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Abstract. This paper is concerned with the existence of unstable stationary

solutions for nonlinear stochastic differential equations (SDEs) with additive

white noise. Assume that the nonlinear term f is monotone (or anti-monotone)
and the global Lipschitz constant of f is smaller than the positive real part of

the principal eigenvalue of the competitive matrix A, the random dynamical

system (RDS) generated by SDEs has an unstable F+-measurable random
equilibrium, which produces a stationary solution for nonlinear SDEs. Here,

F+ = σ{ω 7→ Wt(ω) : t ≥ 0} is the future σ-algebra. In addition, we get

that the α-limit set of all pull-back trajectories starting at the initial value
x(0) = x ∈ Rn is a single point for all ω ∈ Ω, i.e., the unstable F+-measurable

random equilibrium. Applications to stochastic neural network models are
given.

1. Introduction. During the past decades, stochastic differential equations (SDEs)
have been widely used to account the integrated effects of interior interactions and
environmental fluctuations. A fundamental question in the study of SDEs is to
consider the existence and global stability of stationary solutions under minimal
conditions.

Various mathematical methods exist for verifying the stability of SDEs, including
Lyapunov functions [7, 10, 11] and random dynamical systems (RDSs) [1, 2, 8]. If
we consider the stability of the zero solution for SDEs, the former approach may
be more effective, see [9, 12]. However, sometimes there are no trivial stationary
solutions for SDEs. At the moment, the later method can be used to investigate
the long-term behaviour of SDEs. For example, let us consider the following scalar
SDE

dx = µxdt+ νdWt, (1)
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where Wt is a Wiener process in R and µ, ν are constants. This equation generates
an affine RDS (θ,ψ) with the cocycle

ψ(t, ω, x) = eµtx+ ν

∫ t

0

eµ(t−τ)dWτ

for all x ∈ R. It is easy to see that the RDS (θ,ψ) possesses an exponentially stable
F−-measurable random equilibrium

u(ω) =

∫ 0

−∞
e−µτdWτ

for µ < 0, where F− = σ{ω 7→ Wt(ω) : t ≤ 0} is the past σ-algebra. In the case
that µ > 0, it admits an unstable F+-measurable random equilibrium

v(ω) = −
∫ ∞

0

e−µτdWτ ,

where F+ = σ{ω 7→Wt(ω) : t ≥ 0} is the future σ-algebra.
Motivated by our recent works [5, 6], this paper is devoted to the existence of

unstable stationary solutions for nonlinear SDEs with additive white noise. To be
specific, we will prove that under the condition that the nonlinear function f is
monotone (or anti-monotone) and the global Lipschitz constant of f is moderately
smaller than the positive real part of the principal eigenvalue of the competitive
matrix A, the stochastic flow (θ,ψ) has an unstable F+-measurable random equi-
librium, which yields a stationary solution for nonlinear SDEs. In addition, we
conclude that the α-limit set of all pull-back trajectories starting from any initial
value in Rn is a single point for all ω ∈ Ω, i.e., the unstable F+-measurable random
equilibrium.

Our main result gives a criteria to guarantee the existence of unstable stationary
solutions for nonlinear SDEs, which can be applied to stochastic neural network
models, see Corollary 1, Examples 5.1 and 5.2. Our problem, assumptions and
definitions of RDSs are stated in Section 2. Some useful lemmas and the long-term
behavior of solutions for SDEs are presented in Section 3. Proofs of the existence of
unstable stationary solutions are given in Section 4. Finally, we apply our results
to several stochastic models from neural networks in Section 5.

2. Preliminaries. In this section, we consider the following n-dimensional SDEs

dx(t) = [Ax(t) + f(x(t))]dt+ σdW (t) (2)

with the initial value x(0) = x ∈ Rn, where Wt(ω) =
(
W 1
t (ω), . . . ,Wm

t (ω)
)T

is an
m-dimensional two-sided Brownian motion on the standard Wiener space (Ω,F ,P).
Here, F is the Borel σ-algebra of Ω = C0(R,Rm) = {ω(t) is continuous, ω(0) =
0, t ∈ R}. Moreover, A = (aij)n×n is an n × n-dimensional matrix, f : Rn → Rn
and σ = (σij)n×m is an n×m-dimensional matrix. Throughout this paper, we use
the maximum norm |x| := max{|xi| : i = 1, . . . , n} and ‖A‖ := max{|aij | : i, j =
1, . . . , n}, where x ∈ Rn and A ∈ Rn×n. In order to show our result, we will impose
some conditions on A and f .

(A1) A is competitive, i.e., aij ≤ 0 for all i, j ∈ {1, . . . , n} and i 6= j. In addition,
we suppose that all real parts of eigenvalues of A are positive. That is, −A is
cooperative and there exists a constant λ > 0 such that

‖Ψ(−t)‖ := max{|Ψij(−t)| : i, j = 1, . . . , n} ≤ e−λt (3)
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for all t ≥ 0. Here, Ψ(t) = exp(At) is the fundamental matrix of the following
linear ordinary differential equations (ODEs):

dx(t) = Ax(t)dt. (4)

(A2) f : Rn → Rn is bounded and satisfies the Lipschitz condition

|f(x)− f(y)| ≤ L|x− y| (5)

for all x, y ∈ Rn, where L > 0 is the Lipschitz constant. Moreover, we suppose
that f is monotone, i.e.,

x ≤Rn
+
y ⇒ f(x) ≤Rn

+
f(y) for all x, y ∈ Rn,

or anti-monotone, i.e.,

x ≤Rn
+
y ⇒ f(x) ≥Rn

+
f(y) for all x, y ∈ Rn.

Here, x ≤Rn
+
y shows that y − x ∈ Rn+ for all x, y ∈ Rn, where Rn+ := {x =

(x1, . . . , xn)T ∈ Rn|xi ≥ 0, i = 1, . . . , n}.
The main thought in this paper is to consider the long-term behaviour of stochas-

tic flows generated by (2) and prove that the α-limit set of (pull back) trajectories
emanating from the initial value x(0) = x ∈ Rn is a single point for any ω ∈ Ω. For
the convenience of the reader, we will recall some basic notations related to RDSs.
For more details, we refer the reader to [1, 2].

Definition 2.1. A metric dynamical system is defined by θ ≡ (Ω,F ,P, {θt, t ∈ R}),
where (Ω,F ,P) is a probability space and θ is a flow:

θ : R× Ω 7→ Ω, θ0 = id, θt2 ◦ θt1 = θt1+t2

for all t1, t2 ∈ R, which is (B(R)⊗F ,F )-measurable. In addition, we also assume
that θtP = P for all t ∈ R.

LetX be a separable complete metric space, i.e., a Polish space, which is equipped
with the Borel σ-algebra B(X) generated by open sets of X.

Definition 2.2. An RDS with two-sided time R and the phase space X is a couple
(θ, ψ) consisting of a metric dynamical system θ ≡ (Ω,F ,P, {θt, t ∈ R}) and a
cocycle ψ over θ, i.e., a (B(R)⊗F ⊗B(X),B(X))-measurable mapping

ψ : R× Ω×X 7→ X, (t, ω, x) 7→ ψ(t, ω, x),

such that for any ω ∈ Ω,

(i) the mapping ψ(t, ω, ·) : X → X is continuous for all t ∈ R;
(i) ψ(0, ω, ·) is the identity on X;
(i) ψ(t1 + t2, ω, x) = ψ(t2, θt1ω, ψ(t1, ω, x)) for all t1, t2 ∈ R and x ∈ X.

Definition 2.3. The multifunction D : Ω → 2X\{∅} is called a random set if
the mapping ω → d(x,D(ω)) is measurable for each x ∈ X. Here, d(x,B) is the
distance in X between the point x and the set B ⊂ X. A random set D is called a
random closed (resp. compact) set if D(ω) is closed (resp. compact) in X for each
ω ∈ Ω.

By the standard theory of SDEs [10, 14], it is easy to obtain the existence and
uniqueness of solutions for (2). Let ψ(t, ω, x) = x(t, ω, x) be the unique solution
of (2) with the initial value x(0) = x ∈ Rn, which generates a two-sided RDS
(θ, ψ) in Rn, see [1, Chap. 2]. Here, θ is the Wiener shift operator defined by
θtω(·) = ω(t+ ·)− ω(t) for all t ∈ R, which is an ergodic metric dynamical system.



4 XIANG LV

Next, using the variation-of-constants formula [10, Theorem 3.1] and the backward
Itô integral (see Arnold [1, p.97]), it follows that for all t ≥ 0,

ψ(−t, ω, x) = Ψ(−t)x+ Ψ(−t)
∫ −t

0

Ψ−1(s)f
(
ψ(s, ω, x)

)
ds

+Ψ(−t)
∫ −t

0

Ψ−1(s)σdWs

= Ψ(−t)x+

∫ −t
0

Ψ(−t− s)f
(
ψ(s, ω, x)

)
ds

+

∫ −t
0

Ψ(−t− s)σdWs, (6)

which together with the definition of θ implies that

ψ(−t, θtω, x) = Ψ(−t)x+

∫ −t
0

Ψ(−t− s)f
(
ψ(s, θtω, x)

)
ds

+

∫ −t
0

Ψ(−t− s)σdWs(θtω)

= Ψ(−t)x+

∫ 0

t

Ψ(−τ)f
(
ψ(τ − t, θtω, x)

)
dτ

+

∫ 0

t

Ψ(−τ)σdWτ

= Ψ(−t)x−
∫ t

0

Ψ(−τ)f
(
ψ(τ − t, θtω, x)

)
dτ

−
∫ t

0

Ψ(−τ)σdWτ , t ≥ 0. (7)

In the remainder of this section, motivated by the recent work [5], we need to
give a key operator L, which is defined by

[L(g)](ω) = −
∫ ∞

0

Ψ(−τ)g(θτω)dτ −
∫ ∞

0

Ψ(−τ)σdWτ (8)

for all ω ∈ Ω. Here, the random variable g : Ω 7−→ Rn is tempered with respect to
the measure preserving flow θ, see Chueshov [2, p.23].

Remark 1. By a similar argument in [5], it is clear that the operator L is well
defined and the pull back trajectories starting at the initial point x ∈ Rn {ψ(−t, θtω,
x) : t ≥ 0} is a bounded set in Rn for all ω ∈ Ω.

3. Some inequalities with respect to the stochastic flow ψ. In this section,
we shall consider the dynamical behavior of stochastic flow ψ and show some helpful
lemmas to prove our main results. First, we start with a lemma for convenience.

Lemma 3.1 ([13, Lemma A.2]). Assume that (xt)t∈Λ is a net in a normed space
X endowed with a solid, normal cone X+ ⊆ X. Moreover, assume that the net
converges to a single point p∞ ∈ X, and that

x−t := inf{xτ : τ ≥ t} and x+
t := sup{xτ : τ ≥ t}

exist for all t ∈ Λ. Then the nets (x−t )t∈Λ and (x+
t )t∈Λ also converge to the point

p∞.
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Lemma 3.2. For all t ≥ 0, define

ξft (ω) = inf {f (ψ(−τ, θτω, x)) : τ ≥ t} = inf{f (ψ(−τ, θτω, x)) : τ ≥ t}

and

ηft (ω) = sup {f (ψ(−τ, θτω, x)) : τ ≥ t} = sup{f (ψ(−τ, θτω, x)) : τ ≥ t},

where x ∈ Rn and ω ∈ Ω. Here, the supremum (sup) and infimum (inf) are the

least upper bound and the greatest lower bound in Rn, respectively. Then ξft and ηft
are two F+-measurable random variables for all t ≥ 0, where F+ = σ{ω 7→Wt(ω) :
t ≥ 0} is the future σ-algebra.

Proof. By definitions of the metric dynamical system θ and the future σ-algebra
F+, it is obvious that the random variable ψ(−τ, θτ ·, x) is F+-measurable for all
τ ≥ 0 and x ∈ Rn. The rest of the proof can be followed by the same argument in
[5, Proposition 3.2], we omit it here. The proof is complete.

Lemma 3.3. Assume that (A1) and (A2) hold. It follows that

[L(lim
θ
f(ψ))](ω) ≤ [limθψ](ω) ≤ [lim

θ
ψ](ω) ≤ [L(limθf(ψ))](ω) (9)

for all ω ∈ Ω. Here, ≤ represents ≤Rn
+

,

[limθψ](ω) := lim
t→∞

inf{ψ(−τ, θτω, x) : τ ≥ t}, x ∈ Rn,

[lim
θ
ψ](ω) := lim

t→∞
sup{ψ(−τ, θτω, x) : τ ≥ t}, x ∈ Rn,

[limθf(ψ)](ω) := lim
t→∞

inf{f
(
ψ(−τ, θτω, x)

)
: τ ≥ t}, x ∈ Rn,

and

[lim
θ
f(ψ)](ω) := lim

t→∞
sup{f

(
ψ(−τ, θτω, x)

)
: τ ≥ t}, x ∈ Rn.

Proof. For convenience, we only show that

[L(lim
θ
f(ψ))](ω) ≤ [limθψ](ω) (10)

is correct, and other inequalities in (9) can be proceeded analogously. By (A2),

Remark 1 and Lemma 3.2, we can easily have that limθψ, lim
θ
ψ, limθf(ψ) and

lim
θ
f(ψ) are well defined, which are all F+-measurable random variables. This

together with Proposition 3.3 in [6] and Fubini’s theorem gives that the same con-

clusion is true for [L(lim
θ
f(ψ))] and [L(limθf(ψ))]. In addition, using Lebesgue’s

dominated convergence theorem, it is evident that

[L(lim
θ
f(ψ))](ω) = [L( lim

t→∞
ηft )](ω) = lim

t→∞
[L(ηft )](ω).

Consequently, in order to prove the inequality (10), it only remains to verify

[L(ηft )](ω) ≤ [limθψ](ω) (11)

for all t ≥ 0 and ω ∈ Ω. To see this, we first observe that f is bounded, it follows
that there exists a positive vector b = (b1, . . . , bn)T ∈ intRn+ such that f(x) ∈ [−b, b]
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for all x ∈ Rn, where [−b, b] is a conic interval. Furthermore, by the definition of
the operator L, for all t ≥ 0 and ω ∈ Ω, we have that

[L(ηft )](ω)

= −
∫ ∞

0

Ψ(−s) sup{f
(
ψ(−τ, θτ•, x)

)
+ b : τ ≥ t}(θsω)ds

+

∫ ∞
0

Ψ(−s)bds−
∫ ∞

0

Ψ(−s)σdWs

= −
∫ ∞

0

Ψ(−s) sup{f
(
ψ(−τ, θτ+sω, x)

)
+ b : τ ≥ t}ds

+

∫ ∞
0

Ψ(−s)bds−
∫ ∞

0

Ψ(−s)σdWs

= lim
t̃→∞
t̃≥t

{
−
∫ t̃−t

0

Ψ(−s) sup{f
(
ψ(−τ, θτ+sω, x)

)
+ b : τ ≥ t}ds

+

∫ t̃

0

Ψ(−s)bds−
∫ t̃

0

Ψ(−s)σdWs + Ψ(−t̃)x

}

= lim
˜̃t→∞
˜̃t≥t

inf

{
−
∫ t̃−t

0

Ψ(−s) sup{f
(
ψ(−τ, θτ+sω, x)

)
+ b : τ ≥ t}ds

+

∫ t̃

0

Ψ(−s)bds−
∫ t̃

0

Ψ(−s)σdWs + Ψ(−t̃)x : t̃ ≥ ˜̃t

}
(Lemma 3.1)

≤ lim
˜̃t→∞
˜̃t≥t

inf

{
−
∫ t̃−t

0

Ψ(−s)[f
(
ψ(−t̃+ s, θt̃ω, x)

)
+ b]ds

+

∫ t̃

0

Ψ(−s)bds−
∫ t̃

0

Ψ(−s)σdWs + Ψ(−t̃)x : t̃ ≥ ˜̃t

}
(12)

≤ lim
˜̃t→∞
˜̃t≥t

inf

{
−
∫ t̃

0

Ψ(−s)[f
(
ψ(−t̃+ s, θt̃ω, x)

)
+ b]ds

+

∫ t̃

0

Ψ(−s)bds−
∫ t̃

0

Ψ(−s)σdWs + Ψ(−t̃)x : t̃ ≥ ˜̃t

}

+ lim
˜̃t→∞
˜̃t≥t

sup

{∫ t̃

t̃−t
Ψ(−s)[f

(
ψ(−t̃+ s, θt̃ω, x)

)
+ b]ds : t̃ ≥ ˜̃t

}
︸ ︷︷ ︸

Lemma 3.1 and Remark 2.1 imply that this equation is equal to 0

= lim
˜̃t→∞

inf
{
ψ(−t̃, θt̃ω, x) : t̃ ≥ ˜̃t

}
= [limθψ](ω),

where the inequality (3.4) is due to that A is a competitive matrix, which yields
that Ψ(−t)x = exp(−At)x ≥Rn

+
Ψ(−t)y for all x ≥Rn

+
y and t ≥ 0, i.e., Ψ(−t) is

order preserving. The proof is complete.
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Remark 2. In this lemma, we do not assume that f is positive, i.e., f : Rn → Rn+,
which is weaker than that in [5].

Lemma 3.4. Assume that (A1) and (A2) hold. It follows that

(i) If f is monotone, we have that for all ω ∈ Ω,

[f(limθψ)](ω) ≤ [limθf(ψ)](ω) ≤ [lim
θ
f(ψ)](ω) ≤ [f(lim

θ
ψ)](ω). (13)

(i) If f is anti-monotone, we have that for all ω ∈ Ω,

[f(lim
θ
ψ)](ω) ≤ [limθf(ψ)](ω) ≤ [lim

θ
f(ψ)](ω) ≤ [f(limθψ)](ω). (14)

Proof. The proof is similar in spirit to Lemma 3.4 in [5], we omit it here. The proof
is complete.

Lemma 3.5. Assume that (A1) and (A2) hold. Let Lf = f ◦ L, it follows that

(i) If f is monotone, then for all t ≥ 0, ω ∈ Ω and k ∈ N,

[(Lf )2k(ξft )](ω) ≤ [limθf(ψ)](ω) ≤ [lim
θ
f(ψ)](ω) ≤ [(Lf )2k(ηft )](ω). (15)

(i) If f is anti-monotone, then for all t ≥ 0, ω ∈ Ω and k ∈ N,

[(Lf )k(ξft )](ω) ≤ [limθf(ψ)](ω) ≤ [lim
θ
f(ψ)](ω) ≤ [(Lf )k(ηft )](ω). (16)

Proof. By Lemma 3.2, it is immediate that

ξft (ω) ≤ [limθf(ψ)](ω) ≤ [lim
θ
f(ψ)](ω) ≤ ηft (ω)

for all t ≥ 0 and ω ∈ Ω. In addition, since A is a competitive matrix, which
together with (8) shows that L is anti-monotone with respect to the tempered
random variable g. Therefore, we can easily see that

[L(ξft )](ω) ≥ [L(limθf(ψ))](ω) ≥ [L(lim
θ
f(ψ))](ω) ≥ [L(ηft )](ω)

This together with Lemma 3.3 yields that

[L(ξft )](ω) ≥ [lim
θ
ψ](ω) ≥ [limθψ](ω) ≥ [L(ηft )](ω).

The rest of the proof can be followed in much the same way as Lemma 3.5 in our
previous paper [5], so we omit it here. The proof is complete.

Lemma 3.6. Assume that nL
λ < 1, (A1) and (A2) hold. In addition, we define

MF+ := MF+(Ω; [−b, b]) to be the space of all F+-measurable functions g : Ω →
[−b, b]. Here, b = (b1, . . . , bn)T is a positive vector in intRn+ such that f(x) ∈ [−b, b]
for all x ∈ Rn, where [−b, b] is a conic interval. Moreover, we consider a metric on
MF+

(Ω; [−b, b]) as follows:

d(g1, g2) := |g1 − g2|∞ = sup
ω∈Ω
|g1(ω)− g2(ω)|,

where g1, g2 ∈ MF+(Ω; [−b, b]). Then, we conclude that (MF+ , d) is a complete

metric space and the operator Lf := f◦L :MF+
→MF+

is a contraction mapping.

Proof. First, it is easy to check that (MF+
, d) is a complete metric space. In order

to get the result, it is necessary to verify the well-posedness of the operator Lf .
For any given g ∈ MF+ , using Proposition 3.3 in [6], we see at once that g(θτω)
is (B(R+) ⊗ F+,B(Rn))-measurable. Combining this and Fubini’s theorem, we
immediately have that Lf is well defined.
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Now, we proceed to show that the operator Lf is contracted. Given any g1, g2 ∈
MF+ , note that |Ψx| ≤ n|Ψ| · |x| for all x ∈ Rn and Ψ ∈ Rn×n, it follows that∣∣Lf (g1)− Lf (g2)

∣∣
∞

= sup
ω∈Ω

∣∣[f(L(g1)
)]

(ω)−
[
f
(
L(g2)

)]
(ω)
∣∣

≤ L sup
ω∈Ω
|[L(g1)] (ω)− [L(g2)] (ω)|

= L sup
ω∈Ω

∣∣∣∣∫ ∞
0

Ψ(−τ)g2(θτω)dτ −
∫ ∞

0

Ψ(−τ)g1(θτω)dτ

∣∣∣∣
≤ nL

∫ ∞
0

‖Ψ(−τ)‖ · |g1 − g2|∞dτ

≤ nL
∫ ∞

0

e−λτdτ · |g1 − g2|∞

=
nL

λ
|g1 − g2|∞, where

nL

λ
< 1.

The proof is complete.

4. Main results. In this section, we will state our main results as the following
theorem.

Theorem 4.1. Assume that all assumptions in Lemma 3.6 hold, then we have
that there exists a unique fixed point g ∈ MF+ for the contraction mapping Lf :
MF+ →MF+ satisfying

lim
t→∞

ψ(−t, θtω, x) = [L(g)](ω) (17)

for all x ∈ Rn and ω ∈ Ω. In addition, ψ (t, ω, [L(g)](ω)) = [L(g)](θtω) for all t ∈ R.
This gives that [L(g)](ω) is an unstable F+-measurable random equilibrium for the
stochastic flow ψ, which generates an unstable stationary solution [L(g)](θtω) for
(2).

Proof. By Lemma 3.5 and Lemma 3.6, analysis similar to that in the proof of
Theorem 4.2 in [5] shows that (17) holds, which together with the definition of the
cocycle ψ yields that [L(g)](ω) is an unstable F+-measurable random equilibrium.
The proof is complete.

5. Applications to stochastic neural networks. In this section, we will present
some applications of Theorem 4.1. First, we consider the following stochastic model
with additive white noise

dxi(t) =

(Ax)i(t) +

n∑
j=1

Tijfij(xj(t))

 dt+ σidWi(t), i = 1, 2, . . . , n, (18)

which can describe the dynamical behavior of a neural network with n neurons under
stochastic noise perturbations. Here, the matrix T = (Tij)n×n shows the connection
strengths between neurons, the transfer function fij is assumed to be sigmoid and
σiWi is the turbulent noise in the external environment. If we ignore the noise in
(18), which has been investigated by Hopfield [3, 4]. Next, define gij = Tij · fij for
all i, j ∈ {1, 2, . . . , n}, we assume that gij satisfies the condition that
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(B1) gij : R → R is globally Lipschitz continuous with the Lipschitz constant
Lij ≥ 0, monotone (or anti-monotone). In addition, there exist some positive
constants bij such that |gij(x)| ≤ bij for all x ∈ R and i, j ∈ {1, 2, . . . , n}.

(B2)

nmax1≤i≤n(
∑n
j=1 Lij)

λ
< 1,

where λ is defined in the assumption (A1).

It is clear that there are some functions satisfying (B1) and (B2), such as arctan(x)
and tanh(x), see [16, 17]. In order to use Lemma 3.6 and Theorem 4.1, let bi =∑n
j=1 bij for all i ∈ {1, 2, . . . , n} and L = max1≤i≤n(

∑n
j=1 Lij), it follows that

Corollary 1. Assume that (A1), (B1) and (B2) hold, then we have that there exists
an unstable stationary solution (random equilibrium) for (18).

From now on, for simplicity of notation, we only discuss the case that n = 3.

Example 5.1. First, we consider the following stochastic model

dxi(t) =

[
(Ax)i(t) +

1

3
arctan(xi−1(t))

]
dt+ σidWi(t), i = 1, 2, 3, (19)

with the initial value x(0) = x ∈ R3, where

A =

 2 −1 0
−1 3 0
0 −2 4

 , (20)

x = (x1, x2, x3)T ∈ R3 and x0 represents x3. By (20), it is easy to see that the

eigenvalues of −A are λ1 = −4, λ2,3 = −5±
√

5
2 , then we have that

Ψ(−t) = exp(−At) =

 5+
√

5
10 e

−5+
√

5
2 t + 5−

√
5

10 e
−5−

√
5

2 t

√
5

5 e
−5+

√
5

2 t −
√

5
5 e

−5−
√

5
2 t

2e−4t + −5+3
√

5
5 e

−5+
√

5
2 t − 5+3

√
5

5 e
−5−

√
5

2 t

√
5

5 e
−5+

√
5

2 t −
√

5
5 e

−5−
√

5
2 t 0

5−
√

5
10 e

−5+
√

5
2 t + 5+

√
5

10 e
−5−

√
5

2 t 0

−4e−4t + 10−4
√

5
5 e

−5+
√

5
2 t + 10+4

√
5

5 e
−5−

√
5

2 t e−4t

 ,
where t ≥ 0. In order to get that

‖Ψ(−t)‖ := max{|Ψij(−t)| : i, j = 1, 2, 3} ≤ e
−5+

√
5

2 t = eλ2t (21)

for all t ≥ 0, it is sufficient to show that |Ψ31(−t)| ≤ e
−5+

√
5

2 t and |Ψ32(−t)| ≤
e
−5+

√
5

2 t for all t ≥ 0. Proofs of the remainder components of Ψ(−t) are obvious.
Since the matrix A is competitive, which implies that Ψij(−t) ≥ 0 for all t ≥ 0 and
i, j = 1, 2, 3, see Proposition 3.1.1 in [15]. This gives that we only need to show that

Γ31(t) :=
Ψ31(−t)
e
−5+

√
5

2 t
≤ 1 and Γ32(t) :=

Ψ32(−t)
e
−5+

√
5

2 t
≤ 1 (22)

for all t ≥ 0. It is easily seen that

Γ31(t) = 2e
−3−

√
5

2 t +
−5 + 3

√
5

5
− 5 + 3

√
5

5
e−
√

5t,
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and
dΓ31(t)

dt
= −(3 +

√
5)e

−3−
√

5
2 t + (3 +

√
5)e−

√
5t ≥ 0

for all t ≥ 0. In addition, we note that Γ31(0) = 0 and limt→∞ Γ31(t) = −5+3
√

5
5 < 1,

it is immediate that Γ31(t) ≤ 1 for all t ≥ 0. By a similar argument, we get that

Γ32(t) = −4e
−3−

√
5

2 t +
10− 4

√
5

5
+

10 + 4
√

5

5
e−
√

5t,

and
dΓ32(t)

dt
= 2(3 +

√
5)e

−3−
√

5
2 t − (4 + 2

√
5)e−

√
5t

for all t ≥ 0. Note that Γ′32(0) = 2 > 0, it is obvious that there exists a critical point
t0 > 0 such that Γ32(t0) is the biggest value of Γ32(t) for all t ≥ 0. Furthermore,
direct computation shows that 2

5 < t0 <
3
5 , which implies that

Γ32(t0) ≤ −4e
−3−

√
5

2 · 35 +
10− 4

√
5

5
+

10 + 4
√

5

5
e−
√

5· 25 ≈ 0.928689 < 1.

That is, (22) holds and then (21) holds. Finally, set L = 1
3 , λ = 5−

√
5

2 , it is evident
that

3 max1≤i≤3(
∑3
j=1 Lij)

λ
=

3L

λ
=

2

5−
√

5
< 1.

Therefore, by Corollary 1, we get that there exists an unstable stationary solution
(random equilibrium) for stochastic system (19), which is the α-limit set of all
pull-back trajectories starting at any initial value x(0) = x ∈ R3.

Example 5.2. Next, we consider the following stochastic model

dxi(t) =

[
(Ax)i(t) +

1

4 + tanh(xi−1(t))

]
dt+ σidWi(t), i = 1, 2, 3, (23)

with the initial value x(0) = x ∈ R3, where tanh(u) = eu−e−u

eu+e−u for all u ∈ R,

A =

 1 − 3
√

2 0

0 2 − 3
√

2

− 3
√

2 0 4

 , (24)

x = (x1, x2, x3)T ∈ R3 and x0 represents x3. Following the same method as in [5],

we can easily get that the eigenvalues of −A are λ1 = −3, λ2,3 = −2±
√

2 and

‖Ψ(−t)‖ := max{|Ψij(−t)| : i, j = 1, 2, 3} ≤ e(−2+
√

2)t = eλ2t.

Moreover, note that

−1 ≤ tanh(y) ≤ 1 and 0 ≤ d

dy
(tanh(y)) ≤ 1

for all y ∈ R, set L = 1
9 , λ = 2−

√
2, we can easily see that

3 max1≤i≤3(
∑3
j=1 Lij)

λ
=

3L

λ
=

1

3(2−
√

2)
< 1.

Hence, using Corollary 1, (23) admits an unstable stationary solution (random
equilibrium).

Acknowledgments. The authors would like to thank the referees for their valuable
comments and helpful suggestions.
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