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Abstract: In this paper, we introduce the concept of complex L, mixed projection bodies by giving its
support function. Then, we establish the complex L, mixed Petty projection inequalities. Finally, the
monotonicity for complex L, mixed projection bodies is obtained.
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0 Introduction

In the late 19th century, projection bodies have been extensively studied. The important properties
of projection bodies have significant applications not only in convex geometry, but also in other aspects
such as geometric tomography, stochastic geometry, optimization and functional analysis!'l. Let K"
denote the set of convex bodies (non-empty compact convex subsets in R™). In [2,3], it states that,
for K € K™, Minkowski introduced the projection body IIK as the convex body, which has support

function )

b (u) = 2/ |- v|dS(K,v),
S‘n,—l

where, S(K, ) is the surface area measure of K € ™. There are also some important inequalities about
projection bodies such as the Petty projection inequality!®l. The Petty projection inequality shows that
ellipsoids precisely have polar projection bodies of maximal volume in all convex bodies of given volume.

Recently, complex convex bodies have gradually attracted increasing attention!*°!. Some classical
convex geometric concepts in real vector spaces were generalized to complex cases such as complex
projection bodies!?), complex difference bodies* and complex intersection bodies(”. A recent important
result by WANG et all®! has introduced complex L, projection bodies, which uses the properties of the
asymmetric L, zonoid (see [9] for related interesting work).
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Let K£(C™) denote the set of convex bodies in C*, and Ky(C™) represent the set of convex bodies in
C™ that contain the origin in their interiors. B denotes the unit ball in C”, and its surface is denoted
by S™. If there exists a finite even Borel measure u, ¢ on the unit sphere S' such that

he(u)? = /Sl(ﬂ?[cu g v))hdup,c(v),u €S,

then a convex body C € K(C) is called an asymmetric L, zonoid. Let p > 1, K € Ko(C"), C € K(C)
is an asymmetric L, zonoid and Cu = {cu : ¢ € C}, then the asymmetric complex L, projection body
H;CK as the convex body, which has the support function

i (0 = 20V (K Cu) = [ [ (Rlew s ) (008, (K. o), 1)

for every u € S", where V, is the L,-mixed volume, -y denotes the Hermitian inner product on C”,
Sp(K,-) denotes the L, surface area measure of K on S", and p, ¢ is a finite even Borel measure on
the unit sphere S' (see [8] and section 2 for definitions).

Forp>1, K, L € Ko(C") and «, 8 > 0, the L, Minkowski combination a - K +, - L is defined
by h® 4B = ahh. + phr”, where the relationship between the L, Minkowski and the usual scalar

multiplication is o - K = ar KB, The complex L, projection bodies, HQCK , are defined by
ID K =AT K+, (1-X)- 1L K, (2)

for every A € [0,1], where IT oK = II} (—K). Then, by making full use of Haberl’s method in [10],

WANG et all®l established the Petty projection inequality about the general complex L, projection.
The results can be stated as follows:

Theorem 1 & Let p > 1 and K € Ko(C"). If C € K(C) be an asymmetric L, zonoid which
satisfies dim C' > 1, then for every A € [0, 1], we have

V(K)7 WL EK) < V(B)Y V(L B),
where, H;\”EK is the polar body of H;\,CK . With equality, if and only if K is an origin-symmetric ellipsoid
when dim C' = 1, and with equality, if and only if K is an origin-symmetric Hermitian ellipsoid, when
dim C = 2.

Mixed projection bodies are related to ordinary projection bodies in the same way that mixed vol-
umes are related to ordinary volume. In [3], it states that mixed projection bodies II( K7, Ko, ..., K, 1)
first appeared in the work of Stss. For K, Ks,..., K, 1 € K™, II(K;, Ka, ..., K, _1) are defined as the
convex bodies with the support function

1
hii(k, Ko, K1) (W) = / lu - v|dS(Ky, Ka, ..., Koy, 0),
Sn—l

2
for every u € S"~t. For K, Ks,...,K,_i_1 = K and K,,_;, K,,_i41,...,K,_1 = B, the mixed projec-
tion body II(K;, Ko, ..., K,_1) is usually written as I, K.
In [11], WAN et al gave the proof of the Petty projection inequality and the monotonicity for the
general L, mixed projection bodies in R™. In this paper, we extend these results to C".

1 Preliminaries

For a complex number ¢ € C, let ¢ denote its complex conjugate and |c| for its norm. Write -y for
the Hermitian inner product on C", i.e. x -y = z*y for all x,y € C", where z* denote the conjugate



transpose of z. Let B stand for the complex unit ball {¢ € C" : ¢-y ¢ < 1}, and S™ its sphere. Use ¢ to
denote the canonical isomorphism between C" (viewed as a real vector space) and R*", i.e.,

uc) = Rlar], Rea], - . ., Rlen], Sla], Sez], - .., Slen]), ceCh,

where, R,  are the real and imaginary part respectively. Note that R[x -y y| = vz -1y for all x,y € C™,
where the inner product on the right hand side is the standard Euclidean inner product on R?". The
volume of the unit ball in C™ is denoted by wa,.

Let K € K(C™). K is called an origin-symmetric ellipsoid, if there exists some positive definite
symmetric matrix ¢ € GL(2n,R) such that K = {z € C" : 1x-¢wx < 1}. K is called an origin-symmetric
Hermitian ellipsoid, if K = {z € C" : -y &x < 1}, for a positive definite Hermitian matrix £ € GL(n, C).

If K is a nonempty set in C", the polar set of K, K* is defined by

K'={zeC":Rz-py] <1lyec K}

If K € Ko(C™), then K* is called polar body and K* € Ko(C™). The radial function px = p(K,") :
C"\ {0} — [0, 00), of a compact star-shaped (about the orgin) K C C", is defined by px (z) = max{\ >
0: Az € K}. Moreover, on C"\ {0}, we have px- = hy'. If px is positive and continuous, then K is
called a star body (about the origin). We write S(C™) for the set of star bodies in C".

The following results follow immediately from the real counterparts since all the quantities (vol-
ume, L, mixed volume, L, surface area measure, support function) are compatible with the canonical

isomorphism ¢. In [12], the dual L, mixed volume V_, (K, L) is defined by

VKoL) = o [ e, 3)
2n Jsn
where, o stands for the push forward with respect to :=! of H?"~! on the (2n—1)-dimensional Euclidean
unit sphere.
In [8], authors introduced the notion of the complex L, moment body. Let p > 1, K € Ky(C")
and C € K(C) be an asymmetric L, zonoid. The asymmetric complex L, moment body M:;CK is the
convex body with the support function

gl =2 [ heeyar =5 [ [ lew s o i eeaotv)

for all u € S”. The complex L, moment bodies M) K are defined by
My oK =XA-M{ K+, (1-))-M, K, (4)

for every A € [0,1], where, M o K = M (- K).
For K € K(C") and i =0,1,...,2n — 1, the quermassintegrals, W;(K), of K are defined by

L / (I u)dS (K, ).

LUTWAK™! introduced the notion of L, mixed quermassintegrals. Let p > 1,7=0,1,...,2n—1.
For K,L € Ky(C"), the integral represention of the L, mixed quermassintegrals W, ;(K, L) of K and
Lis

1
Wil L) = o / W (L, u)dS, (K, u). (5)
The integral represention of the L, mixed volume V, (K, L) is defined by [*%]
1
V(E.L) = o [ WS, (K w). (6)



2 The complex L, mixed Petty projection inequalities

To start with, the following definitions, theorems and lemmas are needed.

Definition 1 Let p > 1,i=0,1,...,2n — 1 and K € Kz(C"). If C € K£(C) is an asymmetric L,
zonoid, then the asymmetric complex L, mixed projection body H;C)iK is the convex body with the
support function

P (0 = 2000, (K. Co) = | / (Rlew - o]} c(€)dS,i (K, v), (7)

for every u € S”, where, the positive Borel measure S, ; (K, -) on S" is absolutely continuous with respect
to S;(K, ), and has Radon-Nikodym derivative

dsS,.:(K,")

dSl(K,) = h(Kf)lip' (8)

The complex L, mixed projection bodies H1’>7C7iK are defined by
H;\,C,iK =A- H;,CJ‘K +p (1 =A) 1L, o, K, (9)
for every A € [0,1], where 1L ;K = H;CJ(—K).

Theorem 2 & Let p > 1 and K € Ko(C"). If C € K(C) be an asymmetric L, zonoid which
satisfies dim C' > 1, then for every A € [0, 1], we have

V(K)" 7 T'V(Mp oK) > V(B)”# T'V(M; o B)

with equality, if and only if K is an origin-symmetric ellipsoid when dim C' = 1, and with equality, if
and only if K is an origin-symmetric Hermitian ellipsoid, when dim C' = 2.

Theorem 3 ¥ Let K, L € Ko(C"), p > 1and 0 < i < n. Then, W, ;(K, L)~ > W;(K)" " ~"W;(L)?
with equality, if and only if K and L are dilations.

Theorem 4 M Let K,L € K, p>1,0<i<n,n—i#p If W,,(K,Q)=W,.(L,Q), for any
Q € K7, then K = L.

Lemma 1 M Let 0 < i < n. If K € K", then W;(K) > wfV(K)% with equality, if and only if
K is a ball.

Lemma 2 Let K € Ko(C"), L € S(C™). For 0 <i < 2n,p>1, A €0,1], then

2
2n+p

Whp.i(K, M;,CL) = V(L sz‘K)

3

Proof From (5), (3), (4), (7) and Fubini theorem, we have

1 2
20 2n+p

n 2 17 *
Wi (K, M L) /S g @)L () Pdo(0) = SV (LI K).

n+p
Therefore, from (9) and (4), we conclude the desired result.

Lemma 3 Let p > 1. For an asymmetric L, zonoid C € K(C), I}, maps a symmetric ball
about the origin to a symmetric ball about the origin.



Proof From (8), we have
S,i(rB,v) = r'"PS;(rB,v) = r' P*S(rB,v) = r*" P*ig(v),

for every r > 0,v € S™. Plug this into (7) to get

by ey (@) =20 / ) /S (Rlew -y o)) dpy,c(e)do(w), (10)

for every u € S™. Now, we fix some uy € S” and recall Cu = {cu : ¢ € C}. For every u € S", there is a
¢ € SU(n) satisfies ¢, ug = u, then Cu = ¢,Cug. Substituting this into (10) gives

g o @ =77 [ [ (Rl o G50 (o).

Since o is SU(n)-invariant and dim C' > 0, the right hand is independent from u and greater than
zero. Therefore, Hp c.i(rB) is a symmetric ball about the origin, and Hp c; maps a symmetric ball
about the origin to a symmetric ball about the origin.

Finally, by the definition of H;,C,i and the proof above, we conclude this lemma.

Lemma 4 B Let p > 1. For an asymmetric L, zonoid C € K(C), M,  has the same conclusion
of lemma 3.

2.1 The Petty projection inequality for complex L, mixed projection body

In this part, we establish the Petty projection inequality for complex L, mixed projection body.

Theorem 5 Let 1 <p<2n—14,0<i<2n—1. If K € Ko(C") is smooth and C' € K(C) be an
asymmetric L, zonoid which satisfies dim C' > 1, then

e M A% 2n—i 2 P o %
w3y Wi(K) V(oK) < <2n+p> 1o g, (11)

for every A € [0,1],where rc > 0 such that MZQ\,CB = r¢B. Equality holds if and only if K is an
origin-symmetric ball.

Proof From lemma 2, taking L = Hp oK, we get

2
2n+p

V(I K) = Wy (KM 15 K).

By using theorem 3 and lemma 1, we have

2 A,k ﬁ A A,k 2
2n+pV(Hp,Cz )>W(K) 2n E ( Win V(Mp,CHp,C,iK)

i b
PO ) Tn—i ,

Next by theorem 2, lemma 3 and lemma 4, when taking M;}’CB = rc B, we obtain

P
2

n n—1 )\ n
S 2 Wl WE) VI ) ok

Raising both sides of the inequality to the power of (2n — i)/p, we obtain

2n—i

2n—i— 2n—i 2 P . 2n—i
n”r 4 A,k —2n+1 P
( ) V<Hp C, ZK) n (2n ¥+ p> TCQ * Wop -

Finally, according to the conditions of the three equalities in theorem 3, lemma 1 and theorem 2,
combining with lemma 3, equality holds in (11), if and only if K is a symmetric ball about the origin.



2.2 The monotonicity of the complex L, mixed projection bodies

In this part, we give the monotonicity of the complex L, mixed projection body. In the following,
A;‘”g denotes the set of all complex L,, projection bodies.

Lemma 5 Let p > 1,0 < i < 2n. If K, L € Ky(C™), then for every X € [0,1], we have
Wp,i(Laﬂz,cK) = %(Kv H;);\,C,iL)‘ (12)
Proof From (1), (7), (5), (6) and Fubini theorem, we get

1 %
Wosl LI K) = oo [ g (0PdS,(K.0) = V(I ).

Applying (2) and (9), we conclude the desired result.

Theorem 6 Let K,L € Ko(C"), p > 1, 0 <4 < 2n. For every A € [0,1], if I} o, K C II) &, L,
then
Wp,i<K) Q) S Wp,i(L7Q>7 (13)

for any Q € A;g Equality holds if and only if K = L.

Proof Since @) € A;:g, there is M € Ko(C") such that Q = II) M. From (12) and the integral
representation of the L, mixed volume, using the condition IL} . K C I -, L, we get

Wyi(L, Q) _ Wopi(L, I3 M) V(M I} o, L) [o, WP (I o L, u)dS, (M, )

= > 1.
Wpil K, Q) Wyi(K I M) V(MR oK) g, he (11 ¢ K, u)d S, (M )

Thus, we get (13). According to theorem 4, equality holds in (13), if and only if K = L.

Theorem 7 Let p>1,0<i<2n, K € Ko(C"), L € A;:g, and 2n — i # p. For every A € [0, 1], if
ID o, K CII) o, L, then
Wi(K) > W;(L), for 0<2n—1i<p (14)

and

Equalities hold in (14) and (15) if and only if K = L.

Proof For L € Ag:g, replacing () with L in theorem 6, from theorem 3, then

2n—p—1i

Wi(L) > W, (K, L) > Wi(K) 557 Wy(L) ™.

Therefore, under the restriction of 0 < 2n —i < p, W;(K) > W;(L) holds. On the other hand,
when 2n — i > p, W;(K) < W;(L) holds. Together with the conditions of the two equlities in theorem
6 and theorem 3, we get the equalities hold in (14) and (15), if and only if K = L.
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