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1. Introduction and main results

Consider the second-order nonautonomous Hamiltonian systems

ü(t)− L(t)u(t)+∇W
(
t, u(t)

)
= 0 (1.1)

where t ∈ R, u ∈ Rn, L ∈ C(R, Rn×n) is a symmetric matrix valued function andW : R × Rn → R. As usual we say that a
nonzero solution u(t) of (1.1) is homoclinic (to 0) if u(t)→ 0 and u̇(t)→ 0 as |t| → +∞.
Recently the existence and multiplicity of homoclinic orbits for (1.1) have been extensively studied in many papers via

critical theory (see [1,3–9,11–20]). For (1.1), the case where L(t) andW (t, x) are either independent of t or periodic in t is
studied by several authors (see [7,9,16,17]). Rabinowitz [16] has shown the existence of homoclinic orbits as a limit of 2kT -
periodic solutions of (1.1). By the same method, several results for general Hamiltonian systems were obtained by Felmer
et al. [7], Izydorek and Janczewska [9], Tang and Xiao [19]. The related results can be referred to in [15] for the case where
L(t) andW (t, x) are either independent of t .
If L(t) and W (t, x) are neither autonomous nor periodic in t , the problem of existence of homoclinic orbits for (1.1) is

quite different from the one just described, because of the lack of compactness of the Sobolev embedding. In [17], Rabinowitz
and Tanaka studied system (1.1) without a periodicity assumption, both for L andW . More precisely, they assumed that the
smallest eigenvalue of L(t) tends to+∞ as |t| → ∞, using a variant of theMountain Pass theoremwithout the Palais–Smale
condition, and proved that system (1.1) possesses a homoclinic orbit.
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Theorem A (See [17]). Assume that L and W satisfy the following conditions:

(L) L(t) is positive definite symmetric matrix for all t ∈ R and there exists an l ∈ C(R,
(
0,∞)

)
such that l(t) → +∞ as

|t| → ∞ and(
L(t)x, x

)
≥ l(t)|x|2

for all t ∈ R and x ∈ Rn;
(W1) W ∈ C1(R× Rn, R) and there is a constant µ > 2 such that

0 < µW (t, x) ≤
(
x,∇W (t, x)

)
for all t ∈ R and x ∈ Rn \ {0};

(W2) |∇W (t, x)| = o(|x|) as |x| → 0 uniformly with respect to t ∈ R;
(W3) there is a W ∈ C(Rn, R) such that

|W (t, x)| + |∇W (t, x)| ≤ |W (x)|

for all t ∈ R and x ∈ Rn.

Then system (1.1) possesses a nontrivial homoclinic solution.

Motivated by the above papers [8,9,13,14], we will obtain a new criterion for guaranteeing that (1.1) has one nontrivial
homoclinic solutionwithout anyperiodicity or coercivity condition, especially,W (t, x) satisfies a kindof newsuperquadratic
condition which is different from the corresponding condition in the known literature. We prove the existence of one
homoclinic solution as the limit of solutions of a certain sequence of boundary-value problems which are obtained by the
minimax methods. The main results are the following theorems.

Theorem 1.1. Assume that L and W satisfy assumption (L) and the following conditions:

(H1) W (t, 0) ≡ 0,W ∈ C1(R× Rn, R) and |∇W (t, x)| = o(|x|) as |x| → 0 uniformly in t ∈ R;
(H2) there are two constants µ > 2 and ν ∈ [0, µ2 − 1) and β ∈ L

1(R, R+) such that(
∇W (t, x), x

)
− µW (t, x) ≥ −ν

(
L(t)x, x

)
− β(t)

for all t ∈ R and x ∈ Rn \ {0};
(H3) there exists T0 > 0 such that

lim inf
|x|→∞

W (t, x)
|x|2

>
π2

2T 20
+
l1
2

uniformly in t ∈ [−T0, T0], where l1 is the biggest eigenvalue of L(t) on [−T0, T0].

Then system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.1. For system (1.1), Theorem 1.1 gives a new criterion for the existence of homoclinic solutions by relaxing
condition (W1) and changing condition (W3).

2. Proof of theorems

By the similar idea of [8], we approximate an homoclinic orbit of (1.1) by the following problem{
ü(t)− L(t)u(t)+∇W

(
t, u(t)

)
= 0, for t ∈ [−T , T ]

u(−T ) = u(T ) = 0. (2.1)

Let

ET =
{
u ∈ W 1,2

(
[−T , T ], Rn

)
|

∫ T

−T

[
|u̇(t)|2 +

(
L(t)u(t), u(t)

)]
dt < +∞

}
where

W 1,2
(
[−T , T ], Rn

)
= {u : [−T , T ] −→ Rn| u is absolutely continuous, u(−T ) = u(T ) = 0, u̇ ∈ L2([−T , T ], Rn)}

and for u ∈ ET , let

‖u‖ =
{∫ T

−T

[
|u̇(t)|2 +

(
L(t)u(t), u(t)

)]
dt
} 1
2

,

then ET is a Hilbert space on the above norm.
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We consider a functional I : ET → R, defined by

I(u) =
1
2
‖u‖2 −

∫ T

−T
W
(
t, u(t)

)
dt. (2.2)

Then we can easily check that I ∈ C1(ET , R) and

〈I ′(u), v〉 =
∫ T

−T

[
(u̇(t), v̇(t))+ (L(t)u(t), v(t))−

(
∇W

(
t, u(t)

)
, v(t)

)]
dt (2.3)

for all u, v ∈ ET . Furthermore, it is well known that the critical points of I in ET are classical solutions of (2.1) (see [2,10]).
We will obtain a critical point of I by using a standard of the Mountain Pass theorem. It provides the minimax

characterization for the critical value which is important for what follows. Therefore, we state this theorem precisely.

Lemma 2.1 (See [16]). Let E be a real Banach space and I ∈ C1(E, R) satisfy the Palais–Smale condition. If I satisfies the following
conditions:

(i) I(0) = 0;
(ii) there exist constants ρ, α > 0 such that I|∂Bρ (0) ≥ α;
(iii) there exists e ∈ E \ B̄ρ(0) such that I(e) ≤ 0,

then I possesses a critical value c ≥ α given by

c = inf
g∈Γ
max
s∈[0,1]

I
(
g(s)

)
,

where Bρ(0) is an open ball in E of radius ρ about at 0, and

Γ =
{
g ∈ C

(
[0, 1], E

)
: g(0) = 0, g(1) = e

}
.

Lemma 2.2. Let a > 0 and u ∈ W 1,2
(
[−T , T ], Rn

)
. Then for every t ∈ [−T , T ], the following inequality holds:

|u(t)| ≤ (2a)−
1
2

(∫ t+a

t−a
|u(s)|2ds

) 1
2

+

√
a
2

(∫ t+a

t−a
|u̇(s)|2ds

) 1
2

. (2.4)

Proof. Fix t ∈ [−T , T ]. For every τ ∈ [−T , T ],

|u(t)| ≤ |u(τ )| +
∣∣∣∣∫ t

τ

u̇(s)ds
∣∣∣∣ . (2.5)

Since u can be extended by zero in R\[−T , T ], integrating (2.5) over [t−a, t+a] and using the Hölder inequality, we obtain

2a |u(t)| ≤
∫ t+a

t−a
|u(τ )| dτ +

∫ t+a

t−a

∣∣∣∣∫ t

τ

u̇(s)ds
∣∣∣∣ dτ

≤

∫ t+a

t−a
|u(τ )| dτ +

∫ t

t−a

∫ t

t−a
|u̇(s)| dsdτ +

∫ t+a

t

∫ t+a

t
|u̇(s)| dsdτ

≤ (2a)
1
2

(∫ t+a

t−a
|u(s)|2ds

) 1
2

+ a
∫ t+a

t−a
|u̇(s)| ds

≤ (2a)
1
2

(∫ t+a

t−a
|u(s)|2ds

) 1
2

+ a(2a)
1
2

(∫ t+a

t−a
|u̇(s)|2 ds

) 1
2

,

which implies (2.4) holds. The proof is complete. �

Corollary 2.1. Let u ∈ W 1,2
(
[−T , T ], Rn

)
. Then for every t ∈ [−T , T ], the following inequality holds:

|u(t)| ≤
[∫ t+1

t−1

(
|u̇(s)|2 + |u(s)|2

)
ds
] 1
2

. (2.6)
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Proof. Let a = 1 in (2.4). Then we have

|u(t)| ≤

√
2
2

(∫ t+1

t−1
|u(s)|2 ds

) 1
2

+

(∫ t+1

t−1
|u̇(s)|2 ds

) 1
2

 ,
which together with the inequality (

√
a+
√
b)/2 ≤

√
(a+ b)/2 implies that (2.6) holds. The proof is complete. �

Lemma 2.3. For u ∈ ET ,

‖u‖L∞
[−T ,T ]
≤

1√
2
√
l∗
‖u‖ =

1√
2
√
l∗

{∫ T

−T

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds
} 1
2

, (2.7)

where l∗ = inft∈R l(t).

Proof. Since u ∈ ET , so u ∈ W 1,2
(
[−T , T ], Rn

)
, then there exists a t∗ ∈ [−T , T ] such that∣∣u(t∗)∣∣ = max

t∈[−T ,T ]
|u(t)| . (2.8)

We choose two sequence {tk} and {t−k} such that

−T ≤ · · · < t−3 < t−2 < t−1 < t∗ < t1 < t2 < t3 < · · · ≤ T ,
lim
k→∞

tk = T , lim
k→∞

t−k = −T ,

and then

lim
k→∞
|u(tk)| = lim

k→∞
|u(t−k)| = 0.

Note that∣∣u(t∗)∣∣2 = |u(tk)|2 − 2 ∫ tk

t∗

(
u(s), u̇(s)

)
ds, (2.9)

and ∣∣u(t∗)∣∣2 = |u(t−k)|2 + 2 ∫ t∗

t−k

(
u(s), u̇(s)

)
ds. (2.10)

For u ∈ ET , we have by (2.9) and (2.10),∣∣u(t∗)∣∣2 = 1
2

(
|u(tk)|2 + |u(t−k)|2

)
−

∫ tk

t∗

(
u(s), u̇(s)

)
ds+

∫ t∗

t−k

(
u(s), u̇(s)

)
ds

≤
1
2

(
|u(tk)|2 + |u(t−k)|2

)
+

∫ tk

t−k

|u(s)| |u̇(s)| ds

≤
1
2

(
|u(tk)|2 + |u(t−k)|2

)
+
1
2

∫ tk

t−k

1
√
l(s)

(
|u̇(s)|2 + l(s) |u(s)|2

)
ds

≤
1
2

(
|u(tk)|2 + |u(t−k)|2

)
+
1
2

∫ tk

t−k

1
√
l(s)

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds

≤
1
2

(
|u(tk)|2 + |u(t−k)|2

)
+

1
2
√
l∗

∫ tk

t−k

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds, k ∈ N.

Let k→∞ in the above, we can get∣∣u(t∗)∣∣2 ≤ 1
2
√
l∗

∫ T

−T

[
|u̇(s)|2 +

(
L(s)u(s), u(s)

)]
ds,

which implies that (2.7) holds. The proof is complete. �

Lemma 2.4. Under the conditions of Theorem 1.1, problem (2.1) possesses a nontrivial solution for all T ≥ T0.
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Proof. Step 1. I satisfies the Palais–Smale condition, i.e., for every sequence {uk} ⊂ ET , {uk} has a convergent subsequence
if I(uk) is bounded and I ′(uk)→ 0 as k→∞.
Assume that {uk} ⊂ ET , I(uk) is bounded and I ′(uk)→ 0 as k→∞, then there exists a constantMT > 0 such that

I(uk) ≤ MT ,
∥∥I ′(uk)∥∥∗ET ≤ MT (2.11)

for every k ∈ N . We first proved that {uk}k∈N is bounded. By (2.11) and (H2),

‖uk‖2 ≤ 2I(uk)+
2
µ

∫ T

−T

[(
∇W

(
t, uk(t)

)
, uk(t)

)
+ ν (L(t)uk(t), uk(t))+ β(t)

]
dt. (2.12)

From (2.12) and (2.3), we obtain(
1−

2
µ

)
‖uk‖2 ≤ 2I(uk)−

2
µ
I ′(uk)uk +

2ν
µ

∫ T

−T
(L(t)uk(t), uk(t)) dt +

2
µ

∫ T

−T
β(t)dt. (2.13)

Combining (2.13) with (H2) and (2.11), we have(
1−

2
µ

)∫ T

−T
|u̇k(t)|2 dt +

(
1−

2
µ
−
2ν
µ

)∫ T

−T
(L(t)uk(t), uk(t)) dt

−
2
µ
MT‖uk‖ − 2MT −

2
µ
‖β‖L1(R,R+) ≤ 0. (2.14)

Since µ > 2 and ν ∈ [0, µ2 − 1), (2.14) shows that {uk}k∈N is bounded in ET . Going if necessary to a subsequence, we can
assume that there exists uT ∈ ET such that uk ⇀ uT as k→∞ in ET , which implies uk → uT uniformly on [−T , T ]. Hence(
I ′(uk)− I ′(uT )

)
(uk − uT )→ 0, ‖uk − uT‖L2

[−T ,T ]
→ 0 and∫ T

−T

(
∇W

(
t, uk(t)

)
−∇W

(
t, uT (t)

)
, uk(t)− uT (t)

)
dt → 0, as k→∞. (2.15)

Moreover, from (2.3), an easy computation shows that(
I ′(uk)− I ′(uT )

)
(uk − uT ) = ‖uk − uT‖2 −

∫ T

−T

(
∇W

(
t, uk(t)

)
−∇W

(
t, uT (t)

)
, uk(t)− uT (t)

)
dt. (2.16)

This shows that uk → uT in ET . Hence I satisfies the Palais–Smale condition.
From (H1), it follows that there exist 0 < ε0 <

l∗
4 , ρ0 > 0 such that

W (t, x) ≤ ε0|x|2 (2.17)

for all |x| ≤ ρ0 and t ∈ R.
Step 2. There are ρ > 0, α > 0 such that I|S ≥ α, where S = {u ∈ ET |‖u‖ = ρ}. Choose ρ = ρ0 ·

√
2
√
l∗, by Lemma 2.3

it is easy to prove that for all u ∈ S, ‖u‖∞ ≤ ρ0, that is |u(t)| ≤ ρ0 for all t ∈ [−T , T ], which together with (2.17) implies
that

I(u) =
1
2
‖u‖2 −

∫ T

−T
W (t, u)dt

≥
1
2

∫ T

−T
|u̇(t)|2 dt +

1
2

∫ T

−T

(
L(t)u(t), u(t)

)
dt −

∫ T

−T
ε0|u(t) |2 dt

≥
1
2

∫ T

−T
|u̇(t)|2 dt +

1
4

∫ T

−T

(
L(t)u(t), u(t)

)
dt

≥
1
4
‖u‖2 =

1
4
ρ2 := α

for every u ∈ S.
Step 3. There exists e ∈ ET \ Bρ such that I(e) ≤ 0. By (H3), there exist ε1 > 0 and r > 0 such that

W (t, x)
|x|2

≥
π2 + ε1

2T 20
+
l1
2
for all |x| > r and t ∈ [−T0, T0].

Let δ = maxt∈[−T0,T0],|x|≤r |W (t.x)|, hence we can have

W (t, x) ≥
(
π2 + ε1

2T 20
+
l1
2

)
(|x|2 − r2)− δ for all x ∈ R and t ∈ [−T0, T0]. (2.18)
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Let

e(t) =
{
ξ |sin(ωt)| e1, t ∈ [−T0, T0],
0, t ∈ [−T , T ] \ [−T0, T0],

where ω = π
T0
, e1 = (1, 0, . . . , 0). Then by (H1) and (2.18) we obtain

I(e) =
1
2

∫ T

−T
|ė(t)|2 dt +

1
2

∫ T

−T

(
L(t)e(t), e(t)

)
dt −

∫ T

−T
W (t, e)dt

=
1
2
ξ 2ω2

∫ T0

−T0

|cos(ωt)|2 dt +
1
2

∫ T0

−T0

(
L(t)e(t), e(t)

)
dt −

∫ T0

−T0
W (t, ξ |sin(ωt)| e1)dt

≤
1
2
ξ 2ω2

∫ T0

−T0

|cos(ωt)|2 dt +
l1
2
ξ 2
∫ T0

−T0

|sin(ωt)|2 dt

−

(
π2 + ε1

2T 20
+
l1
2

)
ξ 2
∫ T0

−T0

|sin(ωt)|2 dt + 2T0

((
π2 + ε1

2T 20
+
l1
2

)
r2 + δ

)
= −

ε1

2T0
ξ 2 + 2T0

((
π2 + ε1

2T 20
+
l1
2

)
r2 + δ

)
→ −∞ as ξ →∞.

So for all T ≥ T0, we can choose a large enough ξ such that ‖e‖ ≥ ρ and moreover I(e) < 0. And from (H1), we can easily
have I(0) = 0. Thus by the Lemma 2.1, there exists a critical point uT ∈ ET of I such that I(uT ) ≥ α > 0 for all T ≥ T0. This
shows that problem (2.1) has at least one nontrivial solution for all T ≥ T0. �

Remark 2.1. In Lemma 2.4, Step 1 and Step 2 still hold true for any T > 0.
Furthermore, if we define the set of paths

ΓT = {g(t) : [0, 1] −→ ET |g(0) = 0, g(1) = e}, (2.19)

then there exists a solution uT of (2.1) at which

inf
g∈ΓT

max
s∈[0,1]

I
(
g(s)

)
= NT (2.20)

is achieved. Let now T̃ > T . Then ΓT ⊂ ΓT̃ , since any function in ET can be regarded as belonging to ET̃ if one extends it by
zero in [−T̃ , T̃ ] \ [−T , T ]. Hence for T̃ the set of competing paths in (2.19) is greater than that for T , which implies that

NT̃ ≤ NT ≤ NT0 , for all T̃ ≥ T ≥ T0.

Hence for the solution of (2.1)

I(uT ) =
1
2
‖uT‖2 −

∫ T

−T
W
(
t, uT (t)

)
dt ≤ NT0 , uniformly in T ≥ T0. (2.21)

Lemma 2.5. uT is bounded uniformly in T ≥ T0.
Proof. It is clear that

I ′(uT ) = 0, for T ≥ T0. (2.22)

By (2.21) and (2.22), we obtain

I(uT ) ≤ NT0 , ‖I ′(uT )‖ = 0.

The following proof is the same as the Step 1 in Lemma2.4, thenwe can obtain that ‖uT‖ is bounded uniformly in T ≥ T0. �

Proof of Theorem 1.1. Take a sequence Tn → ∞ and consider the problem (2.1) on the interval [−Tn, Tn]. By the
conclusions of Lemmas 2.4 and 2.5, it has a nontrivial solution un, and ‖un‖ is bounded uniformly in n.
Arguing like for Theorem 2.1 in [8], from the fact that

|un(t1)− un(t2)| ≤
∫ t2

t1

|u̇n(t)| dt ≤
√
t2 − t1

(∫ t2

t1

|u̇n(t)|2 dt
) 1
2

we conclude that the sequence {un} is equicontinuous and uniformly bounded on every interval [−Tn, Tn] and we can select
a subsequence {unk} such that it converges uniformly on any bounded interval to a function u. And since ‖un‖ is bounded
uniformly in n, we can conclude that u ∈ W 1,2(R, Rn) and
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R

[
|u̇(t)|2 +

(
L(t)u(t), u(t)

)]
dt < +∞. (2.23)

Expressing ünk using Eq. (2.1), we conclude that the sequence ünk , and then also u̇nk , converges uniformly on bounded
intervals. Writing

unk(t) =
∫ t

a
(t − s)ünk(s)ds, with a = −Tnk − 1,

we conclude that u ∈ C2(R, Rn), and ünk → ü uniformly on bounded intervals. Hence we can pass to the limit in Eq. (2.1),
and we conclude that u satisfies (1.1), i.e., u is a classical solution of (1.1). Note that, by the proof of Corollary 2.1 we can
similarly have

|u(t)| ≤
[∫ t+1

t−1

(
|u̇(s)|2 + |u(s)|2

)
ds
] 1
2

, for every t ∈ R.

From (2.23), we conclude that the limits of u(t) exist as |t| → ∞. The only possibility is u(±∞) = 0.
We now prove that u̇(t)→ 0 as |t| → ∞. By Corollary 2.1, we get that

|u̇(t)|2 ≤
∫ t+1

t−1

(
|u(s)|2 + |u̇(s)|2

)
ds+

∫ t+1

t−1
|ü(s)|2 ds, for every t ∈ R.

From (2.23), we can easily have∫ t+1

t−1

(
|u(s)|2 + |u̇(s)|2

)
ds→ 0, as |t| → ∞.

Hence we only need to prove that∫ t+1

t−1
|ü(s)|2 ds→ 0, as |t| → ∞. (2.24)

It follows from (1.1)∫ t+1

t−1
|ü(s)|2 ds =

∫ t+1

t−1

[
∇W

(
s, u(s)

)
−
(
L(s)u(s), u(s)

)]2
ds

≤ 2
∫ t+1

t−1

(∣∣∇W(s, u(s))∣∣2 + ∣∣(L(s)u(s), u(s))∣∣2) ds.
By (H1) with (2.23) and the fact that u(t)→ 0 as |t| → ∞, (2.24) is proved.
In the end, we have to show that u(t) 6≡ 0. Since unk → u uniformly in EA for all A < ∞, where unk can be extended by

zero in [−A, A]\[−Tnk , Tnk ] or restricted to the interval [−A, A]. Hence it suffices to show there is an A > 0 such that unk 6→ 0
in EA. For this purpose, at first we introduce a function Y . Let Y : [0,+∞)→ [0,+∞) be given as follows: Y (0) = 0 and

Y (s) = sup
t∈R,0<|x|≤s

∣∣(∇W (t, x), x)∣∣
|x|2

, for s > 0. (2.25)

Then Y is a continuous, nondecreasing, Y (s) ≥ 0 for s ≥ 0. As Rabinowitz, we use the properties of Y given by (2.25). Then
by (L), the definition of Y implies∫ Tn

−Tn

(
∇W

(
t, un(t)

)
, un(t)

)
dt ≤

1
l∗
Y
(
‖un‖L∞

[−Tn,Tn]

)
‖un‖2ETn , for every n ∈ N. (2.26)

Since I ′(un)un = 0, (2.3) gives∫ Tn

−Tn

(
∇W

(
t, un(t)

)
, un(t)

)
dt =

∫ Tn

−Tn
|u̇n(t)|2 dt +

∫ Tn

−Tn

(
L(t)un(t), un(t)

)
dt = ‖un‖2ETn . (2.27)

Substituting (2.27) into (2.26), we obtain

Y
(
‖un‖L∞

[−Tn,Tn]

)
≥ l∗ > 0. (2.28)

The remainder of the proof is the same as in [16]. If ‖un‖L∞
[−Tn,Tn]

→ 0, as n → +∞, we would have Y (0) ≥ l∗ > 0, a
contradiction. Thus there is γ > 0 such that

‖un‖L∞
[−Tn,Tn]

≥ γ , for every n ∈ N. (2.29)
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If unk → 0 in EA for every A ∈ R+, then by Lemma 2.3, we have

‖unk‖
2
L∞
[−Tnk ,Tnk ]

≤
1
2
√
l∗

∫ Tnk

−Tnk

[∣∣u̇nk(s)∣∣2 + (L(s)unk(s), unk(s))] ds
=

1
2
√
l∗

∫
R

[∣∣u̇nk(s)∣∣2 + (L(s)unk(s), unk(s))] ds
=

1
2
√
l∗

∫ A

−A

[∣∣u̇nk(s)∣∣2 + (L(s)unk(s), unk(s))] ds
+

1
2
√
l∗

∫
R\[−A,A]

[∣∣u̇nk(s)∣∣2 + (L(s)unk(s), unk(s))] ds
→ 0, as A, k→∞

which contradicts (2.29), where unk can be extended by zero in R\[−Tnk , Tnk ]. Hence there is one nontrivial homoclinic orbit
of problem (1.1). �

3. Example and remark

As an application, we consider the following example for the case of n = 1:

ü(t)− (t2 + 1)u(t)+∇W
(
t, u(t)

)
= 0 (3.1)

where

W (t, x) =


3
4
x4 +

1
2
|x|3, |x| < 1,

x4 +
1
4
x2, |x| ≥ 1.

Let µ = 4 and ν = 3
4 in Theorem 1.1, by the direct calculation, we can easily see that the assumptions [H1]–[H3] hold. So

by applying Theorem 1.1, we know that Eq. (3.1) possesses a nontrivial homoclinic solution.

Remark 3.1. In this example, we can have

(
∇W (t, x), x

)
− 4W (t, x) =


−
1
2
|x|3 ≥ −

3
4
(t2 + 1)x2, |x| < 1,

−
1
2
x2 ≥ −

3
4
(t2 + 1)x2, |x| ≥ 1,

which does not satisfy the condition of Theorem A.
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