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Abstract

All SL(n) contravariant symmetric matrix valued valuations on convex polytopes in
Rn are completely classified without any continuity assumptions. The general Lutwak-
Yang-Zhang matrix is shown to be essentially the unique such valuation.

1 Introduction
Let {e1, . . . , en} be the standard basis of Rn. We write x = (x1, . . . , xn) for the corresponding
coordinates. Let Pn

(0) denote the space of convex polytopes containing the origin in their
interiors in Rn. For P ∈ Pn

(0), the Lutwak-Yang-Zhang (LYZ) matrix L(P ) of P is the
(n× n)-matrix with coefficients (see [38])

Lij(P ) =
∑

u∈N (P )

aP (u)

hP (u)
uiuj,

where N (P ) denotes the set of all outer unit normals of facets of P and where aP (u) is the
(n− 1)-dimensional volume of the facet with unit normal u ∈ Sn−1 and hP (u) = max{x · u :

x ∈ P} is the support function of P .
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For a general convex body (compact convex subset with nonempty interior) K ⊂ Rn that
contains the origin in its interior, an approximation (with respect to the Hausdorff metric)
allows us to define the LYZ matrix L(K) by an integral involving the L2 surface area measure
of K (see [38]), i.e.,

Lij(K) =

∫
Sn−1

uiujdS2(K, u).

Here, the measure S2(K, ·) is absolutely continuous with respect to the classical surface area
measure SK and has the Radon-Nikodym derivative

dS2(K, ·)
dSK

=
1

hK
.

Therefore, with the standard inner product x · y for x, y ∈ Rn, it generates the LYZ ellipsoid
Γ−2(K) of K by

Γ−2(K) =
√
V (K)EL(K),

where V (K) denotes the n-dimensional volume of K and EA = {x ∈ Rn : x · Ax ≤ 1}.
The John ellipsoid is a fundamental tool in convex geometry and Banach space geometry

[4, 5, 20, 40, 44, 50]. For each convex body K, its John ellipsoid is the unique ellipsoid of
maximal volume contained in K. In 2005, Lutwak, Yang and Zhang [40] extended the
classical John ellipsoid to the Lp John ellipsoid in the framework of the Lp-Brunn-Minkowski
theory. Indeed, the L2 John ellipsoid is just the LYZ ellipsoid Γ−2(K) which is in some sence
dual to the classical Legendre ellipsoid Γ2(K) of classical mechanics: the Legendre ellipsoid is
an object of the dual Brunn-Minkowski theory, while the LYZ ellipsoid is the corresponding
object of the classical Brunn-Minkowski theory (see [38]). Moreover, Lutwak, Yang and
Zhang [39] proved that Γ−2(K) ⊂ Γ2(K) which can be viewed as a geometrical analogue
of the Cramér-Rao inequality (see [7, 45]). For more information on the LYZ ellipsoid, its
applications, and its connection to the Fisher information from information theory, see [9,
29, 38, 39].

The LYZ matrix defines a matrix valued valuation. A function µ defined on a lattice
(L,∨,∧) and taking values in an abelian semigroup is called a valuation if

µ(P ∨Q) + µ(P ∧Q) = µ(P ) + µ(Q) (1.1)

for all P,Q ∈ L. A function µ defined on some subset L0 of L is called a valuation on L0

if (1.1) holds whenever P,Q, P ∨ Q,P ∧ Q ∈ L0. Valuations on the space of convex bodies
are a classical concept going back to Dehn’s solution of Hilbert’s Third Problem. Ever since
Hadwiger [17] proved his now classical characterization of the quermassintegrals (elementary
mixed volumes), the classification of valuations on the space of convex bodies and related
spaces has been an important subject in geometry. For detailed information and an historical
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account, see [8, 22, 46]. See also [1–3, 10–16, 21, 23–33, 35, 42, 43] for some of the more recent
contributions.

In 2003, Ludwig [29] established the first characterization of the moment matrix and the
LYZ matrix. Let Mn denote the set of symmetric (n × n)-matrices over Rn. A function
from a topological space with values in a Euclidean space is called measurable if it is Borel
measurable. A function µ : Pn

(0) → Mn is called GL(n) contravariant if there exists a q ∈ R
such that

µ(ϕP ) = |detϕ|q ϕ−tµ(P )ϕ−1

for every P ∈ Pn
(0) and every ϕ ∈ GL(n). Here detϕ denotes the determinant of ϕ and ϕt

denotes the transpose of ϕ. For a convex polytope P ⊂ Rn, the moment matrix M(P ) of P
is the (n× n)-matrix with coefficients

Mij(P ) =

∫
P

xixjdx.

Theorem 1.1 ( [29]). Let n ≥ 3. A function µ : Pn
(0) → Mn is a measurable GL(n)

contravariant valuation if and only if there exist constants c1, c2 ∈ R such that

µ(P ) = c1L(P ) + c2M(P ∗)

for every P ∈ Pn
(0), where P ∗ denotes the polar body of P .

Haberl and Parapatits [15] established a classification of tensor valuations without any
homogeneity assumptions (see [3, 6, 18, 19, 33, 34, 37, 49] for more information on matrix and
tensor valuations). Note that Ludwig’s definitions of GL(n) contravariance turn out to co-
incide with the corresponding definitions of tensors.

Recently, Ludwig and Reitzner [36] showed that the continuity assumptions can be re-
moved in the characterization of SL(n) invariant valuations on polytopes in Pn

0 , the space of
convex polytopes containing the origin in Rn.

In 2019, the first author [41] obtained a characterization of the moment matrix on Pn
0

without any continuity assumptions. Let Pn denote the space of convex polytopes in Rn.
Here, let Qn be either Pn

0 or Pn. A function µ : Qn → Mn is called SL(n) equivariant if
µ(ϕP ) = ϕµ(P )ϕt for every P ∈ Qn and every ϕ ∈ SL(n). Correspondingly, a function
µ : Qn → Mn is called SL(n) contravariant if

µ(ϕP ) = ϕ−tµ(P )ϕ−1

for every P ∈ Qn and every ϕ ∈ SL(n). A different notation for this identity is

µ(ϕP ) = ϕ−t · µ(P )

(see Section 2 for the definition of ·).
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Theorem 1.2 ( [41]). Let n ≥ 3. A function µ : Pn
0 → Mn is an SL(n) equivariant valuation

if and only if there exists a constant c ∈ R such that

µ(P ) = cM(P )

for every P ∈ Pn
0 .

We extend the LYZ matrix from convex ploytopes containing the origin in their interiors
to arbitrary convex ploytopes. Solutions f : R → R of Cauchy’s functional equation

f(a+ b) = f(a) + f(b), for a, b ∈ R

play an important role in this paper. For a solution of Cauchy’s functional equation ζ : R →
R, the general LYZ matrix Lζ(P ) of P ∈ Pn is defined by

Lζ,ij(P ) =
∑

u∈N (P )\{hP=0}

ζ(aP (u)hP (u))

h2P (u)
uiuj.

The aim of this paper is to obtain a complete classification of SL(n) contravariant matrix
valuations on polytopes without any continuity assumptions. We are able to extend Ludwig’s
result to Pn

0 without any homogeneity assumptions or any continuity assumptions.

Theorem 1.3. Let n ≥ 3. A function µ : Pn
0 → Mn is an SL(n) contravariant valuation if

and only if there exists a solution of Cauchy’s functional equation ζ : R → R such that

µ(P ) = Lζ(P )

for every P ∈ Pn
0 .

Similar to the classification of convex body valuations by Schuster and Wannerer [47] and
Wannerer [48], we further extend this result to Pn.

Theorem 1.4. Let n ≥ 3. A function µ : Pn → Mn is an SL(n) contravariant valuation if
and only if there exist solutions of Cauchy’s functional equation ζ1, ζ2 : R → R such that

µ(P ) = Lζ1(P ) + Lζ2([0, P ])

for every P ∈ Pn, where [0, P ] denotes the convex hull of the origin and P .

We remark that the characterization of SL(2) contravariant symmetric matrix valued
valuations on convex polytopes in R2 is still an open question.
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2 Notation and preliminary results

We work in the n-dimensional Euclidean space Rn with the standard basis {e1, . . . , en}. We
write a vector x ∈ Rn in coordinates by x = (x1, . . . , xn). The standard inner product will
be written as x · y for vectors x, y ∈ Rn.

For A = (aij) ∈ Mn, we use the tensor representation, namely,

A =
∑

1≤i≤j≤n

aijei ⊗ ej,

and write aij = A(ei, ej). Moreover, for every ϕ ∈ GL(n) and y1, y2 ∈ Rn, we define

(ϕ · A)(y1, y2) = A(ϕty1, ϕ
ty2),

which coincides with the action ϕAϕt in Ludwig [21-23] in the following way

ϕ · A =
∑

1≤i≤j≤n

aij(ϕei)⊗ (ϕej) =
∑

1≤i≤j≤n

aijϕ(ei ⊗ ej)ϕ
t = ϕAϕt.

The affine hull, the relative interior and the dimension of a given set in Rn are denoted by
aff, relint and dim, respectively. Denote by [v1, . . . , vk] the convex hull of v1, . . . , vk ∈ Rn. A
convex polytope is the convex hull of finitely many points in Rn. Two basic classes of poly-
topes are the k-dimensional standard simplex T k = [0, e1, . . . , ek] and one of their (k − 1)-
dimensional facets T̃ k = [e1, . . . , ek]. For i = 1, . . . , n, let T i be the set of i-dimensional
simplices with one vertex at the origin and, let T̃ i denote the set of (i− 1)-dimensional sim-
plices T ⊂ Rn with 0 /∈ aff T . Indeed, every polytope can be triangulated into simplices. We
define a triangulation of a k-dimensional polytope P into simplices as a set of k-dimensional
simplices {T1, . . . , Tr} which have pairwise disjoint interiors, with P = ∪Ti and with the
property that for arbitrary 1 ≤ i1 < · · · < ij ≤ r the intersections Ti1 ∩ · · · ∩ Tij are again
simplices.

Let Qn be either Pn
0 or Pn and A be an abelian group. The following inclusion-exclusion

principle on valuations will be required (see [22] and [42, Theorem 3.1 and Lemma 3.3]).

Lemma 2.1. Let µ : Qn → A be a valuation. Then

µ(P1 ∪ · · · ∪ Pk) =
∑

∅̸=S⊆{1,2,...,k}

(−1)|S|−1µ(
⋂
i∈S

Pi)

for all k ∈ N and P1, . . . , Pk ∈ Qn with P1 ∪ · · · ∪ Pk ∈ Qn.

A valuation on Qn is called simple if it vanishes on every lower dimensional P ∈ Qn. Using
triangulations of polytopes, a simple valuation is determined by its values on n-dimensional
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simplices with one vertex at the origin (see [42, Lemma 3.4]). Furthermore, since these
simplices are SL(n) image of dilated standard simplices, we only need to consider sT n for
s > 0. Similarly, it also suffices to consider sT̃ k for s > 0 and k = 1, . . . , n to determine a
valuation on the space of polytopes that do not contain the origin in their affine hull.

Next, we mention a series of triangulations that will be used by several times in this
paper. Let λ ∈ (0, 1) and denote by H the hyperplane through the origin with unit normal
vector (1− λ)e1 − λe2. Set

H+ = {x ∈ Rn : x · ((1− λ)e1 − λe2) ≥ 0} and H− = {x ∈ Rn : x · ((1− λ)e1 − λe2) ≤ 0}.

Obviously, H+ and H− are the two halfspaces bounded by H. This hyperplane induces the
series of triangulations of T i as well as T̃ i for i = 2, . . . , n. There are two representations
corresponding to these triangulations due to the following definitions.

Definition 2.1. For λ ∈ (0, 1), define the linear transform ϕ1 ∈ SL(n) by

ϕ1e1 = λe1 + (1− λ)e2, ϕ1e2 = e2, ϕ1en = en/λ, ϕ1ej = ej, where j 6= 1, 2, n,

and ψ1 ∈ SL(n) by

ψ1e1 = e1, ψ1e2 = λe1 + (1− λ)e2, ψ1en = en/(1− λ), ψ1ej = ej, where j 6= 1, 2, n.

It is clear that

T i ∩H+ = ψ1T
i, T i ∩H− = ϕ1T

i and T i ∩H = ϕ1T
i−1.

Similarly,
T̃ i ∩H+ = ψ1T̃

i, T̃ i ∩H− = ϕ1T̃
i and T̃ i ∩H = ϕ1T̃

i−1

for i = 2, . . . , n− 1.

Definition 2.2. For λ ∈ (0, 1), define the linear transform ϕ2 ∈ GL(n) by

ϕ2e1 = λe1 + (1− λ)e2, ϕ2e2 = e2, ϕ2ej = ej, where j = 3, . . . , n,

and ψ2 ∈ GL(n) by

ψ2e1 = e1, ψ2e2 = λe1 + (1− λ)e2, ψ2ej = ej, where j = 3, . . . , n.

It is clear that

sT n ∩H+ = ψ2sT
n, sT n ∩H− = ϕ2sT

n, and sT n ∩H = ϕ2sT
i−1,

for every s > 0. Similarly,

sT̃ n ∩H+ = ψ2sT̃
n, sT̃ n ∩H− = ϕ2sT̃

n, and sT̃ n ∩H = ϕ2sT̃
n−1,

for every s > 0.
Finally, we have several reduction steps for SL(n) contravariant functions towards the

classification.
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Lemma 2.2. Let n ≥ 2, s > 0, and µ : Pn
0 → Mn be an SL(n) contravariant function.

Then, for k = 0, . . . , n − 1, the coefficients µ(sT k)(ei, ej) = 0 for all i = 1, . . . , n − 1 and
j = 1, . . . , n.

Proof. Let i = 1, . . . , n− 1, we consider ρi ∈ SL(n) such that

ρien = en − ei, ρiej = ej,where j = 1, . . . , n− 1.

Since ρi fixes sT k, the SL(n) contravariance of µ gives

µ(sT k)(ej, en) = µ(ρisT
k)(ej, en) = µ(sT k)(ρ−1

i ej, ρ
−1
i en)

= µ(sT k)(ej, en + ei) = µ(sT k)(ej, en) + µ(T k)(ej, ei),

which implies
µ(sT k)(ei, ej) = 0 (2.1)

for i, j = 1, . . . , n− 1. The SL(n) contravariance of µ also gives

µ(sT k)(en, en) = µ(ρisT
k)(en, en) = µ(sT k)(ρ−1

i en, ρ
−1
i en)

= µ(sT k)(en + ei, en + ei)

= µ(sT k)(en, en) + µ(sT k)(ei, ei) + 2µ(sT k)(ei, en).

(2.2)

Combining with (2.1) and (2.2), we obtain

µ(sT k)(ei, en) = 0

for i = 1, . . . , n− 1.

Lemma 2.3. Let n ≥ 2, s > 0, and µ : Pn
0 → Mn be an SL(n) contravariant function. Then,

µ(sT k) = 0 for k = 0, . . . , n− 2.

Proof. By Lemma 2.2, it remains to show that µ(sT k)(en, en) = 0. For k = 0, . . . , n− 2, we
consider σ ∈ SL(n) such that

σen−1 = −en, σen = en−1, σej = ej,where j = 1, . . . , n− 2.

Since σ fixes sT k, Lemma 2.2 and the SL(n) contravariance of µ give

0 = µ(sT k)(en−1, en−1) = µ(σsT k)(en−1, en−1)

= µ(sT k)(σ−1en−1, σ
−1en−1) = µ(sT k)(en, en).

This completes the proof.
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Lemma 2.4. Let n ≥ 3, s > 0, and µ : Pn
0 → Mn be an SL(n) contravariant function. Then,

all the coefficients µ(sT n)(ei, ei) are equal for i = 1, . . . , n.

Proof. For l = 0, . . . , n− 3, we consider the permutation θl such that

θlel+1 = el+3, θlel+2 = el+1, θlel+3 = el+2, θlej = ej, where j 6= l + 1, l + 2, l + 3.

Since θl fixes sT n, the SL(n) contravariance of µ gives

µ(sT n)(el+1, el+1) = µ(sT n)(el+2, el+2) = µ(sT n)(el+3, el+3).

Repeating the above for different l, we obtain the desired result.

Lemma 2.5. Let n ≥ 3, s > 0, and µ : Pn
0 → Mn be an SL(n) contravariant function. Then,

all the coefficients µ(sT n)(ei, ej) are equal for 1 ≤ i < j ≤ n.

Proof. Applying all these permutations θl defined in Lemma 2.4 within e1, . . . , en. Since
these permutations fix sT n, the SL(n) contravariance of µ implies the lemma.

3 The general LYZ matrix

Lemma 3.1. Let ζ : R → R be a solution of Cauchy’s functional equation. The general LYZ
matrix operator Lζ : Pn → Mn is a simple valuation.

Proof. In order to prove that Lζ is a valuation, we need to show that

Lζ(P ∪Q) + Lζ(P ∩Q) = Lζ(P ) + Lζ(Q) (3.1)

for all P,Q ∈ Pn with P ∪Q ∈ Pn. We distinguish three sets of unit vectors:

I1 := {u ∈ Sn−1 : hP (u) < hQ(u)},

I2 := {u ∈ Sn−1 : hP (u) = hQ(u)},

I3 := {u ∈ Sn−1 : hP (u) > hQ(u)}.

Note that the sets I1, I3 are open and that hP∪Q = max{hP , hQ} and hP∩Q = min{hP , hQ} if
P ∪Q is convex. For u ∈ Sn−1, let H(K, u) denote the support plane, i.e.,

H(K, u) = {x ∈ Rn : x · u = hK(u)},
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and F (K, u) := H(K, u) ∩K. It is well known that (see [46])

∂hK(u) = F (K, u)

for every u ∈ Sn−1. For u ∈ I1, we have

aP∪Q(u) = aQ(u), hP∪Q(u) = hQ(u), aP∩Q(u) = aP (u), hP∩Q(u) = hP (u).

Analogous for I3. Note that

(N (P ∪Q)\{hP∪Q = 0}) ∩ I1 = (N (Q)\{hQ = 0}) ∩ I1,

(N (P ∩Q)\{hP∩Q = 0}) ∩ I1 = (N (P )\{hP = 0}) ∩ I1,

(N (P ∪Q)\{hP∪Q = 0}) ∩ I3 = (N (P )\{hP = 0}) ∩ I3,

(N (P ∩Q)\{hP∩Q = 0}) ∩ I3 = (N (Q)\{hQ = 0}) ∩ I3.

Thus, we have∑
u∈(N (P∪Q)\{hP∪Q=0})∩I1

ζ(aP∪Q(u)hP∪Q(u))

h2P∪Q(u)
uiuj +

∑
u∈(N (P∩Q)\{hP∩Q=0})∩I1

ζ(aP∩Q(u)hP∩Q(u))

h2P∩Q(u)
uiuj

+
∑

u∈(N (P∪Q)\{hP∪Q=0})∩I3

ζ(aP∪Q(u)hP∪Q(u))

h2P∪Q(u)
uiuj +

∑
u∈(N (P∩Q)\{hP∩Q=0})∩I3

ζ(aP∩Q(u)hP∩Q(u))

h2P∩Q(u)
uiuj

=
∑

u∈(N (P )\{hP=0})∩I1

ζ(aP (u)hP (u))

h2P (u)
uiuj +

∑
u∈(N (Q)\{hQ=0})∩I1

ζ(aQ(u)hQ(u))

h2Q(u)
uiuj

+
∑

u∈(N (P )\{hP=0})∩I3

ζ(aP (u)hP (u))

h2P (u)
uiuj +

∑
u∈(N (Q)\{hQ=0})∩I3

ζ(aQ(u)hQ(u))

h2Q(u)
uiuj

for all 1 ≤ i, j ≤ n. It follows that (3.1) is equivalent to∑
u∈(N (P∪Q)\{hP∪Q=0})∩I2

ζ(aP∪Q(u)hP∪Q(u))

h2P∪Q(u)
uiuj +

∑
u∈(N (P∩Q)\{hP∩Q=0})∩I2

ζ(aP∩Q(u)hP∩Q(u))

h2P∩Q(u)
uiuj

=
∑

u∈(N (P )\{hP=0})∩I2

ζ(aP (u)hP (u))

h2P (u)
uiuj +

∑
u∈(N (Q)\{hQ=0})∩I2

ζ(aQ(u)hQ(u))

h2Q(u)
uiuj

for all 1 ≤ i, j ≤ n.
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Fix u ∈ Sn−1. Since P 7→ aP (u), P ∈ Pn is a valuation, we have

aP∪Q(u) + aP∩Q(u) = aP (u) + aQ(u) (3.2)

for all P,Q ∈ Pn with P ∪Q ∈ Pn. Note that

hP∪Q(u) = hP∩Q(u) = hP (u) = hQ(u) (3.3)

for u ∈ I2. Then,

aP∪Q(u)hP∪Q(u) + aP∩Q(u)hP∩Q(u) = aP (u)hP (u) + aQ(u)hQ(u)

for u ∈ I2. Since ζ is a solution of Cauchy’s functional equation, we obtain

ζ(aP∪Q(u)hP∪Q(u))

h2P∪Q(u)
+
ζ(aP∩Q(u)hP∩Q(u))

h2P∩Q(u)
=
ζ(aP (u)hP (u))

h2P (u)
+
ζ(aQ(u)hQ(u))

h2Q(u)
(3.4)

for u ∈ I2, where P,Q ∈ Pn with P ∪Q ∈ Pn. It follows from (3.2) that

N (P ∪Q) ∪N (P ∩Q) = N (P ) ∪N (Q). (3.5)

Combining with (3.3), (3.4) and (3.5), we obtain the desired valuation property.
Next, we will show that the general LYZ matrix operator is simple via the following three

cases.
If dim P ≤ n− 2, it is clear that Lζ(P ) = 0 as N (P ) = ∅.
If dim P = n− 1 and 0 ∈ aff P , then hP (±u) = 0, where ±u are the outer unit normals

of P . Thus, N (P )\{hP = 0} = ∅. By the definition of the general LYZ matrix, we obtain
Lζ(P ) = 0.

If dim P = n − 1 and 0 /∈ aff P , then hP (−u) = −hP (u) and aP (−u) = aP (u). Here
N (P ) = {±u}. Hence, aP (−u)hP (−u) = −aP (u)hP (u). Since ζ : R → R is a solution of
Cauchy’s functional equation,

Lζ,ij(P ) =
∑

u∈N (P )\{hP=0}

ζ(aP (u)hP (u))

h2P (u)
uiuj

=
ζ(aP (u)hP (u))

h2P (u)
uiuj +

ζ(aP (−u)hP (−u))
h2P (−u)

(−ui)(−uj) = 0

for all 1 ≤ i, j ≤ n. We conclude that Lζ(P ) = 0.

Lemma 3.2. Let ζ : R → R be a solution of Cauchy’s functional equation. The general LYZ
matrix operator Lζ : Pn → Mn is SL(n) contravariant.
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Proof. Let ϕ ∈ SL(n). Note that

u ∈ N (P )\{hP = 0} ⇔ ũ ∈ N (ϕP )\{hϕP = 0}

with
ũ := ‖ϕ−tu‖−1ϕ−tu (3.6)

and that
hϕP (ũ) = hP (ϕ

tũ) = ‖ϕ−tu‖−1hP (u). (3.7)

Furthermore,
aϕP (ũ) = ‖ϕ−tu‖aP (u). (3.8)

Applying (3.6), (3.7), (3.8) and the definition of the general LYZ matrix, we obtain

Lζ(ϕP ) =
∑

ũ∈N (ϕP )\{hϕP=0}

ζ(aϕP (ũ)hP (ũ))

h2ϕP (ũ)
ũ⊗ ũ

=
∑

u∈N (P )\{hP=0}

ζ(‖ϕ−tu‖aP (u)‖ϕ−tu‖−1hP (u))

‖ϕ−tu‖−2h2P (u)
(‖ϕ−tu‖−1ϕ−tu)⊗ (‖ϕ−tu‖−1ϕ−tu)

=
∑

u∈N (P )\{hP=0}

ζ(aP (u)hP (u))

h2P (u)
ϕ−t(u⊗ u)ϕ−1

= ϕ−t · Lζ(P ).

Thus, we have finished the proof of the SL(n) contravariance of the general LYZ matrix
operator.

4 Main results on Pn
0

Lemma 4.1. Let n ≥ 3 and µ : Pn
0 → Mn be an SL(n) contravariant valuation. Then µ is

simple.

Proof. Due to Lemma 2.3, it suffices to show that µ(T n−1) = 0. We use the triangulation in
Definition 2.1. Since µ is a valuation, we have

µ(T n−1) + µ(ϕ1T
n−2) = µ(ϕ1T

n−1) + µ(ψ1T
n−1).

Note that ϕ1, ψ1 ∈ SL(n), the SL(n) contravariance of µ gives

µ(T n−1) + ϕ−t
1 · µ(T n−2) = ϕ−t

1 · µ(T n−1) + ψ−t
1 · µ(T n−1).
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By Lemma 2.4, it follows that

µ(T n−1) = ϕ−t
1 · µ(T n−1) + ψ−t

1 · µ(T n−1).

Thus,

µ(T n−1)(en, en) = ϕ−t
1 · µ(T n−1)(en, en) + ψ−t

1 · µ(T n−1)(en, en)

= µ(T n−1)(λen, λen) + µ(T n−1)((1− λ)en, (1− λ)en)

= (1− 2λ+ 2λ2)µ(T n−1)(en, en).

It means that
2λ(1− λ)µ(T n−1)(en, en) = 0

for 0 < λ < 1. Then, we must have µ(T n−1)(en, en) = 0. Combing with Lemma 2.2, we
obtain µ(T n−1) = 0.

Lemma 4.2. Let n ≥ 3, s > 0, and µ : Pn
0 → Mn be an SL(n) contravariant valuation.

Then, all the coefficients µ(sT n)(ei, ej) are equal for i, j = 1, . . . , n.

Proof. For s > 0, since µ is a valuation, we have

µ(sT n) + µ(ϕ2sT
n−1) = µ(ϕ2sT

n) + µ(ψ2sT
n).

Note that ϕ2/λ
1
n , ψ2/(1− λ)

1
n ∈ SL(n), Lemma 4.1 and the SL(n) contravariance of µ give

µ(sT n) = (λ
1
nϕ−t

2 ) · µ(λ
1
n sT n) + ((1− λ)

1
nψ−t

2 ) · µ((1− λ)
1
n sT n).

By Lemma 2.4, it follows that

µ(sT n)(e1, e1)

=λ
2
nµ(λ

1
n sT n)

(
1

λ
e1 −

1− λ

λ
e2,

1

λ
e1 −

1− λ

λ
e2

)
+ (1− λ)

2
nµ((1− λ)

1
n sT n)(e1, e1)

=λ
2
n
−2[(2− 2λ+ λ2)µ(λ

1
n sT n)(e1, e1)− (2− 2λ)µ(λ

1
n sT n)(e1, e2)]

+ (1− λ)
2
nµ((1− λ)

1
n sT n)(e1, e1).

(4.1)

Also,
µ(sT n)(en, en) = λ

2
nµ(λ

1
n sT n)(en, en) + (1− λ)

2
nµ((1− λ)

1
n sT n)(en, en). (4.2)

Lemma 2.4 implies that (4.2) is equivalent to

µ(sT n)(e1, e1) = λ
2
nµ(λ

1
n sT n)(e1, e1) + (1− λ)

2
nµ((1− λ)

1
n sT n)(e1, e1). (4.3)
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Plug (4.3) into (4.1) and get

2(1− λ)(µ(λ
1
n sT n)(e1, e1)− µ(λ

1
n sT n)(e1, e2)) = 0.

Since 0 < λ < 1, we must have

µ(λ
1
n sT n)(e1, e1) = µ(λ

1
n sT n)(e1, e2).

Applying Lemmas 2.4 and 2.5, we complete the proof.

Proof of Theorem 1.3. Lemmas 3.1 and 3.2 imply that the general LYZ matrix operator Lζ

is an SL(n) contravariant valuation.
Conversely, let µ : Pn

0 → Mn be an SL(n) contravariant valuation. Let s > 0. By using
the triangulation in Definition 2.2, we have

µ(s
1
nT n) + µ(ϕ2s

1
nT n−1) = µ(ϕ2s

1
nT n) + µ(ψ2s

1
nT n).

Note that ϕ2/λ
1
n , ψ2/(1− λ)

1
n ∈ SL(n), Lemma 4.1 and the SL(n) contravariance of µ give

µ(s
1
nT n) = (λ

1
nϕ−t

2 ) · µ((λs)
1
nT n) + ((1− λ)

1
nψ−t

2 ) · µ(((1− λ)s)
1
nT n).

Thus,

µ(s
1
nT n)(en, en) = λ

2
nµ((λs)

1
nT n)(en, en) + (1− λ)

2
nµ(((1− λ)s)

1
nT n)(en, en). (4.4)

Setting x = λs and y = (1− λ)s, then (4.4) can be rewritten as

(x+ y)
2
nµ((x+ y)

1
nT n)(en, en) = x

2
nµ(x

1
nT n)(en, en) + y

2
nµ(y

1
nT n)(en, en).

Therefore,
µ(x

1
nT n)(en, en) = x−

2
n ζ0(x),

where ζ0 : R → R is a solution of Cauchy’s functional equation. Thus,

µ(s
1
nT n)(en, en) =

ζ0(s)

s
2
n

.

Lemma 4.2 implies that
µ(s

1
nT n) =

ζ0(s)

s
2
n

1,

where 1 denotes the (n× n)-matrix where every element is one.
Let ζ : R → R be a solution of Cauchy’s functional equation. By the definition of the

general LYZ matrix, we have
Lζ(s

1
nT n) =

nζ(s/n!)

s
2
n

1.
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Setting
ζ(s/n!) = ζ0(s),

we obtain
µ(s

1
nT n) = Lζ(s

1
nT n).

Therefore,
µ(T ) = Lζ(T )

for each T ∈ T n. Finally, we dissect P ∈ Pn
0 into simplices with one vertex at the origin.

Since µ is simple and by the inclusion-exclusion principle, we obtain

µ(P ) = Lζ(P )

for each P ∈ Pn
0 .

5 Main results on Pn

Since all the steps also work on T̃ k for k = 1, . . . , n, including reductions in Lemmas 2.2-2.4
and triangulations in Definitions 2.1 and 2.2, we similarly have the following Lemma.

Lemma 5.1. Let n ≥ 3 and µ : Pn → Mn be an SL(n) contravariant valuation. Then
µ(P ) = 0 for every P ∈ Pn with dim P ≤ n− 2.

Next, we determine such valuations on every P ∈ Pn with dim P ≤ n− 1 and 0 ∈ aff P .

Lemma 5.2. Let n ≥ 3 and µ : Pn → Mn be an SL(n) contravariant valuation. Then
µ(P ) = 0 for every P ∈ Pn with dim P ≤ n− 1 and 0 ∈ aff P .

Proof. Let P ∈ Pn with dim P ≤ n−1 and 0 ∈ aff P . The case for 0 ∈ P is already included
in Lemma 4.1. It suffices to consider such polytopes that do not contain the origin. Let
F1, . . . , Fr be the facets of P visible from the origin, i.e. P ∩ relint [0, Fi] = ∅. Since µ is a
valuation, the inclusion-exclusion principle yields

0 = µ([0, P ])

= µ(P ) +
r∑

i=1

µ([0, Fi]︸ ︷︷ ︸
∈Pn

0

)−
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ]︸ ︷︷ ︸
dim≤n−2

)

−
r∑

i=1

µ([0, Fi] ∩ P︸ ︷︷ ︸
dim=n−2

) +
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ] ∩ P︸ ︷︷ ︸
dim≤n−3

)

= µ(P ),
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where the steps follow from Lemmas 4.1 and 5.1.

Now, we have the following characterization on the set of (n− 1)-dimensional polytopes
that do not contain the origin in their affine hull.

Lemma 5.3. Let n ≥ 3 and µ : Pn → Mn be an SL(n) contravariant valuation. Then there
exists a solution of Cauchy’s functional equation ζ : R → R such that

µ(P ) = Lζ([0, P ])

for every P ∈ Pn with dim P = n− 1 and 0 /∈ aff P .

Proof. First, it suffices to consider s 1
n T̃ n for s > 0. We use the dissection in Definition 2.2.

Since µ is a valuation, we have

µ(s
1
n T̃ n) + µ(ϕ2s

1
n T̃ n−1) = µ(ϕ2s

1
n T̃ n) + µ(ψ2s

1
n T̃ n).

Note that ϕ2/λ
1
n , ψ2/(1− λ)

1
n ∈ SL(n), Lemma 5.1 and the SL(n) contravariance of µ give

µ(s
1
n T̃ n) = (λ

1
nϕ−t

2 ) · µ((λs)
1
n T̃ n) + ((1− λ)

1
nψ−t

2 ) · µ(((1− λ)s)
1
n T̃ n).

Using a similar argument as in the proof of Theorem 1.2, we obtain that there exists a
solution of Cauchy’s functional equation ζ2 : R → R such that

µ(s
1
n T̃ n) = Lζ2([0, s

1
n T̃ n−1]). (5.1)

Second, let P be an (n − 1)-dimensional polytope with 0 /∈ aff P . Triangulate P into
simplices T1, . . . , Tr. Using the inclusion-exclusion principle, Lemma 5.2, (5.1), and Lemma
3.1, we get

µ(P ) =
r∑

i=1

µ(Ti) =
r∑

i=1

Lζ2([0, Ti]) = Lζ2([0, P ]).

Proof of Theorem 1.4. Let ζ1, ζ2 : R → R be the solutions of Cauchy’s functional equation.
Set

µ(P ) = Lζ1(P ) + Lζ2([0, P ])

for every P ∈ Pn. For P,Q ∈ Pn with P ∪Q ∈ Pn, we have [0, P ∪Q] = [0, P ] ∪ [0, Q] and
[0, P ∩Q] = [0, P ]∩ [0, Q]. Note that [0, ϕP ] = ϕ[0, P ] for every ϕ ∈ SL(n). Lemmas 3.1 and
3.2 show that µ is an SL(n) contravariant valuation on Pn.

It remains to show the reverse statement. Let µ : Pn → Mn be an SL(n) contravariant
valuation. By Theorem 1.2 and Lemmas 5.1-5.3, we can assume that P ∈ Pn\Pn

0 with
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dim P = n. Let F1, . . . , Fr be the facets of P visible from the origin. Since µ is a valuation, the
inclusion-exclusion principle yields that there exist solutions of Cauchy’s functional equation
ζ̃1, ζ2 : R → R such that

Lζ̃1
([0, P ]) = µ([0, P ])

= µ(P ) +
r∑

i=1

µ([0, Fi]︸ ︷︷ ︸
∈Pn

0

)−
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ]︸ ︷︷ ︸
dim≤n−2

)

−
r∑

i=1

µ([0, Fi] ∩ P︸ ︷︷ ︸
=Fi

) +
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ] ∩ P︸ ︷︷ ︸
dim≤n−3

)

= µ(P ) +
r∑

i=1

µ([0, Fi])−
r∑

i=1

µ(Fi)

= µ(P ) +
r∑

i=1

Lζ̃1
([0, Fi])−

r∑
i=1

Lζ2([0, Fi]).

Since Lζ̃1
is a simple valuation, we have

r∑
i=1

Lζ̃1
([0, Fi]) = Lζ̃1

([0, P ]) − Lζ̃1
(P ) and so is Lζ2 .

Finally, we finish the proof by setting ζ1 = ζ̃1 − ζ2.
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