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Abstract: In this paper, we introduce the concept of complex Lp mixed projection bodies by giving its
support function. Then, we establish the complex Lp mixed Petty projection inequalities. Finally, the
monotonicity for complex Lp mixed projection bodies is obtained.
Key words: complex Lp projection bodies; mixed projection bodies; Petty projection inequality; mono-
tonicity
CLC number: O186.5

复 Lp 混合 Petty 投影不等式
马 丹, 施孙平, 徐文帅

(上海师范大学 数理学院, 上海 200234)

摘 要: 通过支撑函数引入了复 Lp 混合投影体的概念. 在此基础上, 建立了复 Lp 混合 Petty 投影不等式,
得到了复 Lp 混合投影体的单调性.
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0 Introduction
In the late 19th century, projection bodies have been extensively studied. The important properties

of projection bodies have significant applications not only in convex geometry, but also in other aspects
such as geometric tomography, stochastic geometry, optimization and functional analysis[1]. Let Kn

denote the set of convex bodies (non-empty compact convex subsets in Rn). In [2, 3], it states that,
for K ∈ Kn, Minkowski introduced the projection body ΠK as the convex body, which has support
function

hΠK(u) =
1

2

∫
Sn−1

|u · v|dS(K, v),

where, S(K, ·) is the surface area measure of K ∈ Kn. There are also some important inequalities about
projection bodies such as the Petty projection inequality[3]. The Petty projection inequality shows that
ellipsoids precisely have polar projection bodies of maximal volume in all convex bodies of given volume.

Recently, complex convex bodies have gradually attracted increasing attention[4,5]. Some classical
convex geometric concepts in real vector spaces were generalized to complex cases such as complex
projection bodies[6], complex difference bodies[4] and complex intersection bodies[7]. A recent important
result by WANG et al[8] has introduced complex Lp projection bodies, which uses the properties of the
asymmetric Lp zonoid (see [9] for related interesting work).
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Let K(Cn) denote the set of convex bodies in Cn, and K0(Cn) represent the set of convex bodies in
Cn that contain the origin in their interiors. B denotes the unit ball in Cn, and its surface is denoted
by Sn. If there exists a finite even Borel measure µp,C on the unit sphere S1 such that

hC(u)
p =

∫
S1
(ℜ[cu ·H v])p+dµp,C(v), u ∈ S1,

then a convex body C ∈ K(C) is called an asymmetric Lp zonoid. Let p ≥ 1, K ∈ K0(Cn), C ∈ K(C)
is an asymmetric Lp zonoid and Cu = {cu : c ∈ C}, then the asymmetric complex Lp projection body
Π+

p,CK as the convex body, which has the support function

hΠ+
p,CK(u)p = 2nVp(K,Cu) =

∫
Sn

∫
S1
(ℜ[cu ·H v])p+dµp,C(c)dSp(K, v), (1)

for every u ∈ Sn, where Vp is the Lp-mixed volume, ·H denotes the Hermitian inner product on Cn,
Sp(K, ·) denotes the Lp surface area measure of K on Sn, and µp,C is a finite even Borel measure on
the unit sphere S1 (see [8] and section 2 for definitions).

For p ≥ 1, K, L ∈ K0(Cn) and α, β ≥ 0, the Lp Minkowski combination α ·K +p β · L is defined
by hp

α·K+pβ·L = αhp
K + βhL

p, where the relationship between the Lp Minkowski and the usual scalar
multiplication is α ·K = α

1
pK [3]. The complex Lp projection bodies, Πλ

p,CK, are defined by

Πλ
p,CK = λ ·Π+

p,CK +p (1− λ) ·Π−
p,CK, (2)

for every λ ∈ [0, 1], where Π−
p,CK = Π+

p,C(−K). Then, by making full use of Haberl’s method in [10],
WANG et al[8] established the Petty projection inequality about the general complex Lp projection.
The results can be stated as follows:

Theorem 1 [8] Let p > 1 and K ∈ K0(Cn). If C ∈ K(C) be an asymmetric Lp zonoid which
satisfies dimC ≥ 1, then for every λ ∈ [0, 1], we have

V (K)
2n
p −1V (Πλ,∗

p,CK) ≤ V (B)
2n
p −1V (Πλ,∗

p,CB),

where, Πλ,∗
p,CK is the polar body of Πλ

p,CK. With equality, if and only if K is an origin-symmetric ellipsoid
when dimC = 1, and with equality, if and only if K is an origin-symmetric Hermitian ellipsoid, when
dimC = 2.

Mixed projection bodies are related to ordinary projection bodies in the same way that mixed vol-
umes are related to ordinary volume. In [3], it states that mixed projection bodies Π(K1,K2, . . . ,Kn−1)
first appeared in the work of Süss. For K1,K2, . . . ,Kn−1 ∈ Kn, Π(K1,K2, . . . ,Kn−1) are defined as the
convex bodies with the support function

hΠ(K1,K2,...,Kn−1)(u) =
1

2

∫
Sn−1

|u · v|dS(K1,K2, . . . ,Kn−1, v),

for every u ∈ Sn−1. For K1,K2, . . . ,Kn−i−1 = K and Kn−i,Kn−i+1, . . . ,Kn−1 = B, the mixed projec-
tion body Π(K1,K2, . . . ,Kn−1) is usually written as ΠiK.

In [11], WAN et al gave the proof of the Petty projection inequality and the monotonicity for the
general Lp mixed projection bodies in Rn. In this paper, we extend these results to Cn.

1 Preliminaries
For a complex number c ∈ C, let c denote its complex conjugate and |c| for its norm. Write ·H for

the Hermitian inner product on Cn, i.e. x ·H y = x∗y for all x, y ∈ Cn, where x∗ denote the conjugate
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transpose of x. Let B stand for the complex unit ball {c ∈ Cn : c ·H c ≤ 1}, and Sn its sphere. Use ι to
denote the canonical isomorphism between Cn (viewed as a real vector space) and R2n, i.e.,

ι(c) = (ℜ[c1],ℜ[c2], . . . ,ℜ[cn],ℑ[c1],ℑ[c2], . . . ,ℑ[cn]), c ∈ Cn,

where, ℜ, ℑ are the real and imaginary part respectively. Note that ℜ[x ·H y] = ιx · ιy for all x, y ∈ Cn,
where the inner product on the right hand side is the standard Euclidean inner product on R2n. The
volume of the unit ball in Cn is denoted by ω2n.

Let K ∈ K(Cn). K is called an origin-symmetric ellipsoid, if there exists some positive definite
symmetric matrix ϕ ∈ GL(2n,R) such that K = {x ∈ Cn : ιx ·ϕιx ≤ 1}. K is called an origin-symmetric
Hermitian ellipsoid, if K = {x ∈ Cn : x·H ξx ≤ 1}, for a positive definite Hermitian matrix ξ ∈ GL(n,C).

If K is a nonempty set in Cn, the polar set of K, K∗ is defined by

K∗ = {x ∈ Cn : ℜ[x ·H y] ≤ 1, y ∈ K}.

If K ∈ K0(Cn), then K∗ is called polar body and K∗ ∈ K0(Cn). The radial function ρK = ρ(K, ·) :
Cn \{0} → [0,∞), of a compact star-shaped (about the orgin) K ⊂ Cn, is defined by ρK(x) = max{λ ≥
0 : λx ∈ K}. Moreover, on Cn \ {0}, we have ρK∗ = h−1

K . If ρK is positive and continuous, then K is
called a star body (about the origin). We write S(Cn) for the set of star bodies in Cn.

The following results follow immediately from the real counterparts since all the quantities (vol-
ume, Lp mixed volume, Lp surface area measure, support function) are compatible with the canonical
isomorphism ι. In [12], the dual Lp mixed volume Ṽ−p(K,L) is defined by

Ṽ−p(K,L) =
1

2n

∫
Sn

ρ2n+p
K ρ−p

L dσ, (3)

where, σ stands for the push forward with respect to ι−1 of H2n−1 on the (2n−1)-dimensional Euclidean
unit sphere.

In [8], authors introduced the notion of the complex Lp moment body. Let p ≥ 1, K ∈ K0(Cn)
and C ∈ K(C) be an asymmetric Lp zonoid. The asymmetric complex Lp moment body M+

p,CK is the
convex body with the support function

hM+
p,CK(u)p = 2

∫
K

hCu(x)
pdx =

2

2n+ p

∫
Sn

∫
S1
(ℜ[cu ·H v])p+ρK(v)2n+pdµp,C(c)dσ(v),

for all u ∈ Sn. The complex Lp moment bodies Mλ
p,CK are defined by

Mλ
p,CK = λ · M+

p,CK +p (1− λ) · M−
p,CK, (4)

for every λ ∈ [0, 1], where, M−
p,CK = M+

p,C(−K).
For K ∈ K(Cn) and i = 0, 1, . . . , 2n− 1, the quermassintegrals, Wi(K), of K are defined by

Wi(K) =
1

2n

∫
Sn

h(K,u)dSi(K,u).

LUTWAK[13] introduced the notion of Lp mixed quermassintegrals. Let p ≥ 1, i = 0, 1, . . . , 2n− 1.
For K,L ∈ K0(Cn), the integral represention of the Lp mixed quermassintegrals Wp,i(K,L) of K and
L is

Wp,i(K,L) =
1

2n

∫
Sn

hp(L, u)dSp,i(K,u). (5)

The integral represention of the Lp mixed volume Vp(K,L) is defined by [13]

Vp(K,L) =
1

2n

∫
Sn

hp(L, u)dSp(K,u). (6)
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2 The complex Lp mixed Petty projection inequalities
To start with, the following definitions, theorems and lemmas are needed.

Definition 1 Let p ≥ 1, i = 0, 1, . . . , 2n − 1 and K ∈ K0(Cn). If C ∈ K(C) is an asymmetric Lp

zonoid, then the asymmetric complex Lp mixed projection body Π+
p,C,iK is the convex body with the

support function

hΠ+
p,C,iK

(u)p = 2nWp,i(K,Cu) =

∫
Sn

∫
S1
(ℜ[cu ·H v])p+dµp,C(c)dSp,i(K, v), (7)

for every u ∈ Sn, where, the positive Borel measure Sp,i(K, ·) on Sn is absolutely continuous with respect
to Si(K, ·), and has Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·)

= h(K, ·)1−p. (8)

The complex Lp mixed projection bodies Πλ
p,C,iK are defined by

Πλ
p,C,iK = λ ·Π+

p,C,iK +p (1− λ) ·Π−
p,C,iK, (9)

for every λ ∈ [0, 1], where Π−
p,C,iK = Π+

p,C,i(−K).

Theorem 2 [8] Let p > 1 and K ∈ K0(Cn). If C ∈ K(C) be an asymmetric Lp zonoid which
satisfies dimC ≥ 1, then for every λ ∈ [0, 1], we have

V (K)−
2n
p −1V (Mλ

p,CK) ≥ V (B)−
2n
p −1V (Mλ

p,CB)

with equality, if and only if K is an origin-symmetric ellipsoid when dimC = 1, and with equality, if
and only if K is an origin-symmetric Hermitian ellipsoid, when dimC = 2.

Theorem 3 [13] Let K,L ∈ K0(Cn), p > 1 and 0 ≤ i < n. Then, Wp,i(K,L)n−i ≥ Wi(K)
n−p−i

Wi(L)
p

with equality, if and only if K and L are dilations.

Theorem 4 [14] Let K,L ∈ Kn
0 , p > 1, 0 ≤ i < n, n − i ̸= p. If Wp,i(K,Q) = Wp,i(L,Q), for any

Q ∈ Kn
o , then K = L.

Lemma 1 [15] Let 0 < i < n. If K ∈ Kn, then Wi(K) ≥ ω
i
n
n V (K)

n−i
n with equality, if and only if

K is a ball.

Lemma 2 Let K ∈ K0(Cn), L ∈ S(Cn). For 0 ≤ i < 2n, p ≥ 1, λ ∈ [0, 1], then

Wp,i(K,Mλ
p,CL) =

2

2n+ p
Ṽ−p(L,Π

λ,∗
p,C,iK).

Proof From (5), (3), (4), (7) and Fubini theorem, we have

Wp,i(K,M+
p,CL) =

1

2n
· 2

2n+ p

∫
Sn

hΠ+
p,C,iK

(v)pρL(v)
2n+pdσ(v) = 2

2n+ p
Ṽ−p(L,Π

+,∗
p,C,iK).

Therefore, from (9) and (4), we conclude the desired result.

Lemma 3 Let p ≥ 1. For an asymmetric Lp zonoid C ∈ K(C), Πλ
p,C,i maps a symmetric ball

about the origin to a symmetric ball about the origin.
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Proof From (8), we have

Sp,i(rB, v) = r1−pSi(rB, v) = r1−p+iS(rB, v) = r2n−p+iσ(v),

for every r > 0, v ∈ Sn. Plug this into (7) to get

hΠ+
p,C,i(rB)(u)

p = r2n−p+i

∫
Sn

∫
S1
(ℜ[cu ·H v])p+dµp,C(c)dσ(u), (10)

for every u ∈ Sn. Now, we fix some u0 ∈ Sn and recall Cu = {cu : c ∈ C}. For every u ∈ Sn, there is a
ϕu ∈ SU(n) satisfies ϕuu0 = u, then Cu = ϕuCu0. Substituting this into (10) gives

hΠ+
p,C,i(rB)(u)

p = r2n−p+i

∫
Sn

∫
S1
(ℜ[cu0 ·H ϕ∗

uv])
p
+dµp,C(c)dσ(v).

Since σ is SU(n)-invariant and dimC > 0, the right hand is independent from u and greater than
zero. Therefore, Π+

p,C,i(rB) is a symmetric ball about the origin, and Π+
p,C,i maps a symmetric ball

about the origin to a symmetric ball about the origin.
Finally, by the definition of Πλ

p,C,i and the proof above, we conclude this lemma.

Lemma 4 [8] Let p ≥ 1. For an asymmetric Lp zonoid C ∈ K(C), Mλ
p,C has the same conclusion

of lemma 3.

2.1 The Petty projection inequality for complex Lp mixed projection body
In this part, we establish the Petty projection inequality for complex Lp mixed projection body.
Theorem 5 Let 1 < p < 2n − i, 0 < i < 2n − 1. If K ∈ K0(Cn) is smooth and C ∈ K(C) be an

asymmetric Lp zonoid which satisfies dimC ≥ 1, then

ω
i

2n
2nWi(K)

2n−i−p
p V (Πλ,∗

p,C,iK)
2n−i
2n ≤

(
2

2n+ p

) 2n−i
p

r−2n+i
C ω

2n−i
p

2n , (11)

for every λ ∈ [0, 1],where rC > 0 such that Mλ
p,CB = rCB. Equality holds if and only if K is an

origin-symmetric ball.

Proof From lemma 2, taking L = Πλ,∗
p,C,iK, we get

2

2n+ p
V (Πλ,∗

p,C,iK) = Wp,i(K,Mλ
p,CΠ

λ,∗
p,C,iK).

By using theorem 3 and lemma 1, we have
2

2n+ p
V (Πλ,∗

p,C,iK) ≥ Wi(K)
2n−p−i
2n−i (ω

i
2n
2n V (Mλ

p,CΠ
λ,∗
p,C,iK)

2n−i
2n )

p
2n−i .

Next by theorem 2, lemma 3 and lemma 4, when taking Mλ
p,CB = rCB, we obtain

2

2n+ p
ω2n ≥ ω

pi
2n·(2n−i)

2n Wi(K)
2n−p−i
2n−i V (Πλ,∗

p,C,iK)
p
2n · rpC .

Raising both sides of the inequality to the power of (2n− i)/p, we obtain

ω
i

2n
2nWi(K)

2n−i−p
p V (Πλ,∗

p,C,iK)
2n−i
2n ≤

(
2

2n+ p

) 2n−i
p

r−2n+i
C ω

2n−i
p

2n .

Finally, according to the conditions of the three equalities in theorem 3, lemma 1 and theorem 2,
combining with lemma 3, equality holds in (11), if and only if K is a symmetric ball about the origin.
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2.2 The monotonicity of the complex Lp mixed projection bodies
In this part, we give the monotonicity of the complex Lp mixed projection body. In the following,

Aλ,n
p,C denotes the set of all complex Lp projection bodies.

Lemma 5 Let p ≥ 1, 0 < i < 2n. If K,L ∈ K0(Cn), then for every λ ∈ [0, 1], we have

Wp,i(L,Π
λ
p,CK) = Vp(K,Πλ

p,C,iL). (12)

Proof From (1), (7), (5), (6) and Fubini theorem, we get

Wp,i(L,Π
+
p,CK) =

1

2n

∫
Sn

hΠ+
p,C,iL

(v)pdSp(K, v) = Vp(K,Π+,∗
p,C,iL).

Applying (2) and (9), we conclude the desired result.

Theorem 6 Let K,L ∈ K0(Cn), p > 1, 0 < i < 2n. For every λ ∈ [0, 1], if Πλ
p,C,iK ⊆ Πλ

p,C,iL,
then

Wp,i(K,Q) ≤ Wp,i(L,Q), (13)

for any Q ∈ Aλ,n
p,C . Equality holds if and only if K = L.

Proof Since Q ∈ Aλ,n
p,C , there is M ∈ K0(Cn) such that Q = Πλ

p,CM . From (12) and the integral
representation of the Lp mixed volume, using the condition Πλ

p,C,iK ⊆ Πλ
p,C,iL, we get

Wp,i(L,Q)

Wp,i(K,Q)
=

Wp,i(L,Π
λ
p,CM)

Wp,i(K,Πλ
p,CM)

=
Vp(M,Πλ

p,C,iL)

Vp(M,Πλ
p,C,iK)

=

∫
Sn h

p(Πλ
p,C,iL, u)dSp(M,u)∫

Sn h
p(Πλ

p,C,iK,u)dSp(M,u)
≥ 1.

Thus, we get (13). According to theorem 4, equality holds in (13), if and only if K = L.

Theorem 7 Let p > 1, 0 < i < 2n, K ∈ K0(Cn), L ∈ Aλ,n
p,C , and 2n− i ̸= p. For every λ ∈ [0, 1], if

Πλ
p,C,iK ⊆ Πλ

p,C,iL, then
Wi(K) ≥ Wi(L), for 0 < 2n− i < p (14)

and
Wi(K) ≤ Wi(L), for 2n− i > p. (15)

Equalities hold in (14) and (15) if and only if K = L.

Proof For L ∈ Aλ,n
p,C , replacing Q with L in theorem 6, from theorem 3, then

Wi(L) ≥ Wp,i(K,L) ≥ Wi(K)
2n−p−i
2n−i Wi(L)

p
2n−i .

Therefore, under the restriction of 0 < 2n − i < p, Wi(K) > Wi(L) holds. On the other hand,
when 2n− i > p, Wi(K) ≤ Wi(L) holds. Together with the conditions of the two equlities in theorem
6 and theorem 3, we get the equalities hold in (14) and (15), if and only if K = L.
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