, . . . , n (3)

where the external input Ii in (2) is perturbed by the Gaussian
noise Ii → Ii +

∑n
j=1 σijẆj(t). It is well known that in the ex-

isting literature, the analysis of the global stability for stochastic
functional (or delay) differential equations is mainly based on the
construction of Lyapunov functions; see [35], [42]. Especially,
for various stability of trivial stationary solutions for stochastic
delay neural networks, there have been a lot of related results;
see [4], [5], [10], [30], [31]. The main purpose of this article is to
study the existence and the global stability of nontrivial station-
ary solutions for (3), based on the theory of random dynamical
systems (RDS). Therefore, there are two main difficulties. One
is that the method of constructing suitable Lyapunov functions
cannot be applied here. The other is that the fundamental theory
of the infinite dimensional random dynamical systems generated
by (3) is incomplete. To the best of our knowledge, up to now,
there are no results on the existence and the global stability of
nontrivial stationary solutions for (3). The main contributions of
this article are summarized as follows.

1) Motivated by our recent works [32], [33], the main pur-
pose of this article is to further develop the methods pre-
sented in [32], [33], and apply them to consider the global
stability of stochastic DDEs (SDDEs). However, this is
not an easy job. The main reason is that the classical theory
of random dynamical systems established by Arnold [1]
is mainly for processing stochastic ODEs, which is finite
dimensional. In this article, we shall first develop the
theory of infinite dimensional random dynamical systems
generated by (3), such as the continuity of the pull-back
trajectories, the measurability, and the compactness of
some random sets; see Appendix A. Moreover, since the
state-space Cτ is an infinite dimensional Banach space,
we need to deal with the compactness and the positive
cone C+

τ is not a strongly minihedral cone.
2) For SDDEs with additive white noises, we will give a new

program to prove the existence and the global stability of
nontrivial stationary solutions (random equilibria) in the
space of continuous functions. In contrast, we do not need
to construct some proper Lyapunov functions.

3) Some explicit conditions are given to guarantee the global
stability of (3), which are easy to verify.

Notations: Throughout this article, Rn denotes the n-
dimensional Euclidean space, Rn

+ denotes its non-negative or-
thant, and Rn×m denotes the set of all n×m-dimensional real
matrices. For any vector x ∈ Rn and matrix A = (aij)n×m ∈
Rn×m, define the Euclidean norm |x| := (

∑n
i=1 |xi|2)1/2

and ‖A‖ := (
∑m

j=1

∑n
i=1 |aij |2)1/2. For all x, y ∈ Rn, x ≥

y means that x− y ∈ Rn
+. X denotes a complete separable

metric space (i.e., Polish space) equipped with the Borel σ-
algebra B(X). Let τ = max1≤i≤n τi, Cτ := C([−τ, 0];Rn)
denote the Banach space of continuous functions ξ : [−τ, 0] →
Rn equipped with the norm ‖ξ‖Cτ

= sup−τ≤s≤0 |ξ(s)|. Let
W (t) = (W1(t), . . . ,Wm(t))T be anm-dimensional two-sided
Brownian motion on the canonical probability space (Ω,F ,P ).
Here, F is the Borel σ-algebra of Ω = C0(R,Rm) = {ω =
(ω1, ω2, . . . , ωm) ∈ C(R,Rm), ω(0) = 0}, which is equipped
with the following metric:

�(ω, ω∗) :=
∞∑

k=1

1

2k
�k(ω, ω

∗)
1 + �k(ω, ω∗)

where

�k(ω, ω
∗) = max

t∈[−k,k]
|ω(t)− ω∗(t)|

and P is the corresponding Wiener measure.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we consider the following SDDEs with addi-
tive white noise:

Cidxi(t) =

⎡⎣−xi(t)

Ri
+

n∑
j=1

Tijgj
(
xj(t− τj)

)
+ Ii

⎤⎦ dt

+
m∑
j=1

σijdWj(t), i = 1, . . . , n (4)

with the initial condition x(s) = ξ(s) for all s ∈ [−τ, 0], where
τ = max1≤i≤n τi and ξ ∈ C([−τ, 0];Rn). System (4) can de-
scribe the evolution of a neural network under stochastic per-
turbations, where the time delay of information transmission
between neurons is supposed to be independent of the state and
the time. Define

ai =
1

CiRi
, bij =

Tij

Ci
, σ̄ij =

σij

Ci
, di =

Ii
Ci

and then system (4) can be rewritten as

dx(t) = [−Ax(t) + h(xt)]dt+ σdW (t) (5)

where xt = {x(t+ s) : −τ ≤ s ≤ 0},

A = diag(a1, . . . , an), x(t) = (x1(t), . . . , xn(t))
T

B = (bij)n×n, g(x) = (g1(x1), . . . , gn(xn))
T

f(x) = Bg(x) + d, h(xt) = f [(x1(t− τ1), . . . , xn(t− τn))
T ]

σ = (σ̄ij)n×m, d = (d1, . . . , dn)
T

W (t) = (W1(t), . . . ,Wm(t))T .

Before stating our main results, we present some basic defi-
nitions; see [1], [14].
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Definition 1: A quadruple (Ω,F ,P , {θt, t ∈ R}) is called a
metric dynamical system if θ is a measurable flow

θ : R × Ω 	→ Ω, θ0 = id, θt2 ◦ θt1 = θt1+t2

for all t1, t2 ∈ R, which is (B(R)⊗ F ,F )-measurable. In
addition, we assume that θtP = P for all t ∈ R.

Definition 2: An random dynamical systems (RDS) on
the state-space X induced by a metric dynamical system
(Ω,F ,P , {θt, t ∈ R}) is a mapping

ϕ : R+ × Ω×X 	→ X, (t, ω, x) 	→ ϕ(t, ω, x)

which is (B(R+)⊗ F ⊗ B(X),B(X))-measurable such that
for any ω ∈ Ω,

1) ϕ(0, ω, ·) is the identity on X;
2) ϕ(t1 + t2, ω, x) = ϕ(t2, θt1ω, ϕ(t1, ω, x)) for all

t1, t2 ∈ R+ and x ∈ X;
3) the mapping ϕ(t, ω, ·) : X → X is continuous for all t ∈

R+.
Definition 3: A family {D(ω), ω ∈ Ω} of nonempty subsets

of the state-space X is said to be a random closed (respectively,
compact) set if for each ω ∈ Ω, it is closed (respectively, com-
pact) and ω → d(x,D(ω)) is measurable for each x ∈ X . Here,
d(x,B) is the distance inX between point x and the setB ⊂ X .

Definition 4: A random variable u : Ω → X is said to be
an equilibrium of the RDS (θ, ϕ) if for all t ≥ 0 and ω ∈ Ω,
ϕ(t, ω)u(ω) = u(θtω).

Definition 5: Let X be a Banach space with a closed convex
cone X+, which gives a partial order relation on X via x ≤ y
if y − x ∈ X+. An element x ∈ X is called an upper bound
for a subset A ⊂ X if y ≤ x for all y ∈ A. An upper bound
x0 is called the least upper bound (or supremum), denoted by
x0 = supA, if x0 ≤ x for any other upper bound x. Moreover,
lower bound and the greatest lower bound (or infimum) can be
defined similarly.

In this article, we assume the following.
1) fi : Rn → R is globally Lipschitz continuous with

Lipschitz constant Li, monotone (or anti-monotone),
|fi(x)| ≤ Mi, ∀x ∈ Rn for some constant Mi > 0 and√

nL
λ

< 1, whereL =
√
nmax1≤i≤n Li is the global Lip-

schitz constant forh : Cτ → Rn and λ = min1≤i≤n ai >
0.

Here, monotone means that

x ≤Rn
+
y ⇒ f(x) ≤Rn

+
f(y), ∀x, y ∈ Rn

and anti-monotone means that

x ≤Rn
+
y ⇒ f(x) ≥Rn

+
f(y), ∀x, y ∈ Rn

where x ≤Rn
+
y stands for y − x ∈ Rn

+. Moreover, f can be
seen as sigmoidal functions, which have been widely used in
the engineering literature; see [16], [18].

Next, set y(t, ω, x0 − z0(ω)) = x(t, ω, x0)− z(θtω) for all
ω ∈ Ω, where x(t, ω, x0) is the solution of (5) with the initial
value x0 ∈ Cτ and

z(t, ω) ≡ z(θtω) =

∫ t

−∞
exp{−A(t− s)}σdW (s)

is the Ornstein–Uhlenbeck process, i.e., the stationary solution
of SDEs

dz(t) = −Az(t)dt+ σdW (t).

Here, the shift operator θ is defined by θtω(•) = ω(t+ •)−
ω(t) for all t ∈ R and ω ∈ Ω. Using the standard method, define
ϕ(t, ω, x0) : R+ × Ω× Cτ → Cτ by

ϕ(t, ω, x0) := xt(ω, x0) = yt
(
ω, x0 − z0(ω)

)
+ zt(ω) (6)

where xt(ω, x0) = {x(t+ s, ω, x0) : −τ ≤ s ≤ 0}, yt(ω, y0)
= {y(t+ s, ω, y0) : −τ ≤ s ≤ 0} and zt(ω) = {z(θt+sω) :
−τ ≤ s ≤ 0}; it is easily seen that y satisfies the corresponding
random functional differential equations

dy

dt
= −Ay + h

(
yt + zt(ω)

)
(7)

with the initial value

y0(ω) = x0 − z0(ω) (8)

and then ϕ is an RDS generated by (5) in Cτ .
For t ≥ τ and −τ ≤ s ≤ 0, using the variation of constants

formula [42, Th. 3.1], one can have that

ϕ(t, ω, x0)[s]

= e−A(t+s)x0(0) + e−A(t+s)

∫ t+s

0

eAuh
(
ϕ(u, ω, x0)

)
du

+ e−A(t+s)

∫ t+s

0

eAuσdWu

= e−A(t+s)x(0) +

∫ t+s

0

e−A(t+s−u)h
(
ϕ(u, ω, x0)

)
du

+

∫ t+s

0

e−A(t+s−u)σdWu, t+ s ≥ 0 (9)

where x0(s) := x(s). Combining the definition of θ and (9), it
follows immediately that for all t ≥ τ ,

ϕ(t, θ−tω, x0)[s]

= e−A(t+s)x(0) +

∫ s

−t

e−A(s−u)h
(
ϕ(u+ t, θ−tω, x0)

)
du

+

∫ s

−t

e−A(s−u)σdWu, t+ s ≥ 0. (10)

At the end of this section, motivated by the recent work [32],
we will define an important characteristic operator associated
with (10), which is defined by

[K(r)](s, ω)=

∫ s

−∞
e−A(s−u)r(θuω)du+

∫ s

−∞
e−A(s−u)σdWu

(11)
for all −τ ≤ s ≤ 0 and ω ∈ Ω. Here, r : Ω → Rn is a tempered
random variable with respect to the ergodic metric dynamical
system θ, i.e.,

sup
t∈R

{
e−γ|t| |r(θtω)|

}
< ∞ for all ω ∈ Ω and γ > 0.
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By (A1), it is easy to see that the operator K is well defined
and [K(r)](s, ω) is continuous with respect to s ∈ [−τ, 0] for
all tempered random variable r and ω ∈ Ω.

III. MAIN RESULTS

In this section, we will use the approach of random dynamical
systems to establish some useful inequalities in the sense of
partial order, which play the key role in the presentation of the
dynamical behavior of stochastic flow ϕ generated by (5). For
our purpose, we introduce the partial order ≤C+

τ
in the way

ξ ≤C+
τ
η ⇐⇒ η − ξ ∈ C+

τ

where C+
τ ={ξ|ξ ∈ Cτ , ξi(s) ≥ 0, i=1,. . ., n, ∀s∈ [−τ, 0]} is

a solid normal minihedral cone in the Banach space Cτ .
Lemma 3.1 [43, Lemma A.2]: Let (xt)t∈R+

is a net in a normed
spaceX associated with a solid, normal coneX+ ⊆ X . Suppose
that the net converges to a point x ∈ X , and that

x−
t := inf{xt′ : t

′ ≥ t} and x+
t := sup{xt′ : t

′ ≥ t}
exist for every t ∈ R+. Then, the nets (x−

t )t∈R+
and (x+

t )t∈R+

also converge to x.
Lemma 3.2: For any t ≥ τ , let

αh
t (ω) = inf {h (ϕ(u, θ−uω, x0)) : u ≥ t}

= inf{h (ϕ(u, θ−uω, x0)) : u ≥ t}
and

βh
t (ω) = sup {h (ϕ(u, θ−uω, x0)) : u ≥ t}

= sup{h (ϕ(u, θ−uω, x0)) : u ≥ t}
where x0 ∈ Cτ and ω ∈ Ω. Then, αh

t (ω) and βh
t (ω) are F−-

measurable random variables for all t ≥ τ , where F− = σ{ω 	→
Wt(ω) : t ≤ 0} is the past σ-algebra.

Proof: For any t ≥ τ , by (A1) and Proposition 1 in the Ap-
pendix, it is clear that {h(ϕ(u, θ−uω, x0)) : u ≥ t} is a compact
set in Rn, it follows that αh

t (ω) and βh
t (ω) are well defined for

all ω ∈ Ω and t ≥ τ . Here, we use the fact that inf A = inf A
and supA = supA, whereA is a bounded set in Rn; see Lemma
A.1 in [43]. Moreover, by Proposition 2 in the Appendix, it is
easily seen that

u 	→ h (ϕ(u, θ−uω, x0)) is continuous

from R+ into Rn for all ω ∈ Ω and x0 ∈ Cτ . The rest of the
proof can be followed by the same arguments in [33, Proposition
3.5]; we omit it here. The proof is complete. �

Lemma 3.3: Assume that (A1) holds, we have

[K(limθh(ϕ))](•, ω) ≤ [limθϕ](•, ω)

≤ [lim
θ
ϕ](•, ω) ≤ [K(lim

θ
h(ϕ))](•, ω)

(12)

for all ω ∈ Ω. Here, ≤ means ≤C+
τ

[limθϕ](•, ω) := lim
t→∞ inf{ϕ(u, θ−uω, x0)[•] : u ≥ t}

[lim
θ
ϕ](•, ω) := lim

t→∞ sup{ϕ(u, θ−uω, x0)[•] : u ≥ t}

[limθh(ϕ)](ω) := lim
t→∞ inf{h(ϕ(u, θ−uω, x0)) : u ≥ t}

and

[lim
θ
h(ϕ)](ω) := lim

t→∞ sup{h(ϕ(u, θ−uω, x0)) : u ≥ t}
for all ω ∈ Ω and x0 ∈ Cτ .

Proof: In order to show that (12) holds, we need to prove three
inequalities. For simplicity, we only prove the first inequality
in (12), and others can be obtained similarly. By Lemma 3.2,

we can immediately have that limθh(ϕ) and lim
θ
h(ϕ) exist,

which are two F−-measurable random variables. Moreover,
using Proposition 1 and 2 in the Appendix, it is clear that
{ϕ(t, θ−tω, x0) : t ≥ τ} is a compact set in Cτ and for any
ω ∈ Ω and x0 ∈ Cτ

u 	→ ϕ(u, θ−uω, x0) is a continuous mapping

from R+ into Cτ , which together with Proposition 1.5.3 and
Theorem 3.2.1 in [14] implies that limθϕ : Ω → Cτ is a well-
posed F−-measurable function, and the same conclusion holds

for lim
θ
ϕ. Besides, combining (11), Proposition 3.3 in [33], and

Fubini’s theorem, we can show that [K(limθh(ϕ))] : Ω → Cτ

is also an F−-measurable function. Here, the well-posedness of
[K(limθh(ϕ))] is based on the assumption that h : Cτ → Rn is
bounded, and so limθh(ϕ) is uniformly bounded with respect to
all ω ∈ Ω. According to Proposition 3, it follows immediately
that

[K(limθh(ϕ))](•, ω) = lim
t→∞[K(αh

t )](•, ω) in Cτ .

This implies that we only need to prove that for any t ≥ τ , the
following inequality

[K(αh
t )](•, ω) ≤ [limθϕ](•, ω) in Cτ (13)

is true for all ω ∈ Ω. At the same time, by (A1), it is
evident that h(ξ) ∈ [−M,M ] for all ξ ∈ Cτ , where M =
(M1, . . . ,Mn)

T ∈ intRn
+. Now, let us begin to prove (13). By

Proposition 4, it is obvious that for any t ≥ τ , we have

[K(αh
t )](•, ω)

=

∫ •

−∞
e−A(•−u) inf{h (ϕ(v, θ−v�, x0)) : v ≥ t}(θuω)du

+

∫ •

−∞
e−A(•−u)σdWu

= lim
t̃→∞
t̃≥t+τ

{
e−A(t̃+•)x(0) +

∫ •

t−t̃

e−A(•−u) inf

{h (ϕ(v, θ−v+uω, x0)) +M : v ≥ t}du

−
∫ •

−t̃

e−A(•−u)Mdu+

∫ •

−t̃

e−A(•−u)σdWu

}
Lem
===
2.1

lim
˜̃t→∞
˜̃t≥t+τ

inf

{
e−A(t̃+•)x(0) +

∫ •

t−t̃

e−A(•−u) inf

{h (ϕ(v, θ−v+uω, x0)) +M : v ≥ t}du
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−
∫ •

−t̃

e−A(•−u)Mdu+

∫ •

−t̃

e−A(•−u)σdWu : t̃ ≥ ˜̃t

}
≤ lim

˜̃t→∞
˜̃t≥t+τ

inf

{
e−A(t̃+•)x(0) +

∫ •

t−t̃

e−A(•−u)

[h
(
ϕ(t̃+ u, θ−t̃ω, x0)

)
+M ]du−

∫ •

−t̃

e−A(•−u)Mdu

+

∫ •

−t̃

e−A(•−u)σdWu : t̃ ≥ ˜̃t

}
≤ lim

˜̃t→∞
˜̃t≥t+τ

inf

{
e−A(t̃+•)x(0) +

∫ •

−t̃

e−A(•−u)

[h
(
ϕ(t̃+ u, θ−t̃ω, x0)

)
+M ]du−

∫ •

−t̃

e−A(•−u)Mdu

+

∫ •

−t̃

e−A(•−u)σdWu : t̃ ≥ ˜̃t

}
= lim

˜̃t→∞
inf

{
ϕ(t̃, θ−t̃ω, x0)[•] : t̃ ≥ ˜̃t

}
= [limθϕ](•, ω)

for all ω ∈ Ω, where the second-to-last inequality holds due
to that e−Atx ≥ 0 for all t ≥ 0 and x ∈ Rn

+. The proof is
complete. �

Remark 1: In this lemma, we remove the positivity ofh, which
is weaker than that in [32].

Lemma 3.4: Assume that (A1) holds. It follows that for all
ω ∈ Ω,

1) If f is monotone, then

h(limθϕ) ≤ limθh(ϕ) ≤ lim
θ
h(ϕ) ≤ h(lim

θ
ϕ). (14)

2) If f is anti-monotone, then

h(lim
θ
ϕ) ≤ limθh(ϕ) ≤ lim

θ
h(ϕ) ≤ h(limθϕ). (15)

Proof: By Lemma 3.3, it is easy to check that limθϕ and

lim
θ
ϕ are well defined for all ω ∈ Ω. The rest proof is similar

to Lemma 3.4 in [32]; we omit it here. �
Lemma 3.5: Assume that (A1) holds. Define the operator Kh

to be h ◦ K, which means that [Kh(r)](ω) = h{[K(r)](•, ω)}
for any tempered random variable r, thus

1) If f is monotone, then for all t ≥ τ , ω ∈ Ω and k ∈ N,

[(Kh)k(αh
t )](ω) ≤ [limθh(ϕ)](ω)

≤ [lim
θ
h(ϕ)](ω) ≤ [(Kh)k(βh

t )](ω).
(16)

2) If f is anti-monotone, then for all t ≥ τ , ω ∈ Ω and k ∈
N,

[(Kh)2k(αh
t )](ω) ≤ [limθh(ϕ)](ω)

≤ [lim
θ
h(ϕ)](ω) ≤ [(Kh)2k(βh

t )](ω).
(17)

Proof: The proof is similar to Lemma 3.5 in [32]; we omit it
here. �

Lemma 3.6: Assume that (A1) holds. Furthermore, let
Mb

F−(Ω; [−M,M ]) be the space of all F−-measurable func-
tions r : Ω → [−M,M ], where M = (M1, . . . ,Mn)

T is a
strongly positive vector in Rn

+ such that h(ξ) ∈ [−M,M ] for
all ξ ∈ Cτ . Next, we define a metric on Mb

F−(Ω; [−M,M ]) to
be

d(r1, r2) := |r1 − r2|∞ = sup
ω∈Ω

|r1(ω)− r2(ω)|

where r1, r2 ∈ Mb
F−(Ω; [−M,M ]). Therefore, we have that

(Mb
F− , d) is a complete metric space and the operator Kh :=

h ◦ K : Mb
F− → Mb

F− is a contraction mapping.
Proof: Using the same arguments in [32, Lemma 4.1], it

is easy to see that (Mb
F− , d) is a complete metric space. In

order to prove the conclusion, we first need to show that the
operatorKh := h ◦ K : Mb

F− → Mb
F− is well defined. For any

r ∈ Mb
F− , it is clear that [K(r)](•, ω) = {[K(r)](s, ω),−τ ≤

s ≤ 0} ∈ Cτ for all ω ∈ Ω. Moreover, set

[K(r)](t, ω) =

∫ t

−∞
e−A(t−u)r(θuω)du+

∫ t

−∞
e−A(t−u)σdWu

(18)
for all ω ∈ Ω, which is also continuous with respect to
t ∈ R−. Note that θ : R− × Ω 	→ Ω is (B(R−)⊗ F−,F−)-
measurable; see Proposition 3.3 in [33]. Combining this and
Fubini’s theorem, we can easily have that [K(r)](t, •) is F−-
measurable for all t ≤ 0 and r ∈ Mb

F− , which together with
Lemma II.2.1 in [46] implies that the mapping

ω 	−→ [K(r)]t(•, ω) = {[K(r)](t+ s, ω),−τ ≤ s ≤ 0}
is F−-measurable from Ω into Cτ for all t ≤ 0, where
[K(r)](t+ s, ω) is defined as (18). Let t = 0, it follows that

ω 	−→ [K(r)]0(•, ω) = {[K(r)](s, ω),−τ ≤ s ≤ 0}
is (F−,B(Cτ ))-measurable. Furthermore, since h : Cτ → Rn

is continuous, then it is immediate that Kh : Mb
F− → Mb

F− is
well defined.

Finally, we will show that the operator Kh : Mb
F− → Mb

F−
is contracted. For any r1, r2 ∈ Mb

F− , we have that∣∣Kh(r1)−Kh(r2)
∣∣
∞

= sup
ω∈Ω

|h{[K(r1)](•, ω)} − h{[K(r2)](•, ω)}|

≤ L sup
ω∈Ω

‖[K(r1)](•, ω)− [K(r2)](•, ω)‖Cτ

= L sup
ω∈Ω

sup
−τ≤s≤0

∣∣∣∣∫ s

−∞
e−A(s−u)[r1(θuω)− r2(θuω)]du

∣∣∣∣
≤ L sup

−τ≤s≤0

∫ s

−∞
‖e−A(s−u)‖ · |r1 − r2|∞du

≤ √
nL sup

−τ≤s≤0

∫ s

−∞
eλ(u−s)du · |r1 − r2|∞

=
√
nL

∫ 0

−∞
eλudu · |r1 − r2|∞

=

√
nL

λ
|r1 − r2|∞, where

√
nL

λ
< 1.
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The proof is complete. �
Theorem 3.1: Assume that (A1) holds. It follows that there

exists a unique fixed point r ∈ Mb
F− for the operator Kh :

Mb
F− → Mb

F− , which satisfies that

lim
t→∞ϕ(t, θ−tω, x0)[•] = [K(r)](•, ω) (19)

in Cτ for all x0 ∈ Cτ and ω ∈ Ω. In addition,
ϕ(t, ω, [K(r)](•, ω)) = [K(r)](•, θtω), t ≥ 0. That is,
[K(r)](•, ω) is a random equilibrium in Cτ for the stochastic
flow ϕ, which generates the stationary solution [K(r)](•, θtω)
for (5).

Proof: Using Lemma 3.5, whether f is monotone or anti-
monotone, we can always get that

[(Kh)2k(αh
t )](ω) ≤ [limθh(ϕ)](ω)

≤ [lim
θ
h(ϕ)](ω) ≤ [(Kh)2k(βh

t )](ω) (20)

for all t ≥ τ , ω ∈ Ω and k ∈ N. Moreover, by Lemma 3.2, it is
clear that αh

t and βh
t belong to the complete metric space Mb

F−
for all t ≥ 0. Note thatKh is a contraction mapping onMb

F− , see
Lemma 3.6, which together with Banach’s fixed point theorem
yields that there exists an F−-measurable random variable r :
Ω → [−M,M ] such that [Kh(r)](ω) = r(ω) and

lim
k→∞

[(Kh)2k(αh
t )](ω) = r(ω) = lim

k→∞
[(Kh)2k(βh

t )](ω)

for all t ≥ τ and ω ∈ Ω. Using this and (20), we have that

[limθh(ϕ)](ω) = [lim
θ
h(ϕ)](ω) = r(ω). (21)

Combining (21) and Lemma 3.3, it follows easily that

[limθϕ](•, ω) = [lim
θ
ϕ](•, ω) = [K(r)](•, ω). (22)

By Proposition 1 and definitions of inf and sup in Cτ , it is clear
that

inf{ϕ(u, θ−uω, x0)[•] : u ≥ t} ≤ ϕ(t, θ−tω, x0)[•]
and

ϕ(t, θ−tω, x0)[•] ≤ sup{ϕ(u, θ−uω, x0)[•] : u ≥ t}
for all t ≥ τ and ω ∈ Ω, which together with (22) implies that
(19) holds. Furthermore, by the definition of the cocycle ϕ,
we conclude that [K(r)](•, ω) is an F−-measurable random
equilibrium in Cτ . The proof is complete. �

Remark 2: By Theorem 3.1, for the global stability of (5), we
do not need to construct Lyapunov functions and condition (A1)
is easy to verify. Furthermore, the boundedness of the nonlinear
term h may be restricted. Actually, we believe that the global
Lipschitz assumption is enough, which yields that the proofs in
Appendix A will be more complex and the well-posedness of
the operator K should be checked.

Corollary 3.1: Assume that (A1) holds. It follows that

lim
t→∞‖ϕ(t, ω, x0)− ϕ(t, ω, y0)‖Cτ

= 0 (23)

in probability, for any different initial values x0, y0 ∈ Cτ . Thus,
we have that

lim
t→∞ |x(t, ω, x0)− x(t, ω, y0)| = 0 (24)

Fig. 1. Numerical simulation for x1(t) of (26) with differential initial
values x0 = (sin t, 2 sin t, 3 sin t)T and y0 = (4 cos t, 5 cos t, 6 cos t)T for
all t ∈ [−1, 0].

in probability, x(t, ω, x0) = ϕ(t, ω, x0)[0] is the solution of (5)
with the initial value x0 ∈ Cτ .

Proof: By (19), it is obvious that

lim
t→∞‖ϕ(t, θ−tω, x0)− ϕ(t, θ−tω, y0)‖Cτ

= 0 (25)

for all ω ∈ Ω. Since θtP = P for all t ∈ R, (25) gives that (23)
and (24) hold. The proof is complete. �

IV. EXAMPLES

In this section, we will present an example to illustrate the
effect of Theorem 3.1 and Corollary 3.1.

Example 4.1: Let W (t) = (W1(t),W2(t),W3(t))
T be a

three-dimensional Brownian motion, I1 = I2 = I3 = 0 and
σ1 = 1, σ2 = 2, σ3 = 3. We consider the following SDDEs with
additive white noise:

dxi(t)=

[
−(Ax)i(t) +

1

3
arctan(xi−1(t− 1))

]
dt+σidWi(t)

(26)
i = 1, 2, 3, where

A =

⎡⎣ 3
2 0 0
0 2 0
0 0 3

⎤⎦ (27)

x = (x1, x2, x3)T ∈ R3 and x0 represents x3. Direct computa-
tion shows that λ = 3

2 and L =
√
3
3 ; it is clear that

√
3L

λ
=

2

3
< 1.

Hence, there exists a globally attracting stationary solution for
the stochastic flow generated by (26) in Cτ and trajectory
synchronization will occur based on Theorem 3.1 and Corollary
3.1; see Figs. 1 – 3.

Remark 3: Example 4.1 and Figs. 1– 3 show that there is no
trivial stationary solutions for (26) and the forward trajectories
can only be synchronized, which implies that the method of
constructing Lyapunov functions is invalid here. However, by
Theorem 3.1, we prove that all the pull-back trajectories will
converge to a globally attracting random equilibrium in the
infinite dimensional Banach space Cτ .
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Fig. 2. Numerical simulation for x2(t) of (26) with differential initial
values x0 = (sin t, 2 sin t, 3 sin t)T and y0 = (4 cos t, 5 cos t, 6 cos t)T for
all t ∈ [−1, 0].

Fig. 3. Numerical simulation for x3(t) of (26) with differential initial
values x0 = (sin t, 2 sin t, 3 sin t)T and y0 = (4 cos t, 5 cos t, 6 cos t)T for
all t ∈ [−1, 0].

APPENDIX A
PROOFS OF THE COMPACTNESS AND CONTINUITY OF THE

PULL-BACK TRAJECTORIES

Proposition 1: Suppose that (A1) holds. For any initial value
x0 ∈ Cτ and ω ∈ Ω, the pull-back trajectory {ϕ(t, θ−tω, x0) :
t ≥ τ} is a relative compact set in Cτ .

Proof: The proof will be divided into two parts. First, we will
show that {ϕ(t, θ−tω, x0) : t ≥ τ} is uniformly bounded in Cτ .
By (10), it is obvious that for all ω ∈ Ω and x0 ∈ Cτ , we have

sup
t≥τ

‖ϕ(t, θ−tω, x0)‖Cτ

= sup
t≥τ

sup
−τ≤s≤0

|ϕ(t, θ−tω, x0)[s]|

≤ sup
0≤u<∞

|e−Aux(0)|+ sup
−τ≤s≤0

‖e−As‖ · |M | ·
∫ 0

−∞
‖eAu‖du

+ sup
−τ≤s≤0

‖e−As‖ · sup
t≥τ

sup
−τ≤s≤0

∣∣∣∣∫ s

−t

eAuσdWu

∣∣∣∣
≤ √

n|x(0)|+√
n|M | · sup

−τ≤s≤0
‖e−As‖ ·

∫ 0

−∞
eλudu

+ 2 sup
−τ≤s≤0

‖e−As‖ · sup
t̃≥0

∣∣∣∣∣
∫ −t̃

−∞
eAuσdWu

∣∣∣∣∣
< ∞

where M = (M1, . . . ,Mn)
T and the last inequality holds due

to that limt̃→∞
∫ −t̃

−∞ eAuσdWu = 0 and
∫ −t̃

−∞ eAuσdWu is con-
tinuous with respect to t̃ ≥ 0, see [36, Problem 3.20 in Ch. 1].
This shows that {ϕ(t, θ−tω, x0) : t ≥ τ} is a bounded set in Cτ

for all ω ∈ Ω and x0 ∈ Cτ .
Next, we will prove that the family of functions

{ϕ(t, θ−tω, x0) : t ≥ τ} is equicontinuous for all ω ∈ Ω and
x0 ∈ Cτ . Given any −τ ≤ s1 < s2 ≤ 0, it is easy to see that

|ϕ(t, θ−tω, x0)[s2]− ϕ(t, θ−tω, x0)[s1]|
≤ ‖e−A(t+s2) − e−A(t+s1)‖ · |x(0)|

+

∣∣∣∣∫ s2

−t

e−A(s2−u) · �du−
∫ s1

−t

e−A(s1−u) · �du

∣∣∣∣
+

∣∣∣∣∫ s2

−t

e−A(s2−u)σdWu −
∫ s1

−t

e−A(s1−u)σdWu

∣∣∣∣
where � = h

(
ϕ(u+ t, θ−tω, x0)

)
. For the convenience, the

proof will be divided into three steps. First, it is clear that

‖e−A(t+s2) − e−A(t+s1)‖ · |x(0)|
≤ ‖e−A(t+s1)‖ · |x(0)| · ‖e−A(s2−s1) − In×n‖
≤ √

n · |x(0)| · √n|1− e−λ(s2−s1)| (28)

where λ = max1≤i≤n ai > 0 and In×n = diag(1, . . . , 1). Sec-
ond, let α = sup−τ≤s≤0 ‖e−As‖, we observe that∣∣∣∣∫ s2

−t

e−A(s2−u) · �du−
∫ s1

−t

e−A(s1−u) · �du

∣∣∣∣
≤

∣∣∣∣e−As2

∫ s2

−t

eAu · �du− e−As1

∫ s2

−t

eAu · �du

∣∣∣∣
+

∣∣∣∣e−As1

∫ s2

−t

eAu · �du− e−As1

∫ s1

−t

eAu · �du

∣∣∣∣
≤ α|M | ·

∫ 0

−∞
‖eAu‖du · ‖e−A(s2−s1) − In×n‖

+ α|M | ·
∫ s2

s1

‖eAu‖du

≤ α|M | ·
∫ 0

−∞
‖eAu‖du · √n|1− e−λ(s2−s1)|

+
√
nα|M | · |s2 − s1|. (29)

Finally, direct calculation shows that∣∣∣∣∫ s2

−t

e−A(s2−u)σdWu −
∫ s1

−t

e−A(s1−u)σdWu

∣∣∣∣
≤

∣∣∣∣e−As2

∫ s2

−t

eAuσdWu − e−As1

∫ s2

−t

eAuσdWu

∣∣∣∣
+

∣∣∣∣e−As1

∫ s2

−t

eAuσdWu − e−As1

∫ s1

−t

eAuσdWu

∣∣∣∣
≤ 2α sup

t̃≥0

∣∣∣∣∣
∫ −t̃

−∞
eAuσdWu

∣∣∣∣∣ · ‖e−A(s2−s1) − In×n‖
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+ α

∣∣∣∣∫ s2

s1

eAuσdWu

∣∣∣∣
≤ 2α sup

t̃≥0

∣∣∣∣∣
∫ −t̃

−∞
eAuσdWu

∣∣∣∣∣ · √n|1− e−λ(s2−s1)|

+ α

∣∣∣∣∫ s2

s1

eAuσdWu

∣∣∣∣ . (30)

Note that
∫ s

−∞ eAuσdWu is continuous with respect to s ≤ 0
and then it is uniformly continuous on [−τ, 0]. This together
with (28)–(30) implies that {ϕ(t, θ−tω, x0) : t ≥ τ} is equicon-
tinuous for all ω ∈ Ω and x0 ∈ Cτ . Using the Arzela–Ascoli
theorem, we complete the proof. �

Remark 4: Note that C+
τ is a solid normal minihedral cone,

which together with the compactness of the pull-back trajecto-
ries can guarantee that inf and sup in Cτ exist; see Theorem
3.1.2 and Theorem 3.2.1 in [14].

Proposition 2: Assume that (A1) holds. It follows that the
mapping

t 	→ ϕ(t, θ−tω, x0)

is continuous from R+ into Cτ for all ω ∈ Ω and x0 ∈ Cτ .
Proof: By (6), it is clear that

ϕ(t, θ−tω, x0) = yt
(
θ−tω, x0 − z0(θ−tω)

)
+ zt(θ−tω)

= yt
(
θ−tω, x0 − z−t(ω)

)
+ z0(ω).

This shows that it is enough to prove the continu-
ity of yt

(
θ−tω, x0 − z−t(ω)

)
= yt

(
θ−tω, y0(θ−tω)

)
for any

fixed ω ∈ Ω and x0 ∈ Cτ . Let yk
(
t, ω, x0 − z0(ω)

)
=

yk
(
t, ω, y0(ω)

)
be the Picard approximations of the solution

for (7) and (8), i.e.,

y00
(
ω, x0 − z0(ω)

)
= y0(ω) = x0 − z0(ω)

and

y0
(
t, ω, x0 − z0(ω)

)
= [y0(ω)](0) = [x0 − z0(ω)](0)

for all t ≥ 0. Moreover, for each k ≥ 1, yk0
(
ω, x0 − z0(ω)

)
=

y0(ω) = x0 − z0(ω) and

yk
(
t, ω, y0(ω)

)
= [y0(ω)](0)−

∫ t

0

Ayk−1
(
u, ω, y0(ω)

)
du

+

∫ t

0

h
(
yk−1
u

(
ω, y0(ω)

)
+ zu(ω)

)
du.

It follows that for any t ≥ 0 and ω ∈ Ω, we have

y00
(
θ−tω, y0(θ−tω)

)
= y0(θ−tω) = x0 − z−t(ω)

and

y0
(
u, θ−tω, y0(θ−tω)

)
= [y0(θ−tω)](0) = x0(0)− z(−t, ω)

for all u ≥ 0. Analogously,

yk0
(
θ−tω, y0(θ−tω)

)
= y0(θ−tω) = x0 − z−t(ω)

and

yk
(
u, θ−tω, y0(θ−tω)

)

= [y0(θ−tω)](0)−
∫ u

0

Ayk−1
(
ũ, θ−tω, y0(θ−tω)

)
dũ

+

∫ u

0

h
(
yk−1
ũ

(
θ−tω, y0(θ−tω)

)
+ zũ(θ−tω)

)
dũ (31)

where u ≥ 0. Now, we claim that

sup
0≤u≤ū

∣∣yk+1
(
u, θ−tω, y0(θ−tω)

)− yk
(
u, θ−tω, y0(θ−tω)

)∣∣
≤ N(L̃ū)k

k!
(32)

for all k ∈ N and ū, t ∈ [0, T ], T > 0, where L̃ = ‖A‖+ L
and N = N(T, ω) will be defined below. For k = 0, direct
computation shows that

sup
0≤u≤T

∣∣y1(u, θ−tω, y0(θ−tω)
)− y0

(
u, θ−tω, y0(θ−tω)

)∣∣
≤ sup

0≤u≤T

∫ u

0

∣∣Ay0(ũ, θ−tω, y0(θ−tω)
)∣∣ dũ+ T sup

ξ∈Cτ

|h(ξ)|

≤ T sup
0≤t≤T

|A[x0(0)− z(−t, ω)]|+ T |M |

:= N(T, ω) (33)

which implies that (32) holds for k = 0. Next, we assume that
(32) holds for some k ∈ N. Then, we have

sup
0≤u≤ū

∣∣yk+2
(
u, θ−tω, y0(θ−tω)

)
−yk+1

(
u, θ−tω, y0(θ−tω)

)∣∣
≤ sup

0≤u≤ū

∫ u

0

L̃‖yk+1
ũ

(
θ−tω, y0(θ−tω)

)
− ykũ

(
θ−tω, y0(θ−tω)

)‖Cτ
dũ

≤ L̃

∫ ū

0

N(L̃ũ)k

k!
dũ =

N(L̃ū)k+1

(k + 1)!
.

This yields that (32) holds fork + 1. Consequently, by induction,
we conclude that (32) holds for all k ∈ N. Next, we will prove
that for any ω ∈ Ω, the mapping

(u, t) 	−→ yku
(
θ−tω, y0(θ−tω)

)
(34)

is continuous from R+ × R+ intoCτ for all k ∈ N. The proof of
this property can be divided into two parts. Let (u, t) ∈ [0, T ]×
[0, T ], T > 0. First, from (32), it is easy to check that

sup
−τ≤u≤T

∣∣yk(u, θ−tω, y0(θ−tω)
)∣∣

≤ sup
−τ≤u≤T

∣∣y0(u, θ−tω, y0(θ−tω)
)∣∣+ k∑

i=1

sup
−τ≤u≤T∣∣yi(u, θ−tω, y0(θ−tω)

)− yi−1
(
u, θ−tω, y0(θ−tω)

)∣∣
= sup

−τ≤u≤T

∣∣y0(u, θ−tω, y0(θ−tω)
)∣∣+ k∑

i=1

sup
0≤u≤T∣∣yi(u, θ−tω, y0(θ−tω)

)− yi−1
(
u, θ−tω, y0(θ−tω)

)∣∣
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≤
k∑

i=1

N(L̃T )i−1

(i− 1)!
+ sup

−τ≤u≤0
|x0(u)− z(−t+ u, ω)|

+ sup
0≤t≤T

|x0(0)− z(−t, ω)|

≤ N exp(L̃T ) + sup
−τ≤u≤0

|x0(u)|+ sup
−T−τ≤u≤0

|z(u, ω)|

+ sup
0≤t≤T

|x0(0)− z(−t, ω)| := K(T, ω)

for allω ∈ Ω,k ∈ N and t ∈ [0, T ]. Therefore, for any0 ≤ u1 ≤
u2 ≤ T , we have that

‖yku2

(
θ−tω, y0(θ−tω)

)− yku1

(
θ−tω, y0(θ−tω)

)‖Cτ

= sup
−τ≤s≤0

∣∣yk(u2 + s, θ−tω, y0(θ−tω)
)

−yk
(
u1 + s, θ−tω, y0(θ−tω)

)∣∣
≤ sup

−τ≤s≤0

∫ u2+s

u1+s

(∣∣Ayk−1
(
ũ, θ−tω, y0(θ−tω)

)∣∣
+

∣∣h (yk−1
ũ

(
θ−tω, y0(θ−tω)

)
+ zũ(θ−tω)

)∣∣) dũ
≤

[
‖A‖K(T, ω) + sup

ξ∈Cτ

|h(ξ)|
]
· |u2 − u1|

which induces that for all ω ∈ Ω and k ∈ N,

u 	−→ yku
(
θ−tω, y0(θ−tω)

)
, u ∈ [0, T ] (35)

is continuous uniformly with respect to t ∈ [0, T ]. The remain-
ing task is to show that

t 	−→ yku
(
θ−tω, y0(θ−tω)

)
, t ∈ [0, T ] (36)

is continuous for any u ∈ [0, T ], ω ∈ Ω and k ∈ N. For k = 0,
choose 0 ≤ t1 ≤ t2 ≤ T , it follows that

‖y0u
(
θ−t2ω, y0(θ−t2ω)

)− y0u
(
θ−t1ω, y0(θ−t1ω)

)‖Cτ

= sup
−τ≤s≤0

∣∣y0(u+ s, θ−t2ω, y0(θ−t2ω)
)

−y0
(
u+ s, θ−t1ω, y0(θ−t1ω)

)∣∣
≤ sup

−τ≤s≤0
|z(s− t2, ω)− z(s− t1, ω)|

for all u ∈ [0, T ]. This implies that for k = 1, we have

‖y1u
(
θ−t2ω, y0(θ−t2ω)

)− y1u
(
θ−t1ω, y0(θ−t1ω)

)‖Cτ

= sup
−τ≤s≤0

∣∣y1(u+ s, θ−t2ω, y0(θ−t2ω)
)

−y1
(
u+ s, θ−t1ω, y0(θ−t1ω)

)∣∣
≤ sup

−τ≤s≤0
|z(s− t2, ω)− z(s− t1, ω)|+ sup

−τ≤s≤0

∫ u+s

0

[L̃‖y0ũ
(
θ−t2ω, y0(θ−t2ω)

)− y0ũ
(
θ−t1ω, y0(θ−t1ω)

)‖Cτ

+ L‖zũ(θ−t2ω)− zũ(θ−t1ω)‖Cτ
]dũ

≤ (L̃T + 1) sup
−τ≤s≤0

|z(s− t2, ω)− z(s− t1, ω)|

+ LT sup
−τ≤s≤T

|z(s− t2, ω)− z(s− t1, ω)|

≤ (L̃T + LT + 1) sup
−τ≤s≤T

|z(s− t2, ω)− z(s− t1, ω)|

:= D1 sup
−τ≤s≤T

|z(s− t2, ω)− z(s− t1, ω)|

for all u ∈ [0, T ] and 0 ≤ t1 ≤ t2 ≤ T . Now, we assume that
for some k ≥ 1, there exists a constant Dk > 0 such that

‖yku
(
θ−t2ω, y0(θ−t2ω)

)− yku
(
θ−t1ω, y0(θ−t1ω)

)‖Cτ

≤ Dk sup
−τ≤s≤T

|z(s− t2, ω)− z(s− t1, ω)|

for all u ∈ [0, T ] and 0 ≤ t1 ≤ t2 ≤ T . Similar as the above
analysis, it is evident that

‖yk+1
u

(
θ−t2ω, y0(θ−t2ω)

)− yk+1
u

(
θ−t1ω, y0(θ−t1ω)

)‖Cτ

≤ (L̃TDk + LT + 1) sup
−τ≤s≤T

|z(s− t2, ω)− z(s− t1, ω)|

:= Dk+1 sup
−τ≤s≤T

|z(s− t2, ω)− z(s− t1, ω)|

for all u ∈ [0, T ] and 0 ≤ t1 ≤ t2 ≤ T . Therefore, by induction,
it is easily seen that (36) holds for any u ∈ [0, T ], ω ∈ Ω and
k ∈ N. Here, we use the fact that for any ω ∈ Ω, z(t, ω) is
uniformly continuous on [−T − τ, T ]. Combining (35) and (36),
it is obvious that

yku
(
θ−tω, y0(θ−tω)

)
: [0, T ]× [0, T ] 	−→ Cτ

is continuous with respect to (u, t) for all ω ∈ Ω, k ∈ N and
T > 0. That is, (34) holds. In view of inequality (32), we can
obtain that

yku
(
θ−tω, y0(θ−tω)

) −→ yu
(
θ−tω, y0(θ−tω)

in Cτ , as k → ∞, uniformly with respect to (u, t) ∈ [0, T ]×
[0, T ], where T > 0. Using Theorem 21.6 in [47, Ch. 2], it
follows immediately that

(u, t) 	−→ yu
(
θ−tω, y0(θ−tω)

)
is continuous from [0, T ]× [0, T ] into Cτ for all ω ∈ Ω and
T > 0. This proves that

yt
(
θ−tω, y0(θ−tω)

)
: [0, T ] 	−→ Cτ

is continuous with respect to t ∈ [0, T ] for all ω ∈ Ω and T > 0.
Since T > 0 is arbitrary, the proof is complete. �

Proposition 3: Let {rt : Ω → Rn, t ∈ R+} be a family of
uniformly bounded random variables and for all ω ∈ Ω,

rt(ω) → r(ω) as t → ∞

where |rt(ω)| ≤ |M | for all ω ∈ Ω and t ∈ R+, it follows that

lim
t→∞[K(rt)](•, ω) = [K(r)](•, ω) in Cτ . (37)

Authorized licensed use limited to: Shanghai Normal University. Downloaded on September 28,2022 at 03:33:03 UTC from IEEE Xplore.  Restrictions apply. 



LV: NEW APPROACH TO STABILITY ANALYSIS FOR STOCHASTIC HOPFIELD NEURAL NETWORKS WITH TIME DELAYS 5287

Proof: By the definition of K, we have that

sup
−τ≤s≤0

|[K(rt)](s, ω)− [K(r)](s, ω)|

≤ sup
−τ≤s≤0

∫ s

−∞
‖e−A(s−u)‖ · |rt(θuω)− r(θuω)|du

≤ √
n sup

−τ≤s≤0
‖e−As‖

∫ 0

−∞
eλu|rt(θuω)− r(θuω)|du

which together with Lebesgue’s-dominated convergence theo-
rem yields that (37) holds; the proof is complete. �

Proposition 4: For any initial value x(0) ∈ Rn and bounded
random variable r : Ω → Rn such that r(ω) ∈ [−M,M ] for all
ω ∈ Ω, we have that

[K(r)](•, ω) = lim
t→∞

{
e−A(t+•)x(0) +

∫ •

−t

e−A(•−u)r(θuω)du

+

∫ •

−t

e−A(•−u)σdWu

}
(38)

in Cτ .
Proof: First, it is obvious that

sup
−τ≤s≤0

‖e−A(t+s)‖ ≤ √
n sup

−τ≤s≤0
‖e−As‖ · e−λt → 0 (39)

as t → ∞. Second, we show that

sup
−τ≤s≤0

∣∣∣∣∫ s

−t

e−A(s−u)r(θuω)du−
∫ s

−∞
e−A(s−u)r(θuω)du

∣∣∣∣
(40)

tends to 0 as t → ∞. It is clear that

sup
−τ≤s≤0

∣∣∣∣∫ −t

−∞
e−A(s−u)r(θuω)du

∣∣∣∣
≤ sup

−τ≤s≤0
‖e−As‖

∫ −t

−∞
‖eAu‖ · |M |du

≤ √
n sup

−τ≤s≤0
‖e−As‖ · |M |

∫ −t

−∞
eλudu

−→ 0 as t → ∞.

Third, it is easily seen that

sup
−τ≤s≤0

∣∣∣∣∫ s

−t

e−A(s−u)σdWu −
∫ s

−∞
e−A(s−u)σdWu

∣∣∣∣
≤ sup

−τ≤s≤0
‖e−As‖ ·

∣∣∣∣∫ −t

−∞
eAuσdWu

∣∣∣∣
−→ 0 as t → ∞

which together with (39) and (40) implies that (38) holds; the
proof is complete. �
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