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Asymmetric anisotropic fractional Sobolev norms

DAN Ma

Abstract. Bourgain, Brezis, and Mironescu showed that (with suitable
scaling) the fractional Sobolev s-seminorm of a function f € W?(R™)
converges to the Sobolev seminorm of f as s — 17. Ludwig introduced
the anisotropic fractional Sobolev s-seminorms of f defined by a norm on
R™ with unit ball K and showed that they converge to the anisotropic
Sobolev seminorm of f defined by the norm whose unit ball is the polar L,
moment body of K, as s — 17 . The asymmetric anisotropic s-seminorms
are shown to converge to the anisotropic Sobolev seminorm of f defined
by the Minkowski functional of the polar asymmetric L, moment body
of K.
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1. Introduction. Let Q2 be an open set in R”. For p > 1 and 0 < s < 1,
Gagliardo introduced the fractional Sobolev spaces

|z —y|? "

and the fractional Sobolev s-seminorm of a function f € LP(2)

112y ey = nﬂ,g vdy

(see [8]). They have found many apphcatlons in pure and applied mathematics
(see [3,5,24]).

Although [|f|[yye.p(q) — 00 as s — 17, Bourgain, Brezis, and Mironescu
showed in [2] that

Jim (L= 8) [ f o) = =2 1 o) (1.1)

WeP(Q) = {f e @) L@ =T g Q)}
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for f € WHP(Q) and Q C R™ a smooth bounded domain, where

20 ((p + 1)/2)m(n=1)/2
I'((n+p)/2)
is a constant depending on n and p,

£ = / V()] da
Q

Knp=

is the Sobolev seminorm of f, and Vf : R® — R™ denotes the LP weak
derivative of f.

If instead of the Euclidean norm [-|, we consider an arbitrary norm |||,
with unit ball K, we obtain the anisotropic Sobolev seminorm,

1B s = / IV (@)% dz,
R’VL

where K* ={v e R" : v-a <1 for all z € K} is the polar body of K, and v-x
denotes the inner product between v and x. Anisotropic Sobolev seminorms
and the corresponding Sobolev inequalities attracted a lot of attention in recent
years (see [1,4,7,10]).

Anisotropic s-seminorms, introduced very recently by Ludwig [17], reflect
a fine structure of the anisotropic fractional Sobolev spaces. She established

that
. )~ ) y
Jim (19 / STl / V512

R™

for f € WHP(R™) with compact support, where the norm associated with
Z, K, the polar L, moment body of K, is defined as

n+p
e L

for v € R™ and a convex body K C R™. Several different other cases were
considered in [16,17,29)].

In this paper, by replacing the absolute value |-| by the positive part (), , for
r € R, where (x) = max {0, 2}, we obtain the following generalization. Note
that here it is no longer required that K is origin-symmetric. As a consequence,
for K C R™ a convex body containing the origin in its interior and z € R",

|lz|| g = min{\>0:2 € AK}
just defines the Minkowski functional of K and no longer a norm.

Theorem 1. If f € Wl’p(R”) has compact support, then

lim (1 // ) /IIVf .
Hr ||x—y|| o

where ZZ‘,“’*K is the polar asymmetric L, moment body of K.
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For a convex body K C R", the polar asymmetric L, moment body is the
unit ball of the Minkowski functional defined by

Hv||1;;,*K = (n+p) / (v-z)} dx
K
for v € R", Z; K = Z;(-K). For p > 1, in [14], Ludwig introduced and
characterized the two-parameter family
Cl'Z;K+pCQ'Z;K

as all possible L, analogs of moment bodies, including the symmetric case
1 1
_ + —
ZpK—§-ZpK+p§-ZpK,

where || [, 4 5.0y = @ - +B 117, for o, 8 > 0, defines the L, Minkowski
combination. In recent years, this family of convex bodies has found important
applications within convex geometry, probability theory, and the local theory
of Banach spaces (see [9,11-15,18-23,25-28,31]).

The proof given in this paper makes use of an asymmetric version of the
one-dimensional case of result (1.1) by Bourgain, Brezis, and Mironescu and
an asymmetric decomposition of Blaschke-Petkantschin type.

2. Proof of the main result. First, we need the asymmetric one-dimensional
analogue of (1.1). For its proof we require the following result from [2].

Lemma 2. Let p € LY(R™) and p > 0. If f € WHP(R™) is compactly supported
and 1 < p < oo, then
fl@) — f)l”
[ =IO oo — iy < C 111 ol
]Rn

where C' depends only on p and the support of f.
Let Q C R be a bounded domain.
Proposition 3. If f € W1P(Q), then
- 1
lim (1— s)/ / (@) {(f; * dedy 7/ dr.  (2.1)

s—1— T —
Q on{z>y} ‘ y| Q

Proof. Take a sequence (p.) of radial mollifiers, i.e. p.(z) = p€(|m|) e > 0;
Iy~ pel@)da = 1; lim f6 pe(r)dr = 0 for every 6 > 0. Let F.(x,y) = f(ly))

\r Y
/p( y) for x > y. It suffices to prove that

gii%/ / (z,y)dzdy = /(f’(x))i de. (2.2)

Q Qn{z>y} Q

Pe

Indeed, as in [30], let R > max{|z —y|: z,y € Q}, e =1—s, and

(2) = Xpo.r) () — pe
Pe Rep ‘x|1,p5a
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where x 4 is the indicator function of A. Then one obtains (2.1) from (2.2) as
desired.
By Lemma 2 we have, for any ¢ > 0 and f,g € W1P(Q),

el o axa) = IGell o xay| < I1Fe = Gellpaxay < CIf = gllws

for some constant C' dependent on ¢, f, and g. Therefore it suffices to establish
(2.2) for f in some dense subset of WP(Q), e.g., for f € C?(Q2), where Q is
the closure of Q.

Fix f € C*(Q). Since for t € R and A > 0, (M), = (), there exists
0 > 0 such that for y < z < y 4+ § and a constant c,

LT (| < o)
We have
| e
Qn{z>y}
QN{y<z<y+ds}
Qn{z>y+46}

yet, only the former integral on the right hand side needs to be considered as
the latter vanishes. In fact, for each fixed y € 2, since

y+0
U@ =S )

y/( |z —y|? (f (y))+> pe(z —y)d
@ - 1),

= / ‘W—(f’(y))i p-(x — y)dz
yy+5

<c [ (z—y)p(x —y)dr

=c [ rp(r)dr—0 ase—0,

O\g, ;:\
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we have
y+6
. (f(z) = f(y)
shgtl) |x,y‘z> - (z —y)dz
Yy
y+o
= (P [ pele—y)da
Yy
s
= (f'(y)h lim pe(r)dr
0
= (")}
Therefore,

lim
e—0

/ (f(z) = f)%.

P Gt Ve G G

QN{z>y}

Since f € C%(Q), there exists L > 0 such that |f(z) — f(y)| < L|z — y| for
every z,y € €2, then

JHOIOE, e < reachyen. @)
Q

Hence, for f € C?(2), (2.2) follows by dominated convergence theorem from
(2.3) and (2.4). O

Now, for u € S"~!, the Euclidean unit sphere, let [u] = {\u: A\ € R} and
[u]" = {Au: > 0}. Denote the k—dimensional Hausdorff measure on R"™
by HF. For f € W1P(R"), we denote by f its precise representative (see [6,
Section 1.7.1]). We require the following result. For every u € S"~!, the precise
representative f is absolutely continuous on the lines L = {x + \u : A\ € R} for
H" !'—ae. x € ut and its first-order (classical) partial derivatives belong to
LP(R™) (see [6, Section 4.9.2]). Hence, we have for the restriction of f to L

fl, e whP(L) (2.5)

for a.e. line L parallel to u.
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Proof of Theorem 1. By the polar coordinate formula and Fubini’s theorem,
we have

S IIa:—yH"“p
" n S + n
= llull z P >/ E1C :lfﬂp ))+dH1( Ydo (w)dH"™ (y)
R™ gn—1
P
= [ / [ P IO i yan = G o)
T
Sn—1 uL [u +z
n+ps (f(w+7ru) — f(w))} _
- [luf| 5P 15 + AH (r)dH (w)dH" 1 (2)do (u)
Sn/ u{[uzz 0/ " o
o Bl %Ml()dHl(w>dH”*1<z>da<u>,
Ssn—1 ud [u]4z [u]t +w

(2.6)

where o denotes the standard surface area measure on S"~!. By Proposition 3
and (2.5), we obtain

813{1_(1 —5) Wc&ff (t)dH* (w)
[ul+2 [u]+w
1 1
:p[]/ (VF(t)-w)b dH (t). (2.7)
ul+z

By Fubini’s theorem and the polar coordinate formula, we get

1 —(n+p P 1 n—1
; / e / / (VA(t) - w), dH () A" (2)dor ()

Sn—1 ut [u]+z
- ;S,/ [ 9 50w i
n—+p
= V(@) y)t dH" (z)dH" (y).
1

Using Fubini’s theorem and the definition of the asymmetric L, moment body
of K, we obtain

[ 1l / / (V1) - w)h, dH ($)dH" 1 (2)dor ()

Sn—1

= [195@)5. d" @), (28)

Rn
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So, in particular, we have

(Vf(t)-u)f, dH(t)dH" ™ (2)do (u)
Sn=1yt [u]4z

_ nTﬂKn7p/|Vf(z)|de"(x) < 400. (2.9)

Using the dominated convergence theorem with Lemma 2 and (2.9), we
obtain from (2.6), (2.7), and ( ) that

Tim (1 - / / ”W / V@) o d

O

Remark 4. In Theorem 1, let g = —f and (z)- = —min{0,2} = (~x) ., for
z € R. Then, we get

lim (1-—s // - /HVf ||p7*
s e
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