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Abstract

All SL(n) covariant vector valuations on convex polytopes in Rn are completely
classified without any continuity assumptions. The moment vector turns out to be the
only such valuation if n ≥ 3, while two new functionals show up in dimension two.

1 Introduction

The study and classification of geometric notions which are compatible with transformation
groups are important tasks in geometry as proposed in Felix Klein’s Erlangen program in
1872. As many functions defined on geometric objects satisfy the inclusion-exclusion prin-
ciple, the property of being a valuation is natural to consider in the classification. Here, a
map µ : S → 〈A,+〉 is called a valuation on a collection S of sets with values in an abelian
semigroup 〈A,+〉 if

µ(P ) + µ(Q) = µ(P ∪Q) + µ(P ∩Q)

whenever P , Q, P ∩Q and P ∪Q are contained in S.
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At the beginning of the twentieth century, valuations were first constructed by Dehn in his
solution of Hilbert’s Third Problem. Nearly 50 years later, Hadwiger initiated a systematic
study of valuations by his celebrated characterization theorem. He showed that all continuous
and rigid motion invariant valuations on the space of convex bodies (i.e. compact convex
sets) in Rn are linear combinations of intrinsic volumes.

The classification of valuations using compatibility with certain linear maps and the
topology induced by the Hausdorff metric is a classical part of geometry with important
applications in integral geometry (cf. [10], [26, Chap. 6]). Such results turned out to be
extremely fruitful and useful especially in the affine geometry of convex bodies. Examples
include intrinsic volumes, affine surface areas, the projection body operator and the intersec-
tion body operator (cf. [1–6,8, 9, 11–13,15–22,24,25]).

Recently, Ludwig and Reitzner [23] established a characterization of SL(n) invariant val-
uation on Pn, the space of convex polytopes in Rn, without any continuity assumptions.

Theorem 1.1. A functional z : Pn → R is an SL(n) invariant valuation if and only if there
exist constants c0, c

′
0, d0 ∈ R and solutions α, β : [0,∞)→ R of Cauchy’s functional equation

such that

z(P ) = c0V0(P ) + c′0(−1)dimPχrelintP (0) + α(Vn(P )) + d0χP (0) + β(Vn([0, P ]))

for every P ∈ Pn, where V0 and Vn denote the Euler characteristic and the volume, re-
spectively, [0, P ] denotes the convex hull of P and the origin and χ denotes the indicator
function.

The aim of this paper is to obtain a complete classification of SL(n) covariant vector
valuations on Pn. This also corresponds to the following classification results on Pn(0), the
space of convex polytopes containing the origin in their interiors, due to Haberl and Parapatits
[7].

Theorem 1.2. Let n ≥ 3. A functional µ : Pn(0) → Rn is a measurable and SL(n) covariant
valuation if and only if there exists a constant c ∈ R such that

µ(P ) = cm(P )

for every P ∈ Pn(0).

Theorem 1.3. A functional µ : P2
(0) → R2 is a measurable and SL(2) covariant valuation if

and only if there exist constants c1, c2 ∈ R such that

µ(P ) = c1m(P ) + c2ρπ
2
m(P ∗)

for every P ∈ P2
(0), where ρπ

2
denotes the counter-clockwise rotation in R2 by the angle π/2

and P ∗ denotes the polar body of P .

2



Here, a functional µ : Pn → Rn is called SL(n) covariant if µ(φP ) = φµ(P ) for all P ∈ Pn
and φ ∈ SL(n). The vector m(P ) is the moment vector of P , which is defined by

m(P ) =

∫
P

xdx

for every P ∈ Pn. It coincides with the centroid of P multiplied by the volume of P , which
makes it a basic notion in mechanics, engineering, physics and geometry. Earlier results
on characterizations of moment vectors can be found in [14, 26]. Throughout this paper, a
functional with values in an Euclidean space is called measurable if the preimage of every
open set is a Borel set with respect to the corresponding topology.

Denote by Pn0 the subspace of convex polytopes containing the origin. First, we consider
valuations defined on Pn0 and obtain the following result.

Theorem 1.4. Let n ≥ 3. A functional µ : Pn0 → Rn is an SL(n) covariant valuation if and
only if there exists a constant c ∈ R such that

µ(P ) = cm(P )

for every P ∈ Pn0 .

Solutions of Cauchy’s functional equation show up only in dimension two.

Theorem 1.5. A functional µ : P2
0 → R2 is an SL(2) covariant valuation if and only if there

exist constants c1, c2 ∈ R and a solution of Cauchy’s functional equation α : [0,∞)→ R such
that

µ(P ) = c1m(P ) + c2e(P ) + hα(P )

for every P ∈ Pn0 , where the functionals e, hα : P2
0 → R2 are defined in Section 2.

Next, we consider the classification of measurable SL(2) covariant valuations. It is well
known that all measurable solutions of Cauchy’s functional equation are linear. This imme-
diately leads the following corollary.

Corollary 1.1. A functional µ : P2
0 → R2 is a measurable and SL(2) covariant valuation if

and only if there exist constants c1, c2, c3 ∈ R such that

µ(P ) = c1m(P ) + c2e(P ) + c3h(P )

for every P ∈ P2
0 , where the functional h : P2

0 → R2 is defined in Section 3.

Next we consider the space of all convex polytopes Pn. This step is similar to the classi-
fication of convex body valued valuations by Schuster and Wannerer [27] and Wannerer [28].

3



Theorem 1.6. Let n ≥ 3. A functional µ : Pn → Rn is an SL(n) covariant valuation if and
only if there exist constants c1, c2 ∈ R such that

µ(P ) = c1m(P ) + c2m([0, P ]) (1.1)

for every P ∈ Pn.

Again, the case of dimension two is different. We prove the following result.

Theorem 1.7. A functional µ : P2 → R2 is an SL(2) covariant valuation if and only if there
exist constants c1, c2, c̃1, c̃2 ∈ R and solutions of Cauchy’s functional equation α, γ : [0,∞)→
R such that

µ(P ) = c1m(P ) + c̃1m([0, P ]) + c2e(P ) + c̃2e([0, v1, . . . , vr]) + hα([0, P ]) +
r∑
i=2

hγ([0, vi−1, vi])

for every polytope P ∈ P2 with vertices v1, . . . , vr visible from the origin and labeled counter-
clockwisely, where a vertex v of P is called visible from the origin if P ∩ relint [0, v] = ∅.

Similarly, we have the following corollary.

Corollary 1.2. A functional µ : P2 → R2 is a measurable and SL(2) covariant valuation if
and only if there exist constants c1, c2, c3, c̃1, c̃2, c̃3 ∈ R such that

µ(P ) = c1m(P )+c̃1m([0, P ])+c2e([0, P ])+c3h([0, P ])+c̃2e([0, v1, . . . , vr])+c̃3h([0, v1, . . . , vr])

for every polytope P ∈ P2 with vertices v1, . . . , vr visible from the origin and labeled counter-
clockwisely.

2 Notation and preliminary results

We work in n-dimensional Euclidean space Rn. The standard basis of Rn consists of e1, e2, . . . , en.
The coordinates of a vector x ∈ Rn with respect to the standard basis are denoted by
x1, x2, . . . , xn. Denote the vector with all coordinates 1 by 1, the n × n identity matrix by
In = (e1, . . . , en) and the determinant of a matrix A by detA. The affine hull, the dimension,
the interior, the relative interior and the boundary of a given set in Rn are denoted by dim,
aff, int, relint and bd, respectively.

The convex hull of k+ 1 affinely independent points is called a k-dimensional simplex for
all natural number k. Generally, we denote by [v1, v2, . . . , vk] the convex hull of v1, v2, . . . , vk ∈
Rn. Two special simplices are the k-dimensional standard simplex T k = [0, e1, e2, . . . , ek] and
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T̃ k−1 = [e1, e2, . . . , ek] , which is a (k − 1)-dimensional simplex. For i = 1, . . . , n, let T i
be the set of i-dimensional simplices with one vertex at the origin and T̃ i−1 be the set of
(i− 1)-dimensional simplices T ⊂ Rn with 0 /∈ aff T.

We now recall some basic results on valuations (cf. [10, 24]). Let Qn be either Pn or Pn0 .
The first lemma is the inclusion-exclusion principle.

Lemma 2.1. Let A be an abelian group and µ : Qn → A be a valuation. Then

µ(P1 ∪ · · · ∪ Pk) =
∑

∅6=S⊆{1,2,...,k}

(−1)|S|−1µ(
⋂
i∈S

Pi)

for all k ∈ N and P1, P2, . . . , Pk ∈ Qn with P1 ∪ · · · ∪ Pk ∈ Qn.

We define a triangulation of a k-dimensional polytope P into simplices as a set of k-
dimensional simplices {T1, . . . , Tr} which have pairwise disjoint interiors, with P = ∪Ti and
with the property that for arbitrary 1 ≤ i1 < · · · < ij ≤ r the intersections Ti1 ∩ · · · ∩ Tij are
again simplices. Therefore we can make full use of the inclusion-exclusion principle (cf. [24]).

Lemma 2.2. Let A be an abelian group and µ : Pn0 → A be a valuation. Then µ is determined
by its values on n-dimensional simplices with one vertex at the origin and its value on {0} .

A valuation on Qn is called simple if µ(P ) = 0 for all P ∈ Qn with dimP < n.
Denote by SL±(n) the group of volume-preserving linear maps, i.e., those with deter-

minant 1 or −1. A functional µ : Qn → Rn is called SL±(n) covariant if µ(φP ) = φµ(P )
for all P ∈ Qn and φ ∈ SL±(n) and, following [7], it is called SL±(n) signum covariant if
µ(φP ) = (detφ)φµ(P ) for all P ∈ Qn and φ ∈ SL±(n). Let µ : Qn → Rn be an SL(n)
covariant valuation. We have µ = µ+ + µ−, where

µ+(P ) =
1

2

(
µ(P ) + θµ(θ−1P )

)
and µ−(P ) =

1

2

(
µ(P )− θµ(θ−1P )

)
for some fixed θ ∈ SL±(n) \ SL(n). Clearly, µ+ and µ− are valuations. Moreover, it is not
hard to see that µ+ is SL±(n) covariant and µ− is SL±(n) signum covariant.

The solution of Cauchy’s functional equation is one of the main ingredients in our proof.
Since we do not assume continuity, functionals also depend on solutions α : [0,∞) → R of
Cauchy’s functional equation, that is,

α(s+ t) = α(s) + α(t)

for all s, t ∈ [0,∞). If we add the condition that α is measurable, then α has to be linear.
Let λ ∈ (0, 1) and denote by H the hyperplane through the origin with the normal vector

(1 − λ)e1 − λe2. Write H+ and H− as the two halfspaces bounded by H. This hyperplane
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induces a series of dissections of T i as well as T̃ i−1 for i = 2, . . . , n. Let µ : Qn → Rn be an
SL(n) covariant valuation. There are two interpolations corresponding to these dissections.
First, assume that i < n. By the inclusion-exclusion principle, we get

µ(T i) + µ(T i ∩H) = µ(T i ∩H+) + µ(T i ∩H−). (2.1)

Definition 1. Let λ ∈ (0, 1). The linear transform φ1 ∈ SL(n) is given by

φ1e1 = λe1 + (1− λ)e2, φ1e2 = e2, φ1en = en/λ, φ1ej = ej for 3 ≤ j ≤ n− 1,

and ψ1 ∈ SL(n) is given by

ψ1e1 = e1, ψ1e2 = λe1 + (1− λ)e2, ψ1en = en/(1− λ), ψ1ej = ej for 3 ≤ j ≤ n− 1.

It is clear that T i ∩H+ = ψ1T
i, T i ∩H− = φ1T

i and T i ∩H = φ1T
i−1. Then, equation

(2.1) becomes
µ(T i) + µ(φ1T

i−1) = µ(φ1T
i) + µ(ψ1T

i).

Since µ is SL(n) covariance, we derive

(φ1 + ψ1 − In)µ(T i) = φ1µ(T i−1). (2.2)

Second, we consider the dissection of sT n for s > 0. Again, by the inclusion-exclusion
principle, we have

µ(sT n) + µ(sT n ∩H) = µ(sT n ∩H+) + µ(sT n ∩H−). (2.3)

Definition 2. Let λ ∈ (0, 1). The linear transform φ2 ∈ GL(n) is given by

φ2e1 = λe1 + (1− λ)e2, φ2e2 = e2, φ2ej = ej for 3 ≤ j ≤ n,

and ψ2 ∈ GL(n) is given by

ψ2e1 = e1, ψ2e2 = λe1 + (1− λ)e2, ψ2ej = ej for 3 ≤ j ≤ n.

It is clear that sT n ∩H+ = ψ2sT
n, sT n ∩H− = φ2sT

n and sT n ∩H = φ2sT
n−1. Then,

equation (2.3) becomes

µ(sT n) + µ(φ2sT
n−1) = µ(φ2sT

n) + µ(ψ2sT
n).

Since φ2/
n
√
λ and ψ2/

n
√

1− λ belong to SL(n), we obtain

µ(sT n) + λ−1/nφ2µ(
n
√
λsT n−1) = λ−1/nφ2µ(

n
√
λsT n) + (1− λ)−1/nψ2µ(

n
√

1− λsT n).
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Replacing s by n
√
s in the equation above yields

µ( n
√
sT n)+λ−1/nφ2µ(

n
√
λsT n−1) = λ−1/nφ2µ(

n
√
λsT n)+(1−λ)−1/nψ2µ( n

√
(1− λ)sT n). (2.4)

On P2
0 , two new functionals appear in the classification results. Define e : P2

0 → R2 by

e(P ) = v + w

if dimP = 2 and P has two edges [0, v] and [0, w], or dimP = 2 and P has an edge [v, w]
that contains the origin in its relative interior;

e(P ) = 2(v + w)

if dimP = 1 and P = [v, w] contains the origin;

e(P ) = 0

otherwise.
In order to prove that e is a valuation on P2

0 , we use the following terminology. We say
µ defined on P2

0 is a weak valuation, if

µ(P ∩ L+) + µ(P ∩ L−) = µ(P ) + µ(P ∩ L) (2.5)

for every P ∈ P2
0 and line L through the origin in the plane, where L+ and L− are two half

planes bounded by L. Indeed, we have the following implication. (see [26, Theorem 6.2.3]
for a version on P2)

Lemma 2.3. Every weak valuation is a valuation on P2
0 .

Proof. Let µ be a weak valuation on P2
0 . Write S2

0 as the space of triangles in R2 with one
vertex at the origin. Note that S2

0 is a generating set of P2
0 , i.e. a subset of P2

0 that is closed
under finite intersections and such that every element of P2

0 is a finite union of elements
therein. Due to Groemer’s integral theorem (cf. [10, Theorem 2.2.1]), it suffices to show that
µ is a valuation on S2

0 .
Let S1, S2 ∈ S2

0 with S = S1 ∪ S2 ∈ S2
0 as well. The statement is trivial if one of them

includes the other. Otherwise, write S3 = S1 ∩ S2. There are two cases.
First, if S3 is line segment, write L = spanS3. Without loss of generality, assume S1 =

S ∩ L+ and S2 = S ∩ L−. Since µ is a weak valuation, we have

µ(S1) + µ(S2) = µ(S ∩ L+) + µ(S ∩ L−)

= µ(S) + µ(S ∩ L) = µ(S1 ∪ S2) + µ(S1 ∩ S2).
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Next, if dimS3 = 2, write S4 = cl (S1 \ S3), S5 = cl (S2 \ S3), L1 = span (S3 ∩ S4) and
L2 = span (S3∩S5). Without loss of generality, assume S4 = S1∩L+

1 , S3 = S1∩L−1 = S2∩L+
2

and S5 = S2 ∩ L−2 . Since µ is a weak valuation, we have

µ(S3) + µ(S4) = µ(S1 ∩ L−1 ) + µ(S1 ∩ L+
1 ) = µ(S1) + µ(S3 ∩ S4)

and
µ(S3) + µ(S5) = µ(S2 ∩ L+

2 ) + µ(S2 ∩ L−2 ) = µ(S2) + µ(S3 ∩ S5).

Summing the two equations above gives

µ(S1 ∪ S2) + µ(S1 ∩ S2) = µ(S) + µ(S3) = µ(S1) + µ(S2).

Therefore, µ is a valuation on P2
0 .

Lemma 2.4. The functional e is an SL(2) covariant valuation on P2
0 .

Proof. By the definition, it is clear that e is SL(2) covariant.
Next, we are going to prove that e is a valuation on P2

0 . Due to Lemma 2.3, it suffices to
show that e is a weak valuation via the following four cases.

First, let dimP = 2 and P has two edges [0, v] and [0, w]. Then, we have e(P ) = v + w.
Assume that a line L through the origin intersects an edge of P at u. It follows that
e(P ∩ L+) = w + u, e(P ∩ L−) = u+ v and e(P ∩ L) = 2u.

Second, let dimP = 2 and P has an edge [v, w] that contains the origin in its relative
interior. Then, we have e(P ) = v+w. Assume that a line L through the origin intersects an
edge of P at u. It follows that e(P ∩ L+) = w + u, e(P ∩ L−) = u+ v and e(P ∩ L) = 2u.

Third, let dimP = 2 and P contains the origin in its interior. Then, we have e(P ) = 0.
Assume that a line L through the origin intersects two edges of P at v and w respectively,.
It follows that e(P ∩ L+) = v + w, e(P ∩ L−) = v + w and e(P ∩ L) = 2(v + w).

Finally, let dimP = 1 and P = [v, w] contains the origin. Then, we have e(P ) = 2(v+w).
For every line L through the origin, we get e(P ∩L+) = 2w, e(P ∩L−) = 2v and e(P ∩L) =
0.

Let α : [0,∞) → R be a solution of Cauchy’s functional equation. Define hα : P2
0 → R2

by

hα(P ) =
r∑
i=2

α (det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi)

if dimP = 2 and P = [0, v1, . . . , vr] with 0 ∈ bdP and the vertices {0, v1, . . . , vr} are labeled
counter-clockwisely;

hα(P ) =
α (det(vr, v1))

det(vr, v1)
(vr − v1) +

r∑
i=2

α (det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi)
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if 0 ∈ intP and P = [v1, . . . , vr] with the vertices {v1, . . . , vr} are labeled counter-clockwisely;

hα(P ) = 0

if P = {0} or P is a line segment.

Lemma 2.5. If α : [0,∞) → R is a solution of Cauchy’s functional equation, then the
functional hα is an SL(2) covariant valuation on P2

0 .

Proof. Let α : [0,∞) → R be a solution of Cauchy’s functional equation. We write α∗ =
α(s)/s for s > 0. As a first step, we show that hα is SL(2) covariant. First, let P ∈ P2

0 and
dimP = 2. If P = [0, v1, . . . , vr] or P = [v1, . . . , vr] with 0 ∈ [v1, vr], then

hα(φP ) =
r∑
i=2

α∗ (det(φvi−1, φvi)) (φvi−1 − φvi)

= φ
r∑
i=2

α∗ (det(vi−1, vi)) (vi−1 − vi)

= φhα(P )

for every φ ∈ SL(2). Similarly, if 0 ∈ intP , we also have hα(φP ) = φhα(P ) for every
φ ∈ SL(2). If P = {0} or dimP = 1, then hα(φP ) = φhα(P ) = 0 for every φ ∈ SL(2).

As a second step, we are going to show that hα is a valuation on P2
0 . Due to Lemma 2.3,

it suffices to show that hα is a weak valuation via the following two cases.
First, let dimP = 2 and P = [0, v1, . . . , vr] with 0 ∈ bdP and the vertices {0, v1, . . . , vr}

labeled counter-clockwisely. Then, we have

hα(P ) =
r∑
i=2

α∗ (det(vi−1, vi)) (vi−1 − vi).

(i) Assume L passes through a vertex of P , say vj. Without loss of generality, we have
P ∩ L+ = [0, v1, . . . , vj] and P ∩ L− = [0, vj, . . . , vr]. Thus,

hα(P∩L+) =

j∑
i=2

α∗ (det(vi−1, vi)) (vi−1−vi) and hα(P∩L−) =
r∑

i=j+1

α∗ (det(vi−1, vi)) (vi−1−vi).

(ii) Assume L intersects the edge [vj, vj+1] at u. Without loss of generality, we have
P ∩ L+ = [0, v1, . . . , vj, u] and P ∩ L− = [0, u, vj+1, . . . , vr]. Thus,

hα(P ∩ L+) = α∗ (det(vj, u)) (vj − u) +

j∑
i=2

α∗ (det(vi−1, vi)) (vi−1 − vi)
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and

hα(P ∩ L−) = α∗ (det(u, vj+1)) (u− vj+1) +
r∑

i=j+2

α∗ (det(vi−1, vi)) (vi−1 − vi).

Equation (2.5) follows from the fact that

α∗ (det(vj, vj+1)) (vj − vj+1) = α∗ (det(vj, u)) (vj − u) + α∗ (det(u, vj+1)) (u− vj+1). (2.6)

Indeed, let s =
√

det(vj, vj+1) and φ = (vj, vj+1)/s ∈ SL(2). Then,

vj = φ(se1) and vj+1 = φ(se2). (2.7)

Since u ∈ relint [vj, vj+1], there exists λ ∈ (0, 1) such that u = λvj + (1 − λ)vj+1. Setting
v = λe1 + (1− λ)e2, we obtain

u = φ(sv). (2.8)

Because of (2.7) and (2.8), the right hand side of (2.6) equals

φ
(
sα∗

(
s2(1− λ)

)
(e1 − v) + sα∗

(
s2λ
)

(v − e2)
)

=sα∗(s2)φ(e1 − e2) = α∗ (det(vj, vj+1)) (vj − vj+1),

as v = λe1 + (1− λ)e2 and by the additivity property of α.
Second, let 0 ∈ intP and P = [v1, . . . , vr] with vertices {v1, . . . , vr} labeled counter-

clockwisely. Then, we have

hα(P ) = α∗ (det(vr, v1)) (vr − v1) +
r∑
i=2

α∗ (det(vi−1, vi)) (vi−1 − vi).

(i) Assume L passes through v1 and vj. Without loss of generality, we have P ∩ L+ =
[0, v1, . . . , vj] and P ∩ L− = [0, vj, . . . , vr, v1]. Thus,

hα(P ∩ L+) =

j∑
i=2

α∗ (det(vi−1, vi)) (vi−1 − vi)

and

hα(P ∩ L−) = α∗ (det(vr, v1)) (vr − v1) +
r∑

i=j+1

α∗ (det(vi−1, vi)) (vi−1 − vi).
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(ii) Assume L passes through v1 and intersects the edge [vj, vj+1]. Without loss of gener-
ality, we have P ∩ L+ = [0, v1, . . . , vj, u] and P ∩ L− = [0, u, vj+1, . . . , vr, v1]. Thus,

hα(P ∩ L+) = α∗ (det(vj, u)) (vj − u) +

j∑
i=2

α∗ (det(vi−1, vi)) (vi−1 − vi)

and

hα(P∩L−) = α∗ (det(vr, v1)) (vr−v1)+α∗ (det(u, vj+1)) (u−vj+1)+
r∑

i=j+2

α∗ (det(vi−1, vi)) (vi−1−vi).

Equation (2.5) follows from (2.6).
(iii) Assume L intersects the edge [vr, v1] at u1 and the edge [vj, vj+1] at u2. Without loss

of generality, we have P ∩ L+ = [0, u1, v1, . . . , vj, u2] and P ∩ L− = [0, u2, vj+1, . . . , vr, u1].
Thus,

hα(P∩L+) = α∗ (det(u1, v1)) (u1−v1)+α∗ (det(vj, u2)) (vj−u2)+
j∑
i=2

α∗ (det(vi−1, vi)) (vi−1−vi)

and

hα(P∩L−) = α∗ (det(vr, u1)) (vr−u1)+α∗ (det(u2, vj+1)) (u2−vj+1)+
r∑

i=j+2

α∗ (det(vi−1, vi)) (vi−1−vi).

Equation (2.5) follows from an analog of (2.6).

3 SL(n) covariant valuations on Pn0
3.1 The two-dimensional case

First, we give the representation of such valuations on sT 2 for s > 0.

Lemma 3.1. If µ : P2
0 → R2 is an SL(2) covariant valuation, then there exist constants

c1, c2 ∈ R and a solution of Cauchy’s functional equation α : [0,∞)→ R such that

µ(sT 2) = c1m(sT 2) + c2s(e1 + e2) +
α(s2)

s
(e1 − e2)

for s > 0.

11



Proof. First, we decompose µ as µ = µ+ + µ−, where µ+ is an SL±(2) covariant valuation
and µ− is an SL±(2) signum covariant one.

Next, let v = (v1, v2)
t ∈ R2 with v1v2 6= 0,

ρ1 =

(
v1 0
v2 1/v1

)
, ρ2 =

(
v1 0
v2 −1/v1

)
and ρ3 =

(
v1 −1/v2
v2 0

)
.

Then, we have v = ρ1e1 = ρ2e1. The SL±(2) covariance of µ+ implies

µ+([0, v]) = µ+(ρ1T
1) = ρ1µ

+(T 1)

= µ+(ρ2T
1) = ρ2µ

+(T 1).

Setting µ+(T 1) = (x+1 , x
+
2 )t, we obtain

v1x
+
1 = v1x

+
1

v2x
+
1 + x+2 /v1 = v2x

+
1 − x+2 /v1.

Thus, x+2 = 0 and there exists a constant c ∈ R such that µ+(T 1) = ce1. For s > 0, we apply

ρ0 =

(
s 0
0 1/s

)
,

and get
µ+(sT 1) = µ+(ρ0T

1) = ρ0µ
+(T 1) = cse1. (3.1)

On the other hand, the SL±(2) signum covariance of µ− implies

µ−([0, v]) = µ−(ρ1T
1) = ρ1µ

−(T 1)

= µ−(ρ2T
1) = −ρ2µ−(T 1)

= µ−(ρ3T
1) = ρ3µ

−(T 1).

Setting µ−(T 1) = (x−1 , x
−
2 )t, we obtain

v1x
−
1 = −v1x−1 = v1x

−
1 − x−2 /v2

v2x
−
1 + x−2 /v1 = −v2x−1 + x−2 /v1 = v2x

−
1 .

Thus, x−1 = x−2 = 0, which implies µ−(T 1) = 0. Similarly, we get

µ−(sT 1) = 0 (3.2)

for s > 0 and
µ([0, v]) = ρ1(µ

+(T 1) + µ−(T 1)) = cv. (3.3)

12



Finally, we use the dissection in Definition 2. It follows from (2.4) and (3.1) that, for
s > 0,

µ+(
√
sT 2) + c

√
s(λ, 1− λ)t =

√
λ
−1
φ2µ

+(
√
λsT 2) +

√
1− λ−1ψ2µ

+(
√

(1− λ)sT 2).

Setting λ = a/(a+ b) and s = a+ b for a, b > 0, we have

1√
a+ b

µ+(
√
a+ bT 2) +

c

a+ b
(a, b)t =

1√
a
φ2µ

+(
√
aT 2) +

1√
b
ψ2µ

+(
√
bT 2).

Write g+(x) = µ+(
√
xT 2)

/√
x = (g+1 (x), g+2 (x))t for x > 0. Then, the equation above

becomes

g+1 (a+ b) +
ca

a+ b
=

a

a+ b
g+1 (a) + g+1 (b) +

a

a+ b
g+2 (b),

g+2 (a+ b) +
cb

a+ b
=

b

a+ b
g+1 (a) + g+2 (a) +

b

a+ b
g+2 (b)

(3.4)

and equivalently

g+1 (a+ b) + g+2 (a+ b) + c = g+1 (a) + g+2 (a) + g+1 (b) + g+2 (b),

b(g+1 (a+ b)− g+1 (b)) = a(g+2 (a+ b)− g+2 (a)).

Moreover, applying

σ =

(
0 1
1 0

)
,

we have µ+(sT 2) = µ+(σsT 2) = σµ+(sT 2). Hence, µ+
1 (sT 2) = µ+

2 (sT 2), which implies g+1 =
g+2 . Consequently,

g+1 (a+ b) + c/2 = g+1 (a) + g+1 (b)

b(g+1 (a+ b)− g+1 (b)) = a(g+1 (a+ b)− g+1 (a))

It follows that
g+1 (x) = γ(x) + c/2 for x > 0, (3.5)

where γ : [0,∞]→ R is a solution of Cauchy’s functional equation. Inserting (3.5) into (3.4),
we see that γ is linear, i.e. there exist constants c′1, c2 ∈ R such that g+1 (x) = g+2 (x) = c′1x+c2,
where c2 = c/2. Therefore

µ+(sT 2) = c′1s
3(e1 + e2) + c2s(e1 + e2) = c1m(sT 2) + c2s(e1 + e2), (3.6)

where c1 = 6c′1 and in the second step we use m(sT 2) = s3(e1 + e2)/3!.
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On the other hand, by (2.4) and (3.2), we obtain

µ−(
√
sT 2) =

√
λ
−1
φ2µ

−(
√
λsT 2) +

√
1− λ−1ψ2µ

−(
√

(1− λ)sT 2).

By putting λ = a/(a+ b) and s = a+ b for a, b > 0, we obtain

1√
a+ b

µ−(
√
a+ bT 2) =

1√
a
φ2µ

−(
√
aT 2) +

1√
b
ψ2µ

−(
√
bT 2).

Write g−(x) = µ−(
√
xT 2)

/√
x = (g−1 (x), g−2 (x))t for x > 0. Then, the equation above

becomes

g−1 (a+ b) + g−2 (a+ b) = g−1 (a) + g−2 (a) + g−1 (b) + g−2 (b)

b(g−1 (a+ b)− g−1 (b)) = a(g−2 (a+ b)− g−2 (a)).

Moreover, applying σ again, we have µ−(sT 2) = µ−(σsT 2) = −σµ−(sT 2). Then µ−1 (sT 2) +
µ−2 (sT 2) = 0, which implies g−1 (s) + g−2 (s) = 0. This implies

(a+ b)g−1 (a+ b) = ag−1 (a) + bg−1 (b).

Therefore, g−1 (x) = −g−2 (x) = α(x)/x, where α : [0,∞) → R is a solution of Cauchy’s
functional equation. It follows that

µ−(sT 2) =
α(s2)

s
(e1 − e2). (3.7)

Combining (3.6) and (3.7) completes the proof.

Next, we consider the valuation on triangles with one vertex at the origin. Let P = [0, v, w]
with determinant det(v, w) > 0. Set φ = (v, w) ∈ GL(2) such that φe1 = v and φe2 = w. By
Lemma 3.1, there exist constants c1, c2 ∈ R and a solution of Cauchy’s functional equation
α : [0,∞)→ R such that

µ(P ) = µ(φT 2) =
√

det(v, w)
−1
φµ
(√

det(v, w)T 2
)

=c1m(P ) + c2(v + w) +
α(det(v, w))

det(v, w)
(v − w)

(3.8)

where in the last step we use that m(φP ) = |detφ|φm(P ) for φ ∈ GL(2).

Lemma 3.2. If µ : P2
0 → R2 is an SL(2) covariant valuation, then there exist constants

c1, c2 ∈ R and a solution of Cauchy’s functional equation α : [0,∞)→ R such that

µ(P ) = c1m(P ) + c2e(P ) + hα(P )

for every P ∈ P2
0 with dimP = 2.
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Proof. First, assume that the origin is a vertex of P . Let P = [0, v1, v2, . . . , vr] be a polygon
which has edges [0, v1] , [v1, v2] , . . . , [vr−1, vr] , [vr, 0] labeled counter-clockwisely. Triangulate
P into the simplices [0, v1, v2] , [0, v2, v3] , . . . , [0, vr−1, vr] . By the inclusion-exclusion principle,
(3.3) and (3.8), there exist constants c1, c2 ∈ R and a solution of Cauchy’s functional equation
α : [0,∞)→ R such that

µ(P ) =µ([0, v1, v2]) + · · ·+ µ([0, vr−1, vr])− µ([0, v2])− · · · − µ([0, vr−1])

=c1m(P ) + c2(v1 + vr) +
r∑
i=2

α(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi).

(3.9)

Second, assume that the origin is contained in the relative interior of an edge of P.
Let P = [v1, . . . , vr] with 0 ∈ relint [v1, vr] and [v1, v2] , . . . , [vr−1, vr] , [vr, v1] labeled counter-
clockwisely. Triangulate P into simplices [0, v1, v2] , [0, v2, v3] , . . . , [0, vr−1, vr] . By the inclusion-
exclusion principle, (3.3) and (3.8), we obtain

µ(P ) =µ([0, v1, v2]) + · · ·+ µ([0, vr−1, vr])− µ([0, v2])− · · · − µ([0, vr−1])

=c1m(P ) + c2(v1 + vr) +
r∑
i=2

α(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi),

(3.10)

Third, assume that 0 ∈ intP . Let P = [v1, v2, . . . , vr] be such a polygon which has edges
[v1, v2] , . . . , [vr−1, vr] labeled counter-clockwisely. Triangulate P into simplices [0, v1, v2],
[0, v2, v3] , . . . , [0, vr−1, vr], [0, vr, v1]. By the inclusion-exclusion principle, (3.3) and (3.8),
we have

µ(P ) =µ([0, v1, v2]) + · · ·+ µ([0, vr−1, vr]) + µ([0, vr, v1])

− µ([0, v1])− µ([0, v2])− · · · − µ([0, vr])

=c1m(P ) +
α(det(vr, v1))

det(vr, v1)
(vr − v1) +

r∑
i=2

α(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi).

(3.11)

Combining (3.9), (3.10), (3.11) and the definitions of e and hα on P2
0 we completes the

proof.

Using µ({0}) = 0, (3.3), Lemma 2.4, Lemma 2.5 and Lemma 3.2, we complete the proof
of Theorem 1.5.

Finally, we consider measurable SL(2) covariant valuations. Define the functional h :
P2

0 → R2 by
h(P ) = v1 − vr
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if dimP = 2 and P = [0, v1, . . . , vr] with 0 ∈ bdP and the vertices {0, v1, . . . , vr} labeled
counter-clockwisely;

h(P ) = 0

if 0 ∈ intP or P is a line segment or P = {0}.
If we assume that hα is a measurable and SL(2) covariant valuation, then α is linear.

There exists a constant c3 such that hα(P ) = c3h(P ). Because hα is a simple valuation, we
know that h is also a simple valuation on P2

0 . Using Theorem 1.5, we obtain Corollary 1.1.

3.2 The higher-dimensional case

In this section, we first give the following propositions about simplices containing the origin.

Proposition 3.1. Let n ≥ 3. If µ : Pn0 → Rn is an SL(n) covariant valuation, then there
exists a constant a ∈ R such that µ(T n) = a1.

Proof. We first consider µ(T 3). Write µ(T 3) = (x1, x2, x3)
t and

σ0 =

 0 0 1
1 0 0
0 1 0

 .

The SL(3) covariance of µ implies

µ(T 3) = µ(σ0T
3) = σ0µ(T 3) =

 0 0 1
1 0 0
0 1 0

 x1
x2
x3

 =

 x3
x1
x2

 .

Thus, x1 = x2 = x3.
Next, we consider µ(T n) for n ≥ 4 by a similar argument. Write µ(T n) = (x1, . . . , xn)t

and

σ =

 Ir
σ0

In−r−3

 ∈ SL(n),

where r = 0, 1, . . . , n − 3 and σ0 moves along the main diagonal of σ. Using the SL(n)
covariance of µ, we have µ(T n) = µ(σT n) = σµ(T n). This yields x1 = · · · = xn. Thus,
µ(T n) = a1 with a = x1.

Proposition 3.2. If µ : P3
0 → R3 is an SL(3) covariant valuation, then there exists a

constant c ∈ R such that µ(T 1) = 2ce1 and µ(T 2) = c(e1 + e2).
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Proof. Write µ(T 1) = (x1, x2, x3)
t and µ(T 2) = (y1, y2, y3)

t. Set

σ1 =

 1 0 0
0 −1 0
0 0 −1

 and σ2 =

 0 1 0
1 0 0
0 0 −1

 .

The SL(n) covariance of µ implies that µ(T 1) = µ(σ1T
1) = σ1µ(T 1) and µ(T 2) = µ(σ2T

2) =
σ2µ(T 2). Thus, we have µ(T 1) = (x1, 0, 0)t and µ(T 2) = (y1, y1, 0)t.

Now, we use the dissection in Definition 1. Then, equation (2.2) is equivalent to λ λ 0
1− λ 1− λ 0

0 0 1
λ

+ 1
1−λ − 1

 y1
y1
0

 =

 λ 0 0
1− λ 1 0

0 0 1
λ

 x1
0
0

 .

This yields x1 = 2y1. Therefore, there exists a constant c such that µ(T 1) = 2ce1 and
µ(T 2) = c(e1 + e2).

From now on, we investigate SL(n) covariant valuations on T k for the three-dimensional
case and the n-dimensional case for n ≥ 4, respectively.

Lemma 3.3. If µ : P3
0 → R3 is an SL(3) covariant valuation, then µ is simple.

Proof. Note that for k ≤ 2, every simplex T ∈ T k is an SL(3) image of T k. Thus, it suffices
to prove that µ vanishes on the standard simplices {0} , T 1 and T 2.

First, let µ({0}) = (x1, x2, x3)
t and σ1 be the same as in the proof of Proposition 3.2 while

σ =

 −1 0 0
0 −1 0
0 0 1

 .

Using the SL(3) covariance of µ, we have

µ({0}) = µ(σ {0}) = σµ({0})
= µ(σ1 {0}) = σ1µ({0}).

This yields x1 = x2 = x3 = 0. Therefore µ({0}) = 0.
Next, let T23 = [0, e2, e3] and σ0 be the same as in the proof of Proposition 3.1. It follows

from T23 = σ0T
2 and Proposition 3.2 that

µ(T23) = µ(σ0T
2) = σ0µ(T 2) = c(e2 + e3).
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Setting

ρ =

 s−2 0 0
0 s 0
0 0 s


we obtain

µ(sT23) = µ(ρT23) = ρµ(T23) = cs(e2 + e3) (3.12)

for every s > 0.
Finally, we use the dissection in Definition 2. By (2.4) and (3.12), it follows that

µ( 3
√
sT 3) + c 3

√
s(λ, 1− λ, 1)t = λ−1/3φ2µ(

3
√
λsT 3) + (1− λ)−1/3ψ2µ( 3

√
(1− λ)sT 3).

We set λ = a/(a+ b) and s = a+ b for a, b > 0 to get

1
3
√
a+ b

µ(
3
√
a+ bT 3) +

c

a+ b
(a, b, a+ b)t =

1
3
√
a
φ2µ( 3
√
aT 3) +

1
3
√
b
ψ2µ(

3
√
bT 3).

Write g(x) = µ( 3
√
xT 3)

/
3
√
x = (g1(x), g2(x), g3(x))t for x > 0. Now, the equation above is

equivalent to

g1(a+ b) + g2(a+ b) + c = g1(a) + g2(a) + g1(b) + g2(b),

g3(a+ b) + c = g3(a) + g3(b).
(3.13)

By Proposition 3.1, we obtain g1(x) = g2(x) = g3(x). Thus, (3.13) yields

g1(a+ b) + c/2 = g1(a) + g1(b),

g1(a+ b) + c = g1(a) + g1(b).

Therefore, c = 0.

Lemma 3.4. Let n ≥ 4. If µ : Pn0 → Rn is an SL(n) covariant valuation, then µ is simple.

Proof. Notice that for k ≤ n− 1, every simplex T ∈ T k is an SL(n) image of T n. It suffices
to prove that µ vanishes on the standard simplex T k. We prove the statement by induction
on k = dimT.

For k = 0, let µ({0}) = (w1, . . . , wn)t,

σ =

(
−1 0
0 −1

)
and σ1 =

 Ir
σ

In−r−2

 ∈ SL(n),
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where r = 0, 1, . . . , n − 2 and σ moves along the main diagonal of σ1. Using the SL(n)
covariance of µ, we have µ({0}) = µ(σ1 {0}) = σ1µ({0}). Therefore, w1 = · · · = wn = 0.

For k = 1, let µ(T 1) = (v1, . . . , vn)t and

σ3 =

 Il
σ

In−l−2

 ∈ SL(n),

where l = 1, . . . , n−2 and σ moves along the main diagonal of σ3. Using the SL(n) covariance
of µ, we obtain µ(T 1) = µ(σ3T

1) = σ3µ(T 1). Therefore v2 = · · · = vn = 0 and there exists a
constant c such that µ(T 1) = 2ce1.

For k = 2, let µ(T 2) = (x1, . . . , xn)t,

σ4 =

(
σ2 0
0 In−3

)
and σ5 =

 Ir
σ

In−r−2

 ∈ SL(n),

where r = 2, . . . , n− 2, σ2 is the same as in the proof of Proposition 3.2 and σ moves along
the main diagonal of σ5. By the SL(n) covariance of µ, we have µ(T 2) = µ(σ4T

2) = σ4µ(T 2)
and µ(T 2) = µ(σ5T

2) = σ5µ(T 2). Therefore, x1 = x2 and x3 = · · · = xn = 0. We use the
dissection in Definition 1. Then, (2.2) is equivalent to

λ λ 0 · · · 0
1− λ 1− λ 0 · · · 0

0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

λ
+ 1

1−λ − 1




x1
x1
0
· · ·
0

 =


λ 0 0 · · · 0

1− λ 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

λ




2c
0
0
· · ·
0

 .

This yields x1 = c. Moreover, we know that µ(T 2) = c(e1 + e2) and µ([0, e2, e3]) = c(e2 + e3).
For k = 3, let µ(T 3) = (y1, . . . , yn)t,

σ6 =

(
σ0 0
0 In−3

)
and σ7 =

 Iq
σ

In−q−2

 ∈ SL(n),

where q = 3, . . . , n− 2, σ0 is the same as in the proof of Proposition 3.1 and σ moves along
the main diagonal of σ7. By the SL(n) covariance of µ, we have µ(T 3) = µ(σ6T

3) = σ6µ(T 3)
and µ(T 3) = µ(σ7T

3) = σ7µ(T 3). This yields y1 = y2 = y3 and y4 = · · · = yn = 0.
For T 3, we take the same dissection as above and similarly obtain y1 = c = 0. Therefore,

µ(T 1) = µ(T 2) = µ(T 3) = 0.
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Next, assume that µ(T ) = 0 for all T with dimT ≤ k − 1 and k ≥ 4. We are going to
prove the statement for dimT = k ≤ n − 1. By the induction hypothesis, we know that
µ(T k−1) = 0. Let µ(T k) = (z1, . . . , zn)t,

σ8 =


Ir

σ0
Ik−r−3

In−k

 and σ9 =


Ik

Il
σ

Ik−l−2

 ,

where r = 0, 1, . . . , k − 3, l = 0, . . . , n − k − 2 and σ, σ0 moves along the main diagonal of
σ8 and σ9, respectively. By the SL(n) covariance, we have µ(T k) = µ(σ8T

k) = σ8µ(T k) and
µ(T k) = µ(σ9T

k) = σ9µ(T k). Therefore, z1 = · · · = zk and zk+1 = · · · = zn = 0. Now, we
use a dissection which is slightly different from Definition 1. Denote by Hλ the hyperplane
through the origin with the normal vector (1− λ)ek−1 − λek. Define φ ∈ SL(n) by

φek−1 = ek−1, φek = λek−1 + (1− λ)ek, φen = en/(1− λ), φej = ej for j 6= k − 1, k, n

and ψ ∈ SL(n) by

ψek−1 = λek−1 + (1− λ)ek, ψek = ek, ψen = en/λ, ψej = ej for j 6= k − 1, k, n.

By the SL(n) covariance and since µ(T k−1) = 0, similar to (2.2), we have
(
φ+ ψ − In)µ(T k

)
=

0. This implies z1 = · · · = zk = 0. Therefore, the proof of Lemma 3.4 is complete.

Finally, we obtain the following classification.

Proof of Theorem 1.4. It is clear that the moment vector is an SL(n) covariant valuation on
Pn0 . It remains to show the reverse statement.

We use the dissection in Definition 2. By (2.4), Lemma 3.3 and Lemma 3.4, we obtain
for s > 0

µ( n
√
sT n) = λ−1/nφ2µ(

n
√
λsT n) + (1− λ)−1/nψ2µ( n

√
(1− λ)sT n).

By Proposition 3.1, there exists a function f : [0,∞)→ R such that µ(T n) = f(1)1 and

1f(s
1
n ) = λ−

1
nφ21f

(
(sλ)

1
n

)
+ (1− λ)−

1
nψ21f

((
s(1− λ)

) 1
n

)
.

In other words,

f(s
1
n ) = λ

n−1
n f
(
(sλ)

1
n

)
+ (1− λ)−

1
n (1 + λ)f

((
s(1− λ)

) 1
n

)
,

f(s
1
n ) = (2− λ)λ−

1
nf
(
(sλ)

1
n

)
+ (1− λ)

n−1
n f

((
s(1− λ)

) 1
n

)
,

f(s
1
n ) = λ−

1
nf
(
(sλ)

1
n

)
+ (1− λ)−

1
nf
((
s(1− λ)

) 1
n

)
.
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We set s = a+ b, λ = a/(a+ b) for a, b > 0 and g(x) = x−
1
nf(x

1
n ) for x > 0 to get

g(a+ b) = g(a) + g(b),

g(a)
/
g(b) = a/b.

Hence, f(x) = axn+1. By Proposition 3.1 and m(sT n) = sn+11/(n + 1)!, we know that
µ(sT n) = asn+11 = a(n+ 1)!m(sT n). In other words, there exists a constant c ∈ R such that
µ(sT n) = cm(sT n). Therefore, µ(T ) = cm(T ) for each T ∈ T n. Next, we dissect P ∈ Pn0
into simplices with one vertex at the origin. Since µ is simple and by the inclusion-exclusion
principle, we obtain µ(P ) = cm(P ).

4 SL(n) covariant valuations on Pn

4.1 The two-dimensional case

First, we consider sT̃ 1 for s > 0.

Lemma 4.1. If µ : P2 → R2 is an SL(2) covariant valuation, then there exist constants
c1, c2 ∈ R and a solution of Cauchy’s functional equation β : [0,∞)→ R such that

µ(sT̃ 1) = c̃1m([0, sT̃ 1]) + c̃2s(e1 + e2) +
β(s2)

s
(e1 − e2)

for s > 0.

Proof. First, we decompose µ as µ = µ+ + µ−, where µ+ is an SL±(2) covariant valuation
and µ− is an SL±(2) signum covariant one.

Next, let v = (v1, v2)
t ∈ R2 with v1v2 6= 0. We have v = ρ1e1 = ρ2e1 for the same ρ1 and

ρ2 as in the proof of Lemma 3.1. The SL±(2) covariance of µ+ implies

µ+({v}) = µ+(ρ1 {e1}) = ρ1µ
+ {e1}

= µ+(ρ2 {e1}) = ρ2µ
+ {e1} .

Setting µ+({e1}) = (x̃+1 , x̃
+
2 )t, we obtain

v1x̃
+
1 = v1x̃

+
1 ,

v2x̃
+
1 + x̃+2 /v1 = v2x̃

+
1 − x̃+2 /v1.

Thus x̃+2 = 0 and there exists a constant c̃ ∈ R such that µ+({e1}) = c̃e1. For s > 0, applying
the same ρ0 as in the proof of Lemma 3.1, we obtain

µ+({se1}) = µ+(ρ0 {e1}) = ρ0µ
+({e1}) = c̃se1. (4.1)

21



On the other hand, the SL±(2) signum covariance of µ− implies

µ−({v}) = µ−(ρ1 {e1}) = ρ1µ
−({e1})

= µ−(ρ2 {e1}) = −ρ2µ−({e1})
= µ−(ρ3 {e1}) = ρ3µ

−({e1}),

where ρ3 is the same as in the proof of Lemma 3.1. Setting µ−({e1}) = (x̃−1 , x̃
−
2 )t, we obtain

v1x̃
−
1 = −v1x̃−1 = v1x̃

−
1 − x̃−2 /v2,

v2x̃
−
1 + x̃−2 /v1 = −v2x̃−1 + x̃−2 /v1 = v2x̃

−
1 .

Thus, x̃−1 = x̃−2 = 0, which implies µ−({e1}) = 0. Similarly, we have

µ−({se1}) = 0 (4.2)

for s > 0 and µ({v}) = µ(ρ1 {e1}) = ρ1(µ
+ {e1}+ µ− {e1}) = c̃v.

Second, we use the dissection in Definition 2. By the valuation property of µ+, (2.4) and
(4.1), we obtain

µ+(
√
sT̃ 1) + c̃

√
s(λ, 1− λ)t =

√
λ
−1
φ2µ

+(
√
λsT̃ 1) +

√
1− λ−1ψ2µ

+(
√

(1− λ)sT̃ 1).

Setting λ = a/(a+ b) and s = a+ b for a, b > 0, we have

1√
a+ b

µ+(
√
a+ bT̃ 1) +

c

a+ b
(a, b)t =

1√
a
φ2µ

+(
√
aT̃ 1) +

1√
b
ψ2µ

+(
√
bT̃ 1).

Write g+(x) = µ+(
√
xT̃ 1)

/√
x = (g+1 (x), g+2 (x))t for x > 0. Then, the equation above

becomes

g+1 (a+ b) +
c̃a

a+ b
=

a

a+ b
g+1 (a) + g+1 (b) +

a

a+ b
g+2 (b),

g+2 (a+ b) +
c̃b

a+ b
=

b

a+ b
g+1 (a) + g+2 (a) +

b

a+ b
g+2 (b).

(4.3)

Similar to the proof of Lemma 3.1, we obtain g+1 = g+2 . Combined with (4.3), it follows that
there exist constants c̃′1, c̃2 such that g+1 (x) = g+2 (x) = c̃′1x+ c̃2, where c̃2 = c̃/2. Therefore,

µ+(sT̃ 1) = c̃′1s
3(e1 + e2) + c̃2s(e1 + e2) = c̃1m([0, sT̃ 1]) + c̃2s(e1 + e2), (4.4)

where c̃1 = 6c̃′1 and in the second step we use m([0, sT̃ 1]) = s3(e1 + e2)/3!.
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On the other hand, by the valuation property of µ−, (2.4) and (4.2), we obtain

µ−(
√
sT̃ 1) =

√
λ
−1
φ2µ

−(
√
λsT̃ 1) +

√
1− λ−1ψ2µ

−(
√

(1− λ)sT̃ 1).

Putting λ = a/(a+ b) and s = a+ b for a, b > 0, we obtain

1√
a+ b

µ−(
√
a+ bT̃ 1) =

1√
a
φ2µ

−(
√
aT̃ 1) +

1√
b
ψ2µ

−(
√
bT̃ 1).

Write g−(x) = µ−(
√
xT̃ 1)

/√
x = (g−1 (x), g−2 (x))t for x > 0. Then, the equation above

becomes

g−1 (a+ b) =
a

a+ b
g−1 (a) + g−1 (b) +

a

a+ b
g−2 (b),

g−2 (a+ b) =
b

a+ b
g−1 (a) + g−2 (a) +

b

a+ b
g−2 (b).

Moreover, applying the same σ as in the proof of Lemma 3.1, we have µ−(sT̃ 1) = µ−(σsT̃ 1) =
−σµ−(sT̃ 1). Then µ−1 (sT̃ 1) + µ−2 (sT̃ 1) = 0, which implies g−1 + g−2 = 0. Hence

(a+ b)g−1 (a+ b) = ag−1 (a) + bg−1 (b).

Therefore, g−1 (x) = −g−2 (x) = β(x)/x, where β : [0,∞) → R is a solution of Cauchy’s
functional equation. It follows that

µ−(sT̃ 1) =
β(s2)

s
(e1 − e2). (4.5)

Combining (4.4) and (4.5) completes the proof.

Next, we derive the representation for one-dimensional convex polygons.

Lemma 4.2. If µ : P2 → R2 is an SL(2) covariant valuation, then there exist constants
c2, c̃1, c̃2 and a solution of Cauchy’s functional equation β : [0,∞)→ R such that

µ(P ) =

{
c̃1m([0, P ]) + c̃2(v1 + v2) + β(det(v1,v2))

det(v1,v2)
(v1 − v2), if 0 /∈ aff P and det(v1, v2) > 0;

2(c̃2 − c2)v1 + 2c2v2, if 0 ∈ aff P \ P,

for every line segment P = [v1, v2] in P2.
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Proof. First, assume that 0 /∈ aff P and φ = (v1, v2) ∈ GL(2) such that φe1 = v1 and φe2 = v2.
By Lemma 4.1, there exist constants c̃1, c̃2 ∈ R and a solution of Cauchy’s functional equation
β : [0,∞)→ R such that

µ(P ) = µ(φT̃ 1) =
√

det(v1, v2)
−1
φµ
(√

det(v1, v2)T̃
1
)

=c̃1m([0, P ]) + c̃2(v1 + v2) +
β(det(v1, v2))

det(v1, v2)
(v1 − v2).

Second, assume that 0 ∈ aff P \ P. Then, 0, v1 and v2 are on the same line. Since µ is a
valuation, we obtain µ([0, v1])+µ([v1, v2]) = µ([0, v2])+µ({v1}). Since there exists a constant
c2 ∈ R such that µ([0, v]) = 2c2v and µ({v1}) = 2c̃2v1, we have µ(P ) = 2(c̃2−c2)v1+2c2v2.

Finally, we treat convex polygons of dimension two.

Lemma 4.3. If µ : P2 → R2 is an SL(2) covariant valuation, then there exist constants
c1, c2, c̃1, c̃2 ∈ R and solutions of Cauchy’s functional equation α, γ : [0,∞)→ R such that

µ(P ) = (c1−c̃1)m(P )+c̃1m([0, P ])+c2e([0, P ])+c̃2e([0, v1, . . . , vr])+hα([0, P ])+
r∑
i=2

hγ([0, vi−1, vi])

for every P ∈ P2 \ P2
0 with dimP = 2, vertices v1, . . . , vr visible from the origin and labeled

counter-clockwisely.

Proof. Let P ∈ P2 \ P2
0 . Let Ei = [vi, vi+1] be the edges of P visible from the origin for

i = 1, . . . , r. Assume that the edges E1, E2, · · · , Er are labeled counter-clockwisely. Clearly,
[0, P ] = P ∪ [0, E1]∪ · · · ∪ [0, Er]. Note that [0, P ], [0, E1], . . . , [0, Er] ∈ P2

0 . By the inclusion-
exclusion principle, Theorem 1.5 and (4.1), we have

µ([0, P ]) =µ(P ) +
r∑
i=1

µ[0, Ei]−
r∑
i=1

µ([0, Ei] ∩ P︸ ︷︷ ︸
=Ei

)−
∑

1≤j<k≤r

µ([0, Ej] ∩ [0, Ek]︸ ︷︷ ︸
∈P2

0

)

+
∑

1≤j<k≤r

µ([0, Ej] ∩ [0, Ek] ∩ P ).
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Thus, there exist solutions of Cauchy’s functional equation α, β, γ : [0,∞)→ R, such that

µ(P ) =µ([0, P ])−
r∑
i=1

µ[0, Ei] +
r∑
i=1

µ(Ei) +
r−1∑
i=2

µ([0, vi])−
r−1∑
i=2

µ({vi})

=c1m([0, P ]) + c2e([0, P ]) + hα([0, P ])− c1m
(
cl([0, P ] \ P )

)
− c2

(
v1 + 2

r−1∑
i=1

vi + vr
)

−
r∑
i=2

α(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi) + c̃1m

(
cl([0, P ] \ P )

)
+ c̃2

(
v1 +

r−1∑
i=2

vi + vr
)

+
r∑
i=2

β(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi) + 2c2

r−1∑
i=2

vi − 2c̃2

r−1∑
i=2

vi

=(c1 − c̃1)m(P ) + c̃1m([0, P ]) + hα([0, P ]) + c2e([0, P ]) + c̃2(v1 + vr)

−
r∑
i=2

α(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi) +

r∑
i=2

β(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi)

=(c1 − c̃1)m(P ) + c̃1m([0, P ]) + hα([0, P ]) + c2e([0, P ]) + c̃2(v1 + vr)

+
r∑
i=2

γ
α(det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi)

=(c1 − c̃1)m(P ) + c̃1m([0, P ]) + c̃2e([0, P ]) + c̃2e([0, v1, . . . , vr]) + hα([0, P ])

+
r∑
i=2

hγ([0, vi−1, vi]).

Using Theorem 1.5, Lemma 4.2 and Lemma 4.3, we complete the proof of Theorem 1.7.
Similarly, we obtain Corollary 1.2.

4.2 The higher-dimensional case

We consider SL(n) covariant valuations on T̃ k for the three-dimensional case and the n-
dimensional case for n ≥ 4, respectively.

Lemma 4.4. If µ : P3 → R3 is an SL(3) covariant valuation, then µ(T ) = 0 for every
T ∈ T̃ k with 0 ≤ k ≤ 1.

Proof. It suffices to consider the valuation on {e1} , T̃ 1 and T̃ 2. First, applying the same
σ1 as in the proof of Proposition 3.2 shows that there exists a constant c ∈ R such that
µ({e1}) = µ(σ1 {e1}) = σ1µ({e1}) = 2ce1.
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Let µ(T̃ 1) = (x1, x2, x3)
t and σ2 be the same as in the proof of Proposition 3.2. The

SL(3) covariance of µ implies that µ(T̃ 1) = µ(σ2T̃
1) = σ2µ(T̃ 1). Then µ(T̃ 1) = (x1, x1, 0)t.

Let v = λe1 + (1 − λ)e2 where λ ∈ (0, 1). We use the dissection in Definition 1. By the
valuation property of µ, we have

µ(T̃ 1) + µ({v}) = µ(φ1T̃
1) + µ(ψ1T̃

1).

Using the SL(3) covariance of µ we obtain µ(T̃ 1) = c(e1 + e2). Let T̃23 = [e2, e3]. Since
µ(T̃23) = µ(σ0T̃

1) = σ0µ(T̃ 1) for the same σ0 as in the proof of Proposition 3.1, we have
µ(T̃23) = c(e2 + e3). Note that

µ(sT̃23) = µ(ρT̃23) = ρµ(T̃23) = cs(e2 + e3) (4.6)

for the same ρ as in the proof of Lemma 3.3 and every s > 0.
Next, we use the dissection in Definition 2. By (2.4), (3.3) and (4.6), it follows that

µ( 3
√
sT̃ 2) + c 3

√
s(λ, 1− λ, 1)t = λ−1/3φ2µ(

3
√
λsT̃ 2) + (1− λ)−1/3ψ2µ( 3

√
(1− λ)sT̃ 2).

Setting λ = a/(a+ b), s = a+ b for a, b > 0 and g(x) = µ( 3
√
xT̃ 2)

/
3
√
x = (g1(x), g2(x), g3(x))t

for x > 0, we obtain

g1(a+ b) +
ca

a+ b
=

a

a+ b
g1(a) + g1(b) +

a

a+ b
g2(b),

g2(a+ b) +
cb

a+ b
=

b

a+ b
g1(a) + g2(a) +

b

a+ b
g2(b),

g3(a+ b) + c = g3(a) + g3(b).

Due to Proposition 3.1, we have g1(x) = g2(x) = g3(x). It follows that µ({e1}) = µ(T̃ 1) =
0.

Lemma 4.5. Let n ≥ 4. If µ : Pn → Rn is an SL(n) covariant valuation, then µ(T ) = 0 for
every T ∈ T̃ k with 0 ≤ k ≤ n− 2.

Proof. It suffices to prove that µ vanishes on T̃ k for 0 ≤ k ≤ n− 2. We prove the statement
by induction on k = dimT. For k = 0, write µ({e1}) = x = (x1 . . . , xn)t. By the SL(n)
covariance of µ, we have µ({e1}) = µ(σ3 {e1}) = σ3µ({e1}). Hence x2 = · · · = xn = 0 and
there exists a constant c such that µ({e1}) = 2ce1.

For k = 1, write µ(T̃ 1) = (x1, . . . , xn)t. Using the SL(n) covariance of µ, we have µ(T̃ 1) =
µ(σ4T̃ 1) = σ4µ(T̃ 1) and µ(T̃ 1) = µ(σ5T̃ 1) = σ5µ(T̃ 1) for the same σ4 and σ5 as in the proof
of Lemma 3.4. Therefore x1 = x2 and x3 = x4 = · · · = xn = 0. Moreover, we know that
µ(T̃ 1) = c(e1 + e2) and µ([e2, e3]) = c(e2 + e3).
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For k = 2, write µ(T̃ 2) = (y1, . . . , yn)t. By the SL(n) covariance of µ, we have µ(T̃ 2) =
µ(σ6T

2) = σ6µ(T̃ 2) and µ(T̃ 2) = µ(σ7T̃ 2) = σ7µ(T̃ 2) for the same σ6 and σ7 as in the proof of
Lemma 3.4. This yields y1 = y2 = y3 and y4 = · · · = yn = 0. We use the dissection Definition
1. Since µ is an SL(n) covariant valuation, we have

(
φ1+ψ1−In

)
µ(T̃ 2) = ψ1µ([e2, e3]). Thus,

the equation above is equivalent to y1 = c = 0. Therefore, we obtain µ({e1}) = µ(T̃ 1) =
µ(T̃ 2) = 0.

Next assume that µ(T̃ ) = 0 for all T̃ with dim T̃ ≤ k − 1. We prove the statement
for dim T̃ = k ≤ n − 2. By the induction hypothesis we know that µ(T̃ k−1) = 0. Let
µ(T̃ k) = (z1, . . . , zn)t. By the SL(n) covariance, we have µ(T̃ k) = µ(σ8T̃

k) = σ8µ(T̃ k) and
µ(T̃ k) = µ(σ9T̃

k) = σ9µ(T̃ k) for the same σ8 and σ9 as in the proof of Lemma 3.4. Therefore,
z1 = · · · = zk, and zk+1 = · · · = zn = 0.

Denote by Hλ the hyperplane through λek−1 + (1 − λ)ek and ei for i 6= k − 1, k. Then
Hλ dissects T̃ k into φ2T̃

k and ψ2T̃
k in a way that is similar to the dissection in Definition 1.

Since µ is a valuation, we have

µ(T̃ k) + µ(ψ2T̃
k−1) = µ(φ2T̃

k) + µ(ψ2T̃
k).

By the SL(n) covariance and since µ(T̃ k−1) = 0, the equation above can be rewritten as(
φ2 + ψ2 − In)µ(T̃ k

)
= 0. This yields z1 = · · · = zk = 0, which completes the proof.

Lemma 4.6. Let n ≥ 3. If µ : Pn → Rn is an SL(n) covariant valuation, then µ vanishes
on every polytope P ∈ Pn with dimP ≤ n− 2.

Proof. Note that µ vanishes on at most (n − 1)-dimensional polytopes in Pn0 and thus we
just need to take care of polytopes in Pn \ Pn0 . We assume that P ∈ Pn \ Pn0 and prove the
statement by induction on k = dimP. For k = 0, by Lemma 4.4 and Lemma 4.5, we have
µ({x}) = µ({e1}) = 0. Assume µ(P ) = 0 for all P ∈ Pn \ Pn0 with dimP ≤ k − 1. We prove
the statement for dimP = k ≤ n− 2.

First, let P be a k-dimensional polytope with 0 /∈ aff P. Triangulate P into k-dimensional
simplices T1, . . . , Tr. By the inclusion-exclusion principle, the induction assumption, Lemma
4.4 and Lemma 4.5, we have µ(P ) = 0.

Second, let P be a k-dimensional polytope with 0 ∈ aff P. Let F1, . . . , Fr be the facets
of P visible from the origin. Triangulate the facets Fi into (k − 1)-dimensional simplices
T ′1, . . . , T

′
l and thus the closure of [0, P ]\P into simplices T1 = [0, T ′1], . . . , Tl = [0, T ′l ] with a

vertex at the origin. Using the inclusion-exclusion principle, that µ vanishes on Pn0 and the
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induction assumption, we have

0 = µ([0, P ]︸ ︷︷ ︸
∈Pn0

) =
r∑
j=1

(−1)j−1
∑

1≤i1≤···≤ij≤r

µ(Ti1 ∩ · · · ∩ Tij︸ ︷︷ ︸
∈Pn0

)

+
r∑
j=1

(−1)j
∑

1≤i1≤···≤ij≤r

µ(Ti1 ∩ · · · ∩ Tij ∩ P︸ ︷︷ ︸
dim≤k−1

) + µ(P )

=µ(P ).

This completes the proof.

Next, we establish the classification on all convex polytopes of dimension n− 1.

Lemma 4.7. Let n ≥ 3. If µ : Pn → Rn is an SL(n) covariant valuation, then there exists
a constant c̃ ∈ R such that

µ(P ) = c̃m([0, P ])

for every (n− 1)-dimensional polytope P ∈ Pn.

Proof. First, it suffices to consider sT̃ n−1 for s > 0. We use the dissection in Definition 2.
By (2.4), (3.3) and Lemma 4.6, we have

µ( n
√
sT̃ n−1) = λ−1/nφ2µ(

n
√
λsT̃ n−1) + (1− λ)−1/nψ2µ( n

√
(1− λ)sT̃ n−1).

Similar to Proposition 3.1, there exists a function f on R such that µ(T̃ n−1) = f(1)1 and

1f(s
1
n ) = λ−

1
nφ21f

(
(sλ)

1
n

)
+ (1− λ)−

1
nψ21f

((
s(1− λ)

) 1
n

)
.

Furthermore, using a similar argument as in the proof of Theorem 1.4, we obtain that there
exists a constant c2 ∈ R such that

µ(sT̃ n−1) = c2m([0, sT̃ n−1]). (4.7)

Second, let P be an (n − 1)-dimensional polytope with 0 /∈ aff P. Triangulate P into
simplices T1, . . . , Tr. Using the inclusion-exclusion principle, (4.7) and Lemma 4.6, we have

µ(P ) =
r∑
j=1

µ(Tj) = c2m([0, P ]).

Finally, let P be an (n−1)-dimensional polytope with 0 ∈ aff P. Then the polytope [0, P ]
is (n− 1)-dimensional and m([0, P ]) = 0. Thus, for P ∈ Pn0 the assertion is trivial. Assume
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that 0 /∈ P and triangulate the facets of P visible from the origin as in the proof of Lemma
4.6. Dissect the closure of [0, P ] \ P into simplices T1, . . . , Tr with a vertex at the origin.
From Lemma 3.3, Lemma 3.4, Lemma 4.6 and the inclusion-exclusion principle, we obtain

0 = µ([0, P ]) =
r∑
j=1

µ(Tj) + µ(P ) = µ(P ),

which completes the proof of the lemma.

Finally, we establish the classification in Theorem 1.6.

Proof of Theorem 1.6. It is clear that the expression in (1.1) is an SL(n) covariant valuation.
It remains to show the reverse statement.

For P ∈ Pn0 , by m
(
cl([0, P ] \ P )

)
= 0 and Theorem 1.4, the assertion holds. So we focus

on the polytopes in Pn \ Pn0 . Assume that P ∈ Pn \ Pn0 with dimension n. Let F1, . . . , Fr
be the facets of P visible from the origin. By Theorem 1.4, Lemma 4.6, Lemma 4.7 and the
inclusion-exclusion principle, there exist constants c, c̃ ∈ R such that

cm([0, P ]) =µ([0, P ])

=
r∑
j=1

(−1)j−1
∑

1≤i1≤···≤ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ]︸ ︷︷ ︸
∈Pn0

)

+
r∑
j=2

(−1)j
∑

1≤i1≤···≤ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ] ∩ P︸ ︷︷ ︸
dim≤n−2

)

−
r∑
i=1

µ([0, Fi] ∩ P︸ ︷︷ ︸
=Fi

) +
r∑
i=1

µ ([0, Fi]) + µ(P )

=
r∑
i=1

µ[0, Fi] + µ(P )−
r∑
i=1

µ(Fi)

=c
r∑
i=1

m([0, Fi]) + µ(P )− c̃
r∑
i=1

m([0, Fi]).

Since the moment vector is a simple valuation on Pn, we have µ(P ) = (c − c̃)m(P ) +
c̃m([0, P ]).

29



Acknowledgement

The authors wish to thank the referee for valuable suggestions and careful reading of the orig-
inal manuscript. The work of the first author was supported in part by Chinese Scholarship
Council and by Natural Science Foundation Project of CSTC (Grant No. cstc2017jcyjAX0022).
The work of the second author was supported in part by Shanghai Sailing Program 17YF1413800
and by the National Natural Science Foundation of China (Project 11701373). The second
author is the corresponding author.

References

[1] S. Alesker. Continuous rotation invariant valuations on convex sets. Ann. Math. (2),
149(3):977–1005, 1999.

[2] S. Alesker. Description of translation invariant valuations on convex sets with solution
of P. McMullen’s conjecture. Geom. Funct. Anal., 11(2):244–272, 2001.

[3] C. Haberl. Blaschke valuations. Amer. J. Math., 133(3):717–751, 2011.

[4] C. Haberl. Minkowski valuations intertwining the special linear group. J. Eur. Math.
Soc., 14(5):1565–1597, 2012.

[5] C. Haberl and L. Parapatits. The centro-affine Hadwiger theorem. J. Amer. Math. Soc.,
27(3):685–705, 2014.

[6] C. Haberl and L. Parapatits. Valuations and surface area measures. J. Reine Angew.
Math., 687:225–245, 2014.

[7] C. Haberl and L. Parapatits. Moments and valuations. Amer. J. Math., 138(6):1575–
1603, 2016.

[8] C. Haberl and L. Parapatits. Centro-affine tensor valuations. Adv. Math., 316:806–865,
2017.

[9] D. A. Klain. Star valuations and dual mixed volumes. Adv. Math., 121(1):80–101, 1996.

[10] D. A. Klain and G. C. Rota. Introduction to Geometric Probability. Cambridge Univer-
sity Press, Cambridge, 1997.

[11] J. Li and G. Leng. Lp Minkowski valuations on polytopes. Adv. Math., 299:139–173,
2016.

30



[12] J. Li and D. Ma. Laplace transforms and valuations. J. Funct. Anal., 272(2):738–758,
2017.

[13] J. Li, S. Yuan, and G. Leng. Lp-Blaschke valuations. Trans. Amer. Math. Soc.,
367(5):3161–3187, 2015.

[14] M. Ludwig. Moment vectors of polytopes. Rend. Circ. Mat. Pale. (2) Suppl., 70:123–138,
2002.

[15] M. Ludwig. Projection bodies and valuations. Adv. Math., 172(2):158–168, 2002.

[16] M. Ludwig. Valuations on polytopes containing the origin in their interiors. Adv. Math.,
170:239–256, 2002.

[17] M. Ludwig. Ellipsoids and matrix-valued valuations. Duke Math. J., 119(1):159–188,
2003.

[18] M. Ludwig. Minkowski valuations. Trans. Amer. Math. Soc., 357(10):4191–4213, 2005.

[19] M. Ludwig. Intersection bodies and valuations. Amer. J. Math., 128(6):1409–1428, 2006.

[20] M. Ludwig. Minkowski areas and valuations. J. Differential Geom., 86(1):133–161, 2010.

[21] M. Ludwig. Fisher information and matrix-valued valuations. Adv. Math., 226(3):2700–
2711, 2011.

[22] M. Ludwig and M. Reitzner. A classification of SL(n) invariant valuations. Ann. Math.
(2), 172(2):1219–1267, 2010.

[23] M. Ludwig and M. Reitzner. SL(n) invariant valuations on polytopes. Discrete Comput.
Geom., 57(3):571–581, 2017.

[24] L. Parapatits. SL(n)-contravariant Lp-Minkowski valuations. Trans. Amer. Math. Soc.,
366(3):1195–1211, 2014.

[25] L. Parapatits. SL(n)-covariant Lp-Minkowski valuations. J. London Math. Soc. (2),
89(2):397–414, 2014.

[26] R. Schneider. Convex Bodies: the Brunn-Minkowski Theory. Cambridge University
Press, Cambridge, 2nd expanded edition, 2014.

[27] F. E. Schuster and T. Wannerer. GL(n) contravariant Minkowski valuations. Trans.
Amer. Math. Soc., 364(2):815–826, 2012.

31



[28] T. Wannerer. GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J.,
60(5):1655–1672, 2011.

32


	1 Introduction
	2 Notation and preliminary results
	3 SL(n) covariant valuations on Pn0
	3.1 The two-dimensional case
	3.2 The higher-dimensional case

	4 SL(n) covariant valuations on Pn
	4.1 The two-dimensional case
	4.2 The higher-dimensional case

	Acknowledgement
	References

