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Abstract

All SL(n) equivariant symmetric matrix valued valuations on convex polytopes in
Rn are completely classified without any continuity assumptions. The unique ones turn
out to be the moment matrices corresponding to the classical Legendre ellipsoid and
the isotropic position.

1 Introduction
Let {e1, . . . , en} be an orthonormal basis of Rn. We write x = (x1, . . . , xn) for the corre-
sponding coordinates. For a convex body (compact convex set) K ⊂ Rn, the moment matrix
MK of K is the (n× n)-matrix with coefficients∫

K

xixjdx.

For a convex body K with nonempty interior, MK is positive definite. With the standard
inner product x · y for x, y ∈ Rn, it generates the Legendre ellipsoid ΓK of K by

ΓK =

√
n+ 2

V (K)
E(MK)−1 ,
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where V (K) denotes the n-dimensional volume of K and EA = {x ∈ Rn : x · Ax ≤ 1} for
a matrix A. The Legendre ellipsoid ΓK is a classical concept from mechanics. When it is
centered at the barycenter of K, the Legendre ellipsoid is the unique ellipsoid that shares
the same moment of inertia with K about every axis passing through its barycenter (see
[22, 35–37]).

The moment matrix also provides a connection to the asymptotic theory of convex bodies.
We call a convex body K isotropic if its moment matrix is a multiple of the identity matrix.
In this case, the isotropic constant LK is the constant defined by

L2
K =

∫
K

(x · θ)2dx

for every unit vector θ. One of the main open problem in the asymptotic theory asks for a
universal upper bound of LK for all isotropic convex body K with volume 1. The best result
so far is Klartag’s improvement on Bourgain’s estimate (see [4, 18]).

Moment matrices define a class of matrix valuations. A function µ defined on a lattice
(L,∩,∪) and taking values in an abelian semigroup is called a valuation if

µ(P ) + µ(Q) = µ(P ∪Q) + µ(P ∩Q) (1.1)

for every P,Q ∈ L. A function µ defined on some subset L0 of L is called a valuation on L0

if (1.1) holds whenever P,Q, P ∪Q,P ∩Q ∈ L0.
The study and classification of geometric notions which are compatible with transforma-

tion groups are important tasks in geometry as proposed in Felix Klein’s Erlangen program
in 1872. As many functions defined on geometric objects satisfy the inclusion-exclusion prin-
ciple, the property of being a valuation is natural to consider in the classification of those
functions. Valuations also have their origins in Dehn’s solution of Hilbert’s Third Problem
in 1901. The most famous result is Hadwiger’s characterization theorem which classifies all
continuous and rigid motion invariant real valuations on the space of convex bodies in Rn.
This celebrated result initiated a systematic study on the classification of valuations using
compatibility with certain linear maps and the topology induced by the Hausdorff metric.

These studies are also a classical part of geometry with important applications in integral
geometry (see [6, Chap. 7], [17], [40, Chap. 6]). They turned out to be extremely fruitful and
useful especially in the affine geometry of convex bodies. Examples are intrinsic volumes,
affine surface areas, the projection body operator and the intersection body operator (see
[1, 2, 7–12, 16, 19–21,23–25,27–30,32, 38, 39]).

The aim of this paper is to obtain a complete classification of SL(n) equivariant matrix
valuation on Pn, the space of convex polytopes in Rn, without any continuity assumptions
(see Section 2 for definitions). In 2003, Ludwig [26] established the first characterization of
the moment matrix and the Lutwak-Yang-Zhang (LYZ) matrix. Let Pn

(0) denote the space of
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convex polytopes containing the origin in their interiors and Mn denote the set of symmetric
(n × n)-matrices over Rn. Here, a function with values in an Euclidean space is called
measurable if the preimage of every open set is a Borel set with respect to the corresponding
topology. A function µ : Pn

(0) → Mn is called GL(n) equivariant if

µ(ϕP ) = |detϕ|q ϕµ(P )ϕt

for every P ∈ Pn
(0), ϕ ∈ GL(n) and some q ∈ R, where detϕ denotes the determinant of ϕ and

ϕt denotes the transpose of ϕ. For P ∈ Pn
(0), the LYZ matrix of P is defined as the matrix

M−2(P ) with coefficients ∑
u

a(u)

h(u)
uiuj,

where we sum over all unit normals u of facets of P and where a(u) is the (n−1)-dimensional
volume of the facet with normal u and h(u) is the distance from the origin to the hyperplane
containing this facet.

Theorem 1.1. Let n ≥ 3. A function µ : Pn
(0) → Mn is a measurable GL(n) equivariant

valuation if and only if there are constants c1, c2 ∈ R such that

µ(P ) = c1MP + c2M−2P
∗

for every P ∈ Pn
(0), where P ∗ denotes the polar body of P .

An improvement is included in Haberl and Parapatits’s classification of tensor valuations
[13] without any homogeneity assumptions (see [3, 5, 14, 15, 30, 31, 34] for more information
on matrix and tensor valuations). Note that Ludwig’s definition of GL(n) equivariance turns
out to coincide with those of tensors (see Section 2 for details).

Recently, Ludwig and Reitzner [33] established a characterization of SL(n) invariant val-
uations on Pn without any continuity assumptions.

Theorem 1.2. A function µ : Pn → R is an SL(n) invariant valuation if and only if there
are constants c0, c′0, d0 ∈ R and solutions α, β : [0,∞) → R of Cauchy’s functional equation
such that

z(P ) = c0V0(P ) + c′0(−1)dimPχrelintP (0) + α(V (P )) + d0χP (0) + β(V ([0, P ]))

for every P ∈ Pn, where V0 denotes the Euler characteristic, [0, P ] denotes the convex hull
of P and the origin and χ denotes the indicator function.

Afterwards, Zeng and the author [43] obtained a classification of the moment vector on
Pn again without any continuity assumptions. Here, a function ν : Pn → Rn is called SL(n)
covariant if ν(ϕP ) = ϕν(P ) for every P ∈ Pn and ϕ ∈ SL(n).
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Theorem 1.3. Let n ≥ 3. A function ν : Pn → Rn is an SL(n) covariant valuation if and
only if there are constants c1, c2 ∈ R such that

ν(P ) = c1m(P ) + c2m([0, P ])

for every P ∈ Pn, where m(P ) denotes the moment vector of P .

Let Pn
0 denote the space of convex polytopes containing the origin. We are able to show

that the moment matrix is essentially the unique SL(n) equivariant matrix valuation on
Pn

0 . Let Qn be either Pn
0 or Pn. A function µ : Qn → Mn is called SL(n) equivariant if

µ(ϕP ) = ϕ ·µ(P ) for every P ∈ Qn and ϕ ∈ SL(n) (see Section 2 for details on the operation
ϕ · µ(P )).

Theorem 1.4. Let n ≥ 3. A function µ : Pn
0 → Mn is an SL(n) equivariant valuation if and

only if there is a constant c ∈ R such that

µ(P ) = cMP

for every P ∈ Pn
0 .

Similar to the classification of convex body valuations by Schuster and Wannerer [41] and
Wannerer [42], we further extend this result to Pn.

Theorem 1.5. Let n ≥ 3. A function µ : Pn → Mn is an SL(n) equivariant valuation if and
only if there are constants c1, c2 ∈ R such that

µ(P ) = c1MP + c2M[0, P ]

for every P ∈ Pn.

These results can be viewed as a first step to establish such classifications of tensor
valuations.

2 Notation and preliminary results
We work in n-dimensional Euclidean space Rn. Here, we denote the orthonormal basis by
{e1, . . . , en}. We write a vector x ∈ Rn in coordinates by x = (x1, . . . , xn). The inner product
of x, y ∈ Rn is denoted by x · y. The affine hull, the dimension and the relative interior of a
given set in Rn are denoted by aff, dim and relint , respectively.

Let A = (aij) ∈ Mn. We use the tensor representation, namely

A =
∑

1≤i≤j≤n

aijei ⊗ ej,
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and write aij = A(ei, ej). Moreover, in the view of tensor, for every ϕ ∈ GL(n) and y1, y2 ∈
Rn, we define (ϕ ·A)(y1, y2) = (A◦ϕt)(y1, y2) = A(ϕty1, ϕ

ty2). Indeed, this notation coincides
with the action ϕAϕt in Ludwig [26, 30, 31] in the following way

ϕ · A =
∑

1≤i≤j≤n

aij(ϕei)⊗ (ϕej) =
∑

1≤i≤j≤n

aijϕ(ei ⊗ ej)ϕ
t = ϕAϕt.

Denote by [v1, . . . , vk] the convex hull of v1, . . . , vk ∈ Rn. A convex polytope is the convex
hull of finitely many points in Rn. Two basic classes of polytopes are the k-dimensional stan-
dard simplex T k = [0, e1, . . . , ek] and one of their (k−1)-dimensional facets T̃ k = [e1, . . . , ek].
Indeed, every polytope can be triangulated into simplices. We define a triangulation of
a k-dimensional polytope P into simplices as a set of k-dimensional simplices {T1, . . . , Tr}
which have pairwise disjoint interiors, with P = ∪Ti and with the property that for arbitrary
1 ≤ i1 < · · · < ij ≤ r the intersections Ti1 ∩ · · · ∩ Tij are again simplices.

We refer to [6, Chap. 7], [17] and [40, Chap. 6] for classical backgroud on valuations. Let
Qn be either Pn

0 or Pn and A be an abelian group. First, we have the inclusion-exclusion
principle (see [17] and [38, Theorem 3.1 and Lemma 3.3]).
Lemma 2.1. Let µ : Qn → A be a valuation. Then

µ(P1 ∪ · · · ∪ Pk) =
∑

∅̸=S⊆{1,2,...,k}

(−1)|S|−1µ(
∩
i∈S

Pi)

for all k ∈ N and P1, P2, . . . , Pk ∈ Qn with P1 ∪ · · · ∪ Pk ∈ Qn.
A valuation on Qn is called simple if it vanishes on every lower dimensional P ∈ Qn. Using

triangulations of polytopes, one can determine a simple valuation on Pn
0 by its value on n-

dimensional simplices with one vertex at the origin (see [38, Lemma 3.4]). Furthermore, since
these simplices are SL(n) images of dilated standard simplices, we only need to consider sT n

for s > 0. Similarly, it also suffices to consider sT̃ k’s for s > 0 and k = 1, . . . , n to determine
a valuation on the space of polytopes that do not contain the origin in their affine hull.

Next, we mention a series of triangulations that will be used several times in this paper.
Let λ ∈ (0, 1) and denote by H the hyperplane through the origin with the normal vector
(1− λ)e1 − λe2. Write H+ and H− for the two halfspaces bounded by H. This hyperplane
induces the series of triangulations of T i’s as well as T̃ i’s for i = 2, . . . , n. There are two
representations corresponding to these triangulations due to the following definitions.
Definition 2.1. For λ ∈ (0, 1), define the linear transform ϕ1 ∈ SL(n) by

ϕ1e1 = λe1 + (1− λ)e2, ϕ1e2 = e2, ϕ1en = en/λ, ϕ1ej = ej, where j ̸= 1, 2, n,

and ψ1 ∈ SL(n) by
ψ1e1 = e1, ψ1e2 = λe1 + (1− λ)e2, ψ1en = en/(1− λ), ψ1ej = ej, where j ̸= 1, 2, n.
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It is clear that T i ∩ H+ = ψ1T
i, T i ∩ H− = ϕ1T

i and T i ∩ H = ϕ1T
i−1. Similarly,

T̃ i ∩H+ = ψ1T̃
i, T̃ i ∩H− = ϕ1T̃

i and T̃ i ∩H = ϕ1T̃
i−1, for i = 2, . . . , n− 1.

Second, we consider the triangulation of sT n for s > 0.

Definition 2.2. For λ ∈ (0, 1) and s > 0, define the linear transform ϕ2 ∈ GL(n) by

ϕ2e1 = λe1 + (1− λ)e2, ϕ2e2 = e2, ϕ2ej = ej, where j = 3, . . . , n,

and ψ2 ∈ GL(n) by

ψ2e1 = e1, ψ2e2 = λe1 + (1− λ)e2, ψ2ej = ej, where j = 3, . . . , n.

It is clear that sT n∩H+ = ψ2sT
n, sT n∩H− = ϕ2sT

n and sT n∩H = ϕ2sT
n−1. Similarly,

sT̃ n ∩H+ = ψ2sT̃
n, sT̃ n ∩H− = ϕ2sT̃

n and sT̃ n ∩H = ϕ2sT̃
n−1.

Finally, we have several reduction steps for SL(n) equivariant functions towards the clas-
sification.

Lemma 2.2. Let µ : Pn
0 → Mn be an SL(n) equivariant function. Then, for k = 1, . . . , n,

the coefficients µ(T k)(ei, ei)’s are equal for all i = 1, . . . , k.

Proof. The case k = 1 is trivial. For k = 2, we consider σ1 ∈ SL(n) such that

σ1e1 = e2, σ1e2 = e1, σ1en = −en, σ1ej = ej, where j ̸= 1, 2, n.

Since σ1 fixes T 2, the SL(n) equivariance of µ gives

µ(T 2)(e1, e1) = µ(σ1T
2)(e1, e1) = µ(T 2)(σt

1e1, σ
t
1e1) = µ(T 2)(e2, e2).

Now we assume k ≥ 3. For l = 0, . . . , k − 3, consider the permutation θ1 such that

θ1el+1 = el+3, θ1el+2 = el+1, θ1el+3 = el+2, θ1ej = ej, where j ̸= l + 1, l + 2, l + 3.

Since θ1 fixes T k, the SL(n) equivariance of µ gives

µ(T k)(el+1, el+1) = µ(T k)(el+2, el+2) = µ(T k)(el+3, el+3).

Repeating the above for different l’s, we obtain the desired result.

Lemma 2.3. Let µ : Pn
0 → Mn be an SL(n) equivariant function. Then, for k = 2, . . . , n,

the coefficients µ(T k)(ei, ej)’s are equal for all 1 ≤ i < j ≤ k.

Proof. The case k = 2 is trivial. For k ≥ 3, we apply all the possible permutations θ1 defined
in Lemma 2.2 within e1, . . . , ek. Since these permutations fix T k, the SL(n) equivariance of
µ implies the lemma.
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Lemma 2.4. Let µ : Pn
0 → Mn be an SL(n) equivariant function. Then, for k = 1, . . . , n−1,

the coefficients µ(T k)(ei, ej) = 0 for all i = 1, . . . , k and j = k + 1, . . . , n.

Proof. For k = 1, . . . , n − 2 and k + 1 ≤ l1 < l2 ≤ n, we consider σ2 ∈ SL(n) such that σ2
reflects el1 and el2 , i.e.

σ2el1 = −el1 , σ2el2 = −el2 , σ2ep = ep, where p ̸= l1, l2.

Since σ2 fixes T k, the SL(n) equivariance of µ gives

µ(T k)(ei, el1) = µ(σ2T
k)(ei, el1) = µ(T k)(σt

2ei, σ
t
2el1)

= µ(T k)(ei,−el1) = −µ(T k)(ei, el1),

which implies µ(T k)(ei, el1) = 0, where i = 1, . . . , k. Repeating the above for different l1’s
and l2’s, we obtain the desired result in this case.

To see the case k = n − 1, we apply σ1 defined in Lemma 2.2. Similarly, since σ1 fixes
T n−1, the SL(n) equivariance of µ implies the lemma.

Lemma 2.5. Let µ : Pn
0 → Mn be an SL(n) equivariant function. Then, for k = 0, . . . , n−1,

the coefficients µ(T k)(ei, ei) = 0 for all i = k + 1, . . . , n.

Proof. For k = n− 1, we consider ρ1 ∈ SL(n) such that

ρ1en = en−1 + en, ρ1ej = ej, where j = 1, . . . , n− 1.

Since ρ1 fixes T n−1, the SL(n) equivariance of µ gives

µ(T n−1)(en−1, en) = µ(ρ1T
n−1)(en−1, en) = µ(T n−1)(ρt1en−1, ρ

t
1en)

= µ(T n−1)(en−1 + en, en) = µ(T n−1)(en−1, en) + µ(T n−1)(en, en),

which implies µ(T n−1)(en, en) = 0.
For k = n−2, we apply ρ1 again and similarly obtain µ(T n−2)(en, en) = 0. Now, consider

σ3 ∈ SL(n) such that

σ3en−1 = en, σ3en = −en−1, σ3ej = ej, where j = 1, . . . , n− 2.

Since σ3 fixes T n−2, the SL(n) equivariance of µ gives

µ(T n−2)(en−1, en−1) = µ(σ3T
n−2)(en−1, en−1) = µ(T n−2)(σt

3en−1, σ
t
3en−1)

= µ(T n−2)(−en,−en) = µ(T n−2)(en, en) = 0.

For k = 0, . . . , n − 3, we also apply ρ1 and similarly obtain µ(T k)(en, en) = 0. Next, we
use θ1 defined in Lemma 2.2 for different l = k, . . . , n−3. Similarly, since these permutations
fix T k, the SL(n) equivariance of µ implies the lemma.
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Lemma 2.6. Let µ : Pn
0 → Mn be an SL(n) equivariant function. Then, for k = 0, . . . , n−2,

the coefficients µ(T k)(ei, ej) = 0 for all k + 1 ≤ i < j ≤ n.

Proof. For k = n − 2, we apply ρ1 defined in Lemma 2.5 and similarly since ρ1 fixes T n−2,
the SL(n) equivariance of µ gives

µ(T n−2)(en−1, en−1) = µ(ρ1T
n−2)(en−1, en−1) = µ(T n−2)(ρt1en−1, ρ

t
1en−1)

= µ(T n−2)(en−1 + en, en−1 + en)

= µ(T n−2)(en−1, en−1) + 2µ(T n−2)(en−1, en) + µ(T n−2)(en, en).

Now, Lemma 2.5 implies µ(T n−2)(en−1, en) = 0.
For k = 0, . . . , n−3, we apply ρ1 as above again and similarly obtain µ(T k)(en−1, en) = 0.

Next, consider all the possible permutations θ1 defined in Lemma 2.2 within ek+1, . . . , en.
Similarly, since these permutations fix T k, the SL(n) equivariance of µ implies the lemma.

We remark that there are some similar results for T 1 in [34].

3 Characterizations on Pn
0

First, we consider sT 2 for s > 0 and obtain the following representation of such valuations.

Lemma 3.1. Let n ≥ 3, s > 0 and µ : Pn
0 → Mn be an SL(n) equivariant valuation. Then,

there is a constant c ∈ R such that µ(sT 2) = cs2(e1 ⊗ e1 + e2 ⊗ e2).

Proof. Due to Lemmas 2.2-2.6, it suffices to show the following. First, we use the triangula-
tion in Definition 2.1. Since µ is a valuation, we have

µ(T 2) + µ(ϕ1T
1) = µ(ϕ1T

2) + µ(ψ1T
2).

Then, the equivariance of µ gives

µ(T 2) + µ(T 1) ◦ ϕt
1 = µ(T 2) ◦ ϕt

1 + µ(T 2) ◦ ψt
1.

On one hand,

µ(T 2)(e1, e1) + µ(T 1)(λe1, λe1) = µ(T 2)(λe1, λe1) + µ(T 2)(e1 + λe2, e1 + λe2),

which implies

µ(T 2)(e1, e1)+λ
2µ(T 1)(e1, e1) = λ2µ(T 2)(e1, e1)+µ(T

2)(e1, e1)+2λµ(T 2)(e1, e2)+λ
2µ(T 2)(e2, e2).
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By Lemma 2.2, we get

λµ(T 1)(e1, e1) = 2λµ(T 2)(e1, e1) + 2µ(T 2)(e1, e2). (3.1)

On the other hand,

µ(T 2)(e1, e2)+µ(T
1)(λe1, (1−λ)e1+e2) = µ(T 2)(λe1, (1−λ)e1+e2)+µ(T 2)(e1+λe2, (1−λ)e2).

It follows from Lemma 2.4 that

µ(T 2)(e1, e2) + λ(1− λ)µ(T 1)(e1, e1)

=λ(1− λ)µ(T 2)(e1, e1) + λµ(T 2)(e1, e2) + (1− λ)µ(T 2)(e1, e2) + λ(1− λ)µ(T 2)(e2, e2).

By Lemma 2.2, we get
µ(T 1)(e1, e1) = 2µ(T 2)(e1, e1). (3.2)

Thus, equations (3.1) and (3.2) imply µ(T 2)(e1, e2) = 0.
Next, let s > 0 and consider ρ2 ∈ SL(n) such that

ρ2e1 = se1, ρ2e2 = se2, ρ2en = en/s
2, ρ2ej = ej, where j ̸= 1, 2, n.

Since ρ2T 2 = sT 2, the SL(n) equivariance of µ gives

µ(sT 2)(e1, e1) = µ(ρ2T
2)(e1, e1) = µ(T 2)(ρt2e1, ρ

t
2e1)

= µ(T 2)(se1, se1) = s2µ(T 2)(e1, e1).

Finally, we finish the proof by applying Lemma 2.2 again.

Next, we treat the case n = 3 and obtain the following characterization.

Lemma 3.2. Let µ : P3
0 → M3 be an SL(3) equivariant valuation. Then, there is a constant

c ∈ R such that
µ(P ) = cMP

for every P ∈ P3
0 .

Proof. Let s > 0. Due to Lemmas 2.2-2.6, it suffices to show that µ is simple, µ(sT 3)(e1, e1) =
2µ(sT 3)(e1, e2) and µ(sT 3) = s5µ(T 3) as the moment matrix satisfies those properties. We
use the triangulation in Definition 2.2. Since µ is a valuation, we have

µ(sT 3) + µ(ϕ2sT
2) = µ(ϕ2sT

3) + µ(ψ2sT
3).
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Note that both ϕ2/
3
√
λ and ψ2/

3
√
1− λ belong to SL(3). The SL(3) equivariance of µ gives

µ(sT 3) + µ(
3
√
λsT 2) ◦ (λ−

1
3ϕt

2) = µ(
3
√
λsT 3) ◦ (λ−

1
3ϕt

2) + µ(
3
√
1− λsT 3) ◦ ((1− λ)−

1
3ψt

2).

Replacing s by 3
√
s, we get

µ( 3
√
sT 3) + µ(

3
√
λsT 2) ◦ (λ−

1
3ϕt

2) = µ(
3
√
λsT 3) ◦ (λ−

1
3ϕt

2) + µ( 3
√

(1− λ)sT 3) ◦ ((1− λ)−
1
3ψt

2).

On one hand, Lemma 3.1 implies

µ( 3
√
sT 3)(e1, e3) = λ−

2
3µ(

3
√
λsT 3)(λe1, e3) + (1− λ)−

2
3µ( 3

√
(1− λ)sT 3)(e1 + λe2, e3).

It follows from Lemma 2.3 that

µ( 3
√
sT 3)(e1, e2) = λ

1
3µ(

3
√
λsT 3)(e1, e2) + (1 + λ)(1− λ)−

2
3µ( 3

√
(1− λ)sT 3)(e1, e2). (3.3)

On the other hand, Lemma 3.1 also implies

µ( 3
√
sT 3)(e2, e3) = λ−

2
3µ(

3
√
λsT 3)((1−λ)e1+e2, e3)+(1−λ)−

2
3µ( 3

√
(1− λ)sT 3)((1−λ)e2, e3).

It follows from Lemma 2.3 that

µ( 3
√
sT 3)(e1, e2) = (2− λ)λ−

2
3µ(

3
√
λsT 3)(e1, e2) + (1− λ)

1
3µ( 3

√
(1− λ)sT 3)(e1, e2). (3.4)

Thus, equations (3.3) and (3.4) imply

λ−
5
3µ(

3
√
λsT 3)(e1, e2) = (1− λ)−

5
3µ( 3

√
(1− λ)sT 3)(e1, e2).

Let a, b > 0. Setting s = a+ b and λ = a
a+b

we obtain

a−
5
3µ( 3

√
aT 3)(e1, e2) = b−

5
3µ(

3
√
bT 3)(e1, e2).

Hence,
µ(sT 3)(e1, e2) = s5µ(T 3)(e1, e2). (3.5)

Moreover, Lemma 3.1 similarly implies the following equations. First,

µ( 3
√
sT 3)(e1, e1) + µ( 3

√
sT 2)(λe1, λe1)

=λ−
2
3µ(

3
√
λsT 3)(λe1, λe1) + (1− λ)−

2
3µ( 3

√
(1− λ)sT 3)(e1 + λe2, e1 + λe2).
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It follows from equation (3.5) and Lemma 2.2 that

µ( 3
√
sT 3)(e1, e1) + λ2µ( 3

√
sT 2)(e1, e1)

=λ
4
3µ(

3
√
λsT 3)(e1, e1) + (1 + λ2)(1− λ)−

2
3µ( 3

√
(1− λ)sT 3)(e1, e1)

+ 2λ(1− λ)µ( 3
√
sT 3)(e1, e2).

(3.6)

Second,

µ( 3
√
sT 3)(e2, e2) + µ( 3

√
sT 2)((1− λ)e1 + e2, (1− λ)e1 + e2)

=λ−
2
3µ(

3
√
λsT 3)((1− λ)e1 + e2, (1− λ)e1 + e2) + (1− λ)−

2
3µ( 3

√
(1− λ)sT 3)((1− λ)e2, (1− λ)e2).

It follows from equation (3.5), Lemma 2.2 and Lemma 3.1 that

µ( 3
√
sT 3)(e1, e1) + (λ2 − 2λ+ 2)µ( 3

√
sT 2)(e1, e1)

=(λ2 − 2λ+ 2)λ−
2
3µ(

3
√
λsT 3)(e1, e1) + (1− λ)

4
3µ( 3

√
(1− λ)sT 3)(e1, e1)

+ 2λ(1− λ)µ( 3
√
sT 3)(e1, e2).

(3.7)

Next,

µ( 3
√
sT 3)(e1, e2) + µ( 3

√
sT 2)(λe1, (1− λ)e1 + e2)

=λ−
2
3µ(

3
√
λsT 3)(λe1, (1− λ)e1 + e2) + (1− λ)−

2
3µ( 3

√
(1− λ)sT 3)(e1 + λe2, (1− λ)e2).

It follows from equation (3.5), Lemma 2.2 and Lemma 3.1 that

λ(1− λ)µ( 3
√
sT 2)(e1, e1)

=(1− λ)λ
1
3µ(

3
√
λsT 3)(e1, e1) + λ(1− λ)

1
3µ( 3

√
(1− λ)sT 3)(e1, e1)

+ 2λ(λ− 1)µ( 3
√
sT 3)(e1, e2).

(3.8)

Thus, equations (3.6) and (3.7) imply

µ( 3
√
sT 2)(e1, e1) = λ−

2
3µ(

3
√
λsT 3)(e1, e1)− λ(1− λ)−

5
3µ( 3

√
(1− λ)sT 3)(e1, e1). (3.9)

Furthermore, equations (3.8) and (3.9) imply

(1− λ)−
5
3µ( 3

√
(1− λ)sT 3)(e1, e1) = 2µ( 3

√
sT 3)(e1, e2).

Hence,
µ(sT 3)(e1, e1) = 2s5µ(T 3)(e1, e2). (3.10)

Putting (3.10) back to (3.9) we get µ(sT 2)(e1, e1) = 0. By Lemma 2.2 and Lemma 3.1, we
obtain µ(sT 2) = 0. Finally, (3.2) and Lemmas 2.4-2.6 imply µ(T 1) = 0.
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Now, we assume n ≥ 4 and obtain the following Lemma.

Lemma 3.3. Let n ≥ 4 and µ : Pn
0 → Mn be an SL(n) equivariant valuation. Then, µ is

simple.

Proof. Due to Lemmas 2.2-2.6, it suffices to show that µ(T k)(e1, e1) = µ(T k)(e1, e2) = 0 for
k = 1, . . . , n− 1. First, consider T 3. We use the triangulation in Definition 2.1. Since µ is a
valuation, we have

µ(T 3) + µ(ϕ1T
2) = µ(ϕ1T

3) + µ(ψ1T
3).

Then, the equivariance of µ gives

µ(T 3) + µ(T 2) ◦ ϕt
1 = µ(T 3) ◦ ϕt

1 + µ(T 3) ◦ ψt
1.

It follows from Lemma 3.1 that

µ(T 3)(e1, e3) = µ(T 3)(λe1, e3) + µ(T 3)(e1 + λe2, e3).

Thus, Lemma 2.3 imply
µ(T 3)(e1, e2) = 0. (3.11)

Moreover, we similarly have, on one hand,

µ(T 3)(e1, e1) + µ(T 2)(λe1, λe1) = µ(T 3)(λe1, λe1) + µ(T 3)(e1 + λe2, e1 + λe2).

Then, equation (3.11) and Lemma 2.2 imply

µ(T 2)(e1, e1) = 2µ(T 3)(e1, e1). (3.12)

On the other hand,

µ(T 3)(e2, e2) + µ(T 2)((1− λ)e1 + e2, (1− λ)e1 + e2)

=µ(T 3)((1− λ)e1 + e2, (1− λ)e1 + e2) + µ(T 3)((1− λ)e2, (1− λ)e2).

It follows from equation (3.11), Lemma 2.2 and Lemma 3.1 that

µ(T 3)(e1, e1) = 0.

Therefore, using equations (3.2) and (3.12), we obtain

µ(T 1) = µ(T 2) = µ(T 3) = 0.

Now, assume n ≥ 5 and
µ(T k−1) = 0, (3.13)
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for k = 4, . . . , n − 1. We consider T k and use the triangulation in Definition 2.1. Since µ is
a valuation, we have

µ(T k) + µ(ϕ1T
k−1) = µ(ϕ1T

k) + µ(ψ1T
k).

Then, equation (3.13) and the equivariance of µ give

µ(T k) = µ(T k) ◦ ϕt
1 + µ(T k) ◦ ψt

1.

On one hand,
µ(T k)(e1, e3) = µ(T k)(λe1, e3) + µ(T k)(e1 + λe2, e3).

It follows from Lemma 2.3 that
µ(T k)(e1, e2) = 0. (3.14)

On the other hand,

µ(T k)(e1, e1) = µ(T k)(λe1, λe1) + µ(T k)(e1 + λe2, e1 + λe2).

It follows from equation (3.14) and Lemma 2.2 that

µ(T k)(e1, e1) = 0.

Hence, we obtain µ(T k) = 0. Finally, we use the induction on k and finish the proof.

Finally, we finish the proof of the classification.

Proof of Theorem 1.4. On one hand, it is clear that the moment matrix operator is an SL(n)
equivariant valuation. On the other hand, since the case n = 3 is already included in Lemma
3.2, it remains to consider n ≥ 4. Let s > 0. Due to Lemmas 2.2-2.6, it suffices to show that
µ(sT n) = sn+2µ(T n) and µ(T n)(e1, e1) = 2µ(T n)(e1, e2) as the moment matrix satisfies those
properties. We use the triangulation in Definition 2.2. Since µ is a valuation, we have

µ(sT n) + µ(ϕ2sT
n−1) = µ(ϕ2sT

n) + µ(ψ2sT
n).

Then, Lemma 3.3 implies

µ(sT n) = µ(ϕ2sT
n) + µ(ψ2sT

n).

Note that both ϕ2/
n
√
λ and ψ2/

n
√
1− λ belong to SL(n). The SL(n) equivariance of µ gives

µ(sT n) = µ(
n
√
λsT n) ◦ (λ−

1
nϕt

2) + µ(
n
√
1− λsT n) ◦ ((1− λ)−

1
nψt

2).

Replace s by n
√
s and we have

µ( n
√
sT n) = µ(

n
√
λsT n) ◦ (λ−

1
nϕt

2) + µ( n
√

(1− λ)sT n) ◦ ((1− λ)−
1
nψt

2).
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On one hand,

µ( n
√
sT n)(e1, e3) = λ−

2
nµ(

n
√
λsT n)(λe1, e3) + (1− λ)−

2
nµ( n

√
(1− λ)sT n)(e1 + λe2, e3).

It follows from Lemma 2.3 that

µ( n
√
sT n)(e1, e2) = λ1−

2
nµ(

n
√
λsT n)(e1, e2)+(1+λ)(1−λ)−

2
nµ( n

√
(1− λ)sT n)(e1, e2). (3.15)

On the other hand,

µ( n
√
sT n)(e2, e3) = λ−

2
nµ(

n
√
λsT n)((1−λ)e1+e2, e3)+(1−λ)−

2
nµ( n

√
(1− λ)sT n)((1−λ)e2, e3).

It follows from Lemma 2.3 that

µ( n
√
sT n)(e1, e2) = (2−λ)λ−

2
nµ(

n
√
λsT n)(e1, e2)+(1−λ)1−

2
nµ( n

√
(1− λ)sT n)(e1, e2). (3.16)

Thus, equations (3.15) and (3.16) imply

λ−1− 2
nµ(

n
√
λsT n)(e1, e2) = (1− λ)−1− 2

nµ( n
√
(1− λ)sT n)(e1, e2).

Hence,
µ(sT n)(e1, e2) = sn+2µ(T n)(e1, e2). (3.17)

Moreover, we similarly have the following equations. First,

µ( n
√
sT n)(e1, e1) = λ−

2
nµ(

n
√
λsT n)(λe1, λe1) + (1− λ)−

2
nµ( n

√
(1− λ)sT n)(e1 + λe2, e1 + λe2).

It follows from equation (3.17) and Lemma 2.2 that

µ( n
√
sT n)(e1, e1) =λ

2− 2
nµ(

n
√
λsT n)(e1, e1) + (1 + λ2)(1− λ)−

2
nµ( n

√
(1− λ)sT n)(e1, e1)

+ 2λ(1− λ)µ( n
√
sT n)(e1, e2).

(3.18)

Second,

µ( n
√
sT n)(e2, e2) =λ

− 2
nµ(

n
√
λsT n)((1− λ)e1 + e2, (1− λ)e1 + e2)

+ (1− λ)−
2
nµ( n

√
(1− λ)sT n)((1− λ)e2, (1− λ)e2).

It follows from equation (3.17) and Lemma 2.2 that

µ( n
√
sT n)(e1, e1) =(λ2 − 2λ+ 2)λ−

2
nµ(

n
√
λsT n)(e1, e1) + (1− λ)2−

2
nµ( n

√
(1− λ)sT n)(e1, e1)

+ 2λ(1− λ)µ( n
√
sT n)(e1, e2).

(3.19)
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Thus, equations (3.18) and (3.19) imply

λ−1− 2
nµ(

n
√
λsT n)(e1, e1) = (1− λ)−1− 2

nµ( n
√
(1− λ)sT n)(e1, e1).

Hence,
µ(sT n)(e1, e1) = sn+2µ(T n)(e1, e1). (3.20)

Finally, put (3.17) and (3.20) into (3.18) and we obtain µ(T n)(e1, e1) = 2µ(T n)(e1, e2). This
completes the proof.

4 Characterizations on Pn

Since all the steps also work on T̃ k’s for k = 1, . . . , n, including reductions in Lemmas 2.2-2.6
and triangulations in Definitions 2.1 and 2.2, we similarly obtain the following Lemma.

Lemma 4.1. Let n ≥ 3 and µ : Pn → Mn be an SL(n) equivariant valuation. Then,
µ(P ) = 0 for every P ∈ Pn with dimP ≤ n− 2 and 0 /∈ aff P .

Next, we determine such valuations on every P ∈ Pn with dimP ≤ n− 1 and 0 ∈ aff P .

Lemma 4.2. Let n ≥ 3 and µ : Pn → Mn be an SL(n) equivariant valuation. Then,
µ(P ) = 0 for every P ∈ Pn with dimP ≤ n− 1 and 0 ∈ aff P .

Proof. Let P ∈ Pn with dimP ≤ n − 1 and 0 ∈ aff P . The case 0 ∈ P is already included
in Theorem 1.4. It suffices to consider such polytopes that do not contain the origin. Let
F1, . . . , Fr be the facets of P visible from the origin, i.e. P ∩ relint [0, Fi] = ∅. Since µ is a
valuation, the inclusion-exclusion principle yields

0 =µ([0, P ])

=µ(P ) +
r∑

i=1

µ([0, Fi]︸ ︷︷ ︸
∈Pn

0

)−
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ]︸ ︷︷ ︸
∈Pn

0

)

−
r∑

i=1

µ([0, Fi] ∩ P︸ ︷︷ ︸
=Fi

) +
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ] ∩ P︸ ︷︷ ︸
dim≤n−3

)

=µ(P ),

where the steps follow from Theorem 1.4 and Lemma 4.1.

Now, we obtain the following characterization for (n− 1)-dimensional polytopes that do
not contain the origin in their affine hull.
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Lemma 4.3. Let n ≥ 3 and µ : Pn → Mn be an SL(n) equivariant valuation. Then, there is
a constant c ∈ R such that

µ(P ) = cM[0, P ]

for every P ∈ Pn with dimP = n− 1 and 0 /∈ aff P .
Proof. First, we consider sT̃ n for s > 0 and use the triangulation in Definition 2.2. Since µ
is a valuation, we have

µ(sT̃ n) + µ(ϕ2sT̃
n−1) = µ(ϕ2sT̃

n) + µ(ψ2sT̃
n).

Similar to Theorem 1.4, we obtain that there exists a constant c ∈ R such that

µ(sT̃ n) = cM[0, sT̃ n]. (4.1)

Next, let P be an (n − 1)-dimensional polytope with 0 /∈ aff P . Triangulate P into
simplices T1, . . . , Tr. Using the inclusion-exclusion principle, (4.1) and Lemmas 4.1-4.2, we
obtain

µ(P ) =
r∑

i=1

µ(Ti) = cM[0, P ].

Finally, we finish the proof of the classification on Pn.

Proof of Theorem 1.5. Let P ∈ Pn. On one hand, it is clear that MP and M[0, P ] are SL(n)
equivariant valuations. On the other hand, due to Theorem 1.4, Lemma 3.3 and Lemmas
4.2-4.3, it remains to consider full dimensional polytopes. Let F1, . . . , Fr be the facets of P
visible from the origin. Since µ is a valuation, the inclusion-exclusion principle yields that
there are constants c̃1, c2 ∈ R such that

c̃1M[0, P ] =µ([0, P ])

=µ(P ) +
r∑

i=1

µ([0, Fi])−
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ]︸ ︷︷ ︸
∈Pn

0

)

−
r∑

i=1

µ([0, Fi] ∩ P︸ ︷︷ ︸
=Fi

) +
r∑

j=2

(−1)j
∑

1≤i1<···<ij≤r

µ([0, Fi1 ] ∩ · · · ∩ [0, Fij ] ∩ P︸ ︷︷ ︸
dim≤n−2

)

=µ(P ) +
r∑

i=1

µ([0, Fi])−
r∑

i=1

µ(Fi)

=µ(P ) + c̃1

r∑
i=1

M[0, Fi]− c2

r∑
i=1

M[0, Fi],
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where the steps follow from Theorem 1.4, Lemma 4.1 and Lemma 4.3. Finally, we finish the
proof by setting c1 = c̃1 − c2.
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