Stability and slicing inequalities for intersection bodies

Alexander Koldobsky • Dan Ma

Received: 5 January 2012 / Accepted: 16 April 2012 / Published online: 25 April 2012
© Springer Science+Business Media B.V. 2012

Abstract

We prove a generalization of the hyperplane inequality for intersection bodies, where volume is replaced by an arbitrary measure μ with even continuous density and sections are of arbitrary dimension $n-k, 1 \leq k<n$. If K is a generalized k-intersection body, then

$$
\mu(K) \leq \frac{n}{n-k} c_{n, k} \max _{H} \mu(K \cap H) \operatorname{Vol}_{n}(K)^{k / n} .
$$

Here $c_{n, k}=\left|B_{2}^{n}\right|^{(n-k) / n} /\left|B_{2}^{n-k}\right|<1,\left|B_{2}^{n}\right|$ is the volume of the unit Euclidean ball, and maximum is taken over all $(n-k)$-dimensional subspaces of \mathbb{R}^{n}. The constant is optimal, and for each intersection body the inequality holds for every k. We also prove a stronger "difference" inequality. The proof is based on stability in the lower dimensional BusemannPetty problem for arbitrary measures in the following sense. Let $\varepsilon>0,1 \leq k<n$. Suppose that K and L are origin-symmetric star bodies in \mathbb{R}^{n}, and K is a generalized k-intersection body. If for every $(n-k)$-dimensional subspace H of \mathbb{R}^{n}

$$
\mu(K \cap H) \leq \mu(L \cap H)+\varepsilon,
$$

then

$$
\mu(K) \leq \mu(L)+\frac{n}{n-k} c_{n, k} \operatorname{Vol}_{n}(K)^{k / n} \varepsilon .
$$

Keywords Convex bodies • Volume • Sections
Mathematics Subject Classification Primary 52A20

[^0]
1 Introduction

The Busemann-Petty problem, posed in 1956 in [7], asks the following question. Suppose that K and L are origin-symmetric convex bodies in \mathbb{R}^{n} so that

$$
\operatorname{Vol}_{n-1}\left(K \cap \xi^{\perp}\right) \leq \operatorname{Vol}_{n-1}\left(L \cap \xi^{\perp}\right), \quad \forall \xi \in S^{n-1}
$$

where ξ^{\perp} is the central hyperplane perpendicular to ξ. Does it follow that

$$
\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L) ?
$$

The answer is affirmative if $n \leq 4$ and negative if $n \geq 5$. The solution was completed at the end of the 90 's as the result of a sequence of papers $[1,5,10,11,13,14,18,19,26,27,31$, 36-38]; see [20, p. 3] or [12, p. 343] for details.

It is natural to ask what happens if hyperplane sections are replaced by sections of lower dimensions. Suppose that for every $(n-k)$-dimensional subspace $H \in \mathbb{R}^{n}$,

$$
\operatorname{Vol}_{n-k}(K \cap H) \leq \operatorname{Vol}_{n-k}(L \cap H) .
$$

Does it follow that

$$
\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L) ?
$$

Zhang [39] proved that the answer is affirmative if and only if all origin-symmetric convex bodies in \mathbb{R}^{n} are generalized k-intersection bodies (see definition in Sect. 2; this is similar to the connection between the original Busemann-Petty problem and intersection bodies established by Lutwak in [27]). Using this connection, Bourgain and Zhang [6] proved that the answer is negative if the dimension of sections $n-k>3$ (see also [33] and different later proof in [21]). However, the cases of two- and three-dimensional sections remain open. Other results on the lower dimensional Busemann-Petty problem can be found in [28-30,32-35].

In this paper, we establish stability in the affirmative part of the lower dimensional Busemann-Petty problem. Stability problems in convex geometry have been considered for a long time; see [16] for numerous results and references. Stability in volume comparison problems was first studied in [22], where such results were proved for the Busemann-Petty and Shephard problems. We extend the result of [22, Theorem 1] to sections of lower dimensions in the following way.

Theorem 1 Let K and L be origin-symmetric star bodies in \mathbb{R}^{n}, and $1 \leq k<n$. Suppose K is a generalized k-intersection body and $\varepsilon>0$. Iffor every $(n-k)$-dimensional subspace H of \mathbb{R}^{n}

$$
\begin{equation*}
\operatorname{Vol}_{n-k}(K \cap H) \leq \operatorname{Vol}_{n-k}(L \cap H)+\varepsilon \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Vol}_{n}(K)^{\frac{n-k}{n}} \leq \operatorname{Vol}_{n}(L)^{\frac{n-k}{n}}+c_{n, k} \varepsilon, \tag{2}
\end{equation*}
$$

where $c_{n, k}=\left|B_{2}^{n}\right|^{(n-k) / n} /\left|B_{2}^{n-k}\right|$ and $\left|B_{2}^{n}\right|$ is the volume of the unit Euclidean ball.
Note that $c_{n, k}<1$, which immediately follows from the log-convexity of the Γ-function (see for example [24, Lemma 2.1]). Also, in the formulation of Theorem 1 in [22] the constant $c_{n, 1}$ was replaced by 1 , though the proof there gives the result with $c_{n, 1}$.

Zvavitch [40] found a remarkable generalization of the Busemann-Petty problem to arbitrary measures. It appears that one can replace volume by any measure with even continuous
density in \mathbb{R}^{n}. Let f be an even continuous non-negative function on \mathbb{R}^{n}, and denote by μ the measure on \mathbb{R}^{n} with density f. For every closed bounded set $B \subset \mathbb{R}^{n}$ define

$$
\mu(B)=\int_{B} f(x) d x .
$$

It was proved in [40] that, for $n \leq 4$ and any origin-symmetric convex bodies K and L in \mathbb{R}^{n}, the inequalities

$$
\mu\left(K \cap \xi^{\perp}\right) \leq \mu\left(L \cap \xi^{\perp}\right), \quad \forall \xi \in S^{n-1}
$$

imply

$$
\mu(K) \leq \mu(L) .
$$

Zvavitch also proved that this is generally not true if $n \geq 5$, namely, for any μ with strictly positive even continuous density there exist K and L providing a counterexample.

Stability in Zvavitch's result was established in [23, Theorem 2]. Here we extend this result to sections of lower dimensions, as follows.

Theorem 2 Let K and L be origin-symmetric star bodies in \mathbb{R}^{n}, and $1<k<n$. Suppose K is a generalized k-intersection body and $\varepsilon>0$. Iffor every $(n-k)$-dimensional subspace H of \mathbb{R}^{n}

$$
\begin{equation*}
\mu(K \cap H) \leq \mu(L \cap H)+\varepsilon \tag{3}
\end{equation*}
$$

then

$$
\mu(K) \leq \mu(L)+\frac{n}{n-k} c_{n, k} \operatorname{Vol}_{n}(K)^{k / n} \varepsilon .
$$

In the case $f \equiv 1$, we get another stability result for volume which is weaker than what is provided by Theorem 1. This is the reason why we state Theorem 1 separately. However, for arbitrary measures the constant in Theorem 2 is the best possible, as follows from the example after Corollary 5.

The stability results mentioned above were applied in [22,23] to the hyperplane (or slicing) problem of Bourgain [2,3] that can be formulated as follows. Does there exist an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^{n}

$$
\begin{equation*}
\operatorname{Vol}_{n}(K)^{\frac{n-1}{n}} \leq C \max _{\xi \in S^{n-1}} \operatorname{Vol}_{n-1}\left(K \cap \xi^{\perp}\right) ? \tag{4}
\end{equation*}
$$

The best-to-date estimate $C \sim n^{1 / 4}$ is due to Klartag [17], who removed the logarithmic term from the previous estimate of Bourgain [4]. We refer the reader to recent papers [8,9] for the history and current state of the hyperplane problem.

In the case where K is an intersection body (see Sect. 2 for definitions and properties), the inequality (4) is known for sections of arbitrary dimension with the best possible constant. For any $1 \leq k<n$,

$$
\begin{equation*}
\operatorname{Vol}_{n}(K)^{\frac{n-k}{n}} \leq c_{n, k} \max _{H \in G(n, n-k)} \operatorname{Vol}_{n-k}(K \cap H), \tag{5}
\end{equation*}
$$

where $G(n, n-k)$ is the Grassmanian of $(n-k)$-dimensional subspaces of \mathbb{R}^{n}, and the equality is attained when $K=B_{2}^{n}$. In particular, if the dimension $n \leq 4$, then (5) is true for any origin-symmetric convex body K. The proof is an immediate consequence of Zhang's
connection between generalized intersection bodies and the lower dimensional BusemannPetty problem; apply this connection to any generalized k-intersection body K and $L=B_{2}^{n}$. Then use the fact that every intersection body is a generalized k-intersection body for every k (see [15] or [28]). For every fixed k, the inequality (5) holds for any generalized k-intersection body K.

We prove several generalizations of (5) using the stability results formulated above. First, interchanging K and L in Theorem 1, we get the following "difference" inequality, previously established in [22, Corollary 1] in the hyperplane case.

Corollary 3 Let K and L be origin-symmetric star bodies in \mathbb{R}^{n}, and $1 \leq k<n$. Suppose K and L are generalized k-intersection bodies, then

$$
\begin{aligned}
& \left|\operatorname{Vol}_{n}(K)^{\frac{n-k}{n}}-\operatorname{Vol}_{n}(L)^{\frac{n-k}{n}}\right| \\
& \quad \leq c_{n, k} \max _{H \in G(n, n-k)}\left|\operatorname{Vol}_{n-k}(K \cap H)-\operatorname{Vol}_{n-k}(L \cap H)\right| .
\end{aligned}
$$

Putting $L=\varnothing$ in the latter inequality, we get (5) for any generalized k-intersection body K.

Interchanging K and L in Theorem 2, we get the following inequality, which was earlier proved for $k=1$ in [23, Corollary 1].

Corollary 4 Let K and L be origin-symmetric star bodies in \mathbb{R}^{n}, and $1 \leq k<n$. Suppose that K and L are generalized k-intersection bodies. Then

$$
\begin{aligned}
& |\mu(K)-\mu(L)| \\
& \quad \leq \frac{n}{n-k} c_{n, k} \max _{H}|\mu(K \cap H)-\mu(L \cap H)| \max \left\{\operatorname{Vol}_{n}(K)^{k / n}, \operatorname{Vol}_{n}(L)^{k / n}\right\},
\end{aligned}
$$

where maximum is taken over all $(n-k)$-dimensional subspaces H of \mathbb{R}^{n}.
Putting $L=\varnothing$, we generalize to lower dimensions the hyperplane inequality for arbitrary measures from [23, Theorem 1].

Corollary 5 Let $1 \leq k<n$, and suppose that K is a generalized k-intersection body in \mathbb{R}^{n}. Then

$$
\begin{equation*}
\mu(K) \leq \frac{n}{n-k} c_{n, k} \max _{H \in G(n, n-k)} \mu(K \cap H) \operatorname{Vol}_{n}(K)^{k / n} . \tag{6}
\end{equation*}
$$

The constant in the right-hand side is the best possible. In fact, let $K=B_{2}^{n}$ and, for every $j \in N$, let f_{j} be a non-negative continuous function on $[0,1]$ supported in $\left(1-\frac{1}{j}, 1\right)$ and such that $\int_{0}^{1} f_{j}(t) d t=1$. Let μ_{j} be the measure on \mathbb{R}^{n} with density $f_{j}\left(|x|_{2}\right)$, where $|x|_{2}$ is the Euclidean norm. We have

$$
\mu_{j}\left(B_{2}^{n}\right)=\left|S^{n-1}\right| \int_{0}^{1} r^{n-1} f_{j}(r) d r,
$$

where $\left|S^{n-1}\right|=2 \pi^{n / 2} / \Gamma(n / 2)$ is the surface area of the unit sphere in \mathbb{R}^{n}. For every $H \in G(n, n-k)$,

$$
\mu_{j}\left(B_{2}^{n} \cap H\right)=\left|S^{n-k-1}\right| \int_{0}^{1} r^{n-k-1} f_{j}(r) d r .
$$

Clearly,

$$
\lim _{j \rightarrow \infty} \frac{\int_{0}^{1} r^{n-1} f_{j}(r) d r}{\int_{0}^{1} r^{n-k-1} f_{j}(r) d r}=1
$$

Using $\left|S^{n-1}\right|=n\left|B_{2}^{n}\right|$, we get

$$
\lim _{j \rightarrow \infty} \frac{\mu_{j}\left(B_{2}^{n}\right)}{\max _{H} \mu_{j}\left(B_{2}^{n} \cap H\right) \operatorname{Vol}_{n}\left(B_{2}^{n}\right)^{k / n}}=\frac{\left|S^{n-1}\right|}{\left|S^{n-k-1}\right|\left|B_{2}^{n}\right|^{k / n}}=\frac{n}{n-k} c_{n, k}
$$

which shows that the constant is asymptotically optimal.

2 Stability

We say that a closed bounded set K in \mathbb{R}^{n} is a star body if every straight line passing through the origin crosses the boundary of K at exactly two points different from the origin, the origin is an interior point of K, and the Minkowski functional of K defined by

$$
\|x\|_{K}=\min \{a \geq 0: x \in a K\}
$$

is a continuous function on \mathbb{R}^{n}.
The radial function of a star body K is defined by

$$
\rho_{K}(x)=\|x\|_{K}^{-1}, \quad x \in \mathbb{R}^{n} .
$$

If $x \in S^{n-1}$ then $\rho_{K}(x)$ is the radius of K in the direction of x.
Writing the volume of K in polar coordinates, one gets

$$
\begin{equation*}
\operatorname{Vol}_{n}(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(\theta) d \theta=\frac{1}{n} \int_{S^{n-1}}\|\theta\|_{K}^{-n} d \theta . \tag{7}
\end{equation*}
$$

The spherical Radon transform $R: C\left(S^{n-1}\right) \mapsto C\left(S^{n-1}\right)$ is a linear operator defined by

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(x) d x, \quad \xi \in S^{n-1}
$$

for every function $f \in C\left(S^{n-1}\right)$.
The polar formula (7) for the volume of a hyperplane section expresses this volume in terms of the spherical Radon transform (see for example [20, p.15]):

$$
\begin{equation*}
S_{K}(\xi)=\operatorname{Vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} R\left(\|\cdot\|_{K}^{-n+1}\right)(\xi) \tag{8}
\end{equation*}
$$

The spherical Radon transform is self-dual (see [16, Lemma 1.3.3]): for any functions $f, g \in C\left(S^{n-1}\right)$

$$
\begin{equation*}
\int_{S^{n-1}} R f(\xi) g(\xi) d \xi=\int_{S^{n-1}} f(\xi) R g(\xi) d \xi \tag{9}
\end{equation*}
$$

Using self-duality, one can extend the spherical Radon transform to measures. Let μ be a finite Borel measure on S^{n-1}. We define the spherical Radon transform of μ as a functional $R \mu$ on the space $C\left(S^{n-1}\right)$ acting by

$$
(R \mu, f)=(\mu, R f)=\int_{S^{n-1}} R f(x) d \mu(x)
$$

By Riesz's characterization of continuous linear functionals on the space $C\left(S^{n-1}\right), R \mu$ is also a finite Borel measure on S^{n-1}. If μ has continuous density g, then by (9) the Radon transform of μ has density $R g$.

The class of intersection bodies was introduced by Lutwak [27]. Let K, L be originsymmetric star bodies in \mathbb{R}^{n}. We say that K is the intersection body of L if the radius of K in every direction is equal to the $(n-1)$-dimensional volume of the section of L by the central hyperplane orthogonal to this direction, i.e. for every $\xi \in S^{n-1}$,

$$
\begin{equation*}
\rho_{K}(\xi)=\|\xi\|_{K}^{-1}=\operatorname{Vol}_{n-1}\left(L \cap \xi^{\perp}\right) \tag{10}
\end{equation*}
$$

All the bodies K that appear as intersection bodies of different star bodies form the class of intersection bodies of star bodies.

Note that the right-hand side of (10) can be written in terms of the spherical Radon transform using (8):

$$
\|\xi\|_{K}^{-1}=\frac{1}{n-1} \int_{S^{n-1} \cap \xi \perp}\|\theta\|_{L}^{-n+1} d \theta=\frac{1}{n-1} R\left(\|\cdot\|_{L}^{-n+1}\right)(\xi) .
$$

It means that a star body K is the intersection body of a star body if and only if the function $\|\cdot\|_{K}^{-1}$ is the spherical Radon transform of a continuous positive function on S^{n-1}. This allows to introduce a more general class of bodies. A star body K in \mathbb{R}^{n} is called an intersection body if there exists a finite Borel measure μ on the sphere S^{n-1} so that $\|\cdot\|_{K}^{-1}=R \mu$ as functionals on $C\left(S^{n-1}\right)$, i.e. for every continuous function f on S^{n-1},

$$
\begin{equation*}
\int_{S^{n-1}}\|x\|_{K}^{-1} f(x) d x=\int_{S^{n-1}} R f(x) d \mu(x) . \tag{11}
\end{equation*}
$$

Intersection bodies played the crucial role in the solution of the original Busemann-Petty problem due to the following connection found by Lutwak [27]. If K in an origin-symmetric intersection body in \mathbb{R}^{n} and L is any origin-symmetric star body in \mathbb{R}^{n}, then the inequalities $S_{K}(\xi) \leq S_{L}(\xi)$ for all $\xi \in S^{n-1}$ imply that $\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L)$, i.e. the answer to the Busemann-Petty problem in this situation is affirmative. For more information about intersection bodies, see [20,25, Chapter 4], [12, Chapter 8] and references there. In particular, every origin-symmetric convex body in $\mathbb{R}^{n}, n \leq 4$ is an intersection body; see [11,38,13]. Also the unit ball of any finite dimensional subspace of $L_{p}, 0<p \leq 2$ is an intersection body; see [18].

Zhang in [39] introduced a generalization of intersection bodies. For $1 \leq k \leq n-1$, the $(n-k)$-dimensional spherical Radon transform is an operator $\mathcal{R}_{n-k}: C\left(S^{n-1}\right) \mapsto$ $C(G(n, n-k))$ defined by

$$
\mathcal{R}_{n-k}(f)(H)=\int_{S^{n-1} \cap H} f(x) d x, \quad H \in G(n, n-k) .
$$

Denote the image of the operator \mathcal{R}_{n-k} by X:

$$
\mathcal{R}_{n-k}\left(C\left(S^{n-1}\right)\right)=X \subset C(G(n, n-k))
$$

Let $M^{+}(X)$ be the space of linear positive continuous functionals on X, i.e. for every $v \in M^{+}(X)$ and non-negative function $f \in X$, we have $v(f) \geq 0$.

An origin-symmetric star body K in \mathbb{R}^{n} is called a generalized k-intersection body if there exists a functional $v \in M^{+}(X)$, so that for every $f \in C\left(S^{n-1}\right)$,

$$
\int_{S^{n-1}}\|x\|_{K}^{-k} f(x) d x=v\left(\mathcal{R}_{n-k}(f)\right)
$$

When $k=1$ we get the class of intersection bodies. It was proved by Grinberg and Zhang [15, Lemma 6.1] that every intersection body in \mathbb{R}^{n} is a generalized k-intersection body for every $k<n$. More generally, as proved later by Milman [28], if m divides k, then every generalized m-intersection body is a generalized k-intersection body. Zhang [39] showed that the answer to the lower dimensional Busemann-Petty problem is affirmative if and only if every origin-symmetric convex body in \mathbb{R}^{n} is a generalized k-intersection body.

Denote by $1_{S} \equiv 1$ and $1_{G} \equiv 1$ the functions which are equal to 1 everywhere on the unit sphere S^{n-1} and the Grassmanian $G(n, n-k)$, correspondingly. Then, $\mathcal{R}_{n-k}\left(1_{S}\right)=$ $\left|S^{n-k-1}\right| 1_{G}$.

We are now ready to prove the stability in the lower dimensional Busemann-Petty problem.

Proof of Theorem 1 By the polar formula for volume (7), for each $H \in G(n, n-k)$ we have

$$
\begin{equation*}
\operatorname{Vol}_{n-k}(K \cap H)=\frac{1}{n-k} \mathcal{R}_{n-k}\left(\|\cdot\|_{K}^{-n+k}\right)(H), \tag{12}
\end{equation*}
$$

Then the inequality (1) can be written as

$$
\begin{equation*}
\mathcal{R}_{n-k}\left(\|\cdot\|_{K}^{-n+k}\right)(H) \leq \mathcal{R}_{n-k}\left(\|\cdot\|_{L}^{-n+k}\right)(H)+(n-k) \varepsilon \tag{13}
\end{equation*}
$$

Since K is a generalized k-intersection body, there exists $\mu_{0} \in M^{+}$, such that for each $\psi \in C\left(S^{n-1}\right)$,

$$
\begin{equation*}
\int_{S^{n-1}}\|x\|_{K}^{-k} \psi(x) d x=\mu_{0}\left(\mathcal{R}_{n-k}(\psi)\right) \tag{14}
\end{equation*}
$$

Since μ_{0} is a positive functional, by (13) and (14), we have

$$
\begin{align*}
n \operatorname{Vol}_{n}(K) & =\int_{S^{n-1}}\|x\|_{K}^{-k}\|x\|_{K}^{-n+k} d x \\
& =\mu_{0}\left(\mathcal{R}_{n-k}\left(\|\cdot\|_{K}^{-n+k}\right)\right) \\
& \leq \mu_{0}\left(\mathcal{R}_{n-k}\left(\|\cdot\|_{L}^{-n+k}\right)\right)+(n-k) \varepsilon \mu_{0}\left(1_{G}\right) \\
& :=\mathrm{I}+\mathrm{II} . \tag{15}
\end{align*}
$$

Using (14), Hölder's inequality and polar formula for the volume, we get

$$
\begin{align*}
\mathrm{I} & =\int_{S^{n-1}}\|x\|_{K}^{-k}\|x\|_{L}^{-n+k} d x \\
& \leq\left(\int_{S^{n-1}}\|x\|_{K}^{-n} d x\right)^{k / n}\left(\int_{S^{n-1}}\|x\|_{L}^{-n} d x\right)^{(n-k) / n} \\
& =n \operatorname{Vol}_{n}(K)^{k / n} \operatorname{Vol}_{n}(L)^{(n-k) / n} . \tag{16}
\end{align*}
$$

Now, by (14), the well-known formula $\left|S^{n-1}\right|=n\left|B_{2}^{n}\right|$ (see [20, p. 33]) and Hölder's inequality,

$$
\begin{aligned}
\mathrm{II} & =(n-k) \varepsilon \mu_{0}\left(1_{G}\right)=\frac{(n-k) \varepsilon}{\left|S^{n-k-1}\right|} \int_{S^{n-1}}\|x\|_{K}^{-k} 1_{S}(x) d x \\
& \leq \frac{(n-k) \varepsilon}{\left|S^{n-k-1}\right|}\left(\int_{S^{n-1}}\|x\|_{K}^{-n} d x\right)^{k / n}\left|S^{n-1}\right|^{\frac{n-k}{n}} \\
& =\frac{n^{k / n}(n-k)\left|S^{n-1}\right|^{\frac{n-k}{n}}}{\left|S^{n-k-1}\right|} \operatorname{Vol}_{n}(K)^{k / n} \varepsilon \\
& =\frac{n\left|B_{2}^{n}\right|^{\frac{n-k}{n}}}{\left|B_{2}^{n-k-1}\right|} \operatorname{Vol}_{n}(K)^{k / n} \varepsilon .
\end{aligned}
$$

Combining this with (15) and (16), we get the result.
We now pass to stability for arbitrary measures. Let μ be a measure on \mathbb{R}^{n} with even continuous density f. Let χ be the indicator function of the interval [0,1]. The measure μ of a star body K can be expressed in polar coordinates as follows:

$$
\begin{align*}
\mu(K) & =\int_{K} f(x) d x=\int_{\mathbb{R}^{n}} \chi\left(\|x\|_{K}\right) f(x) d x \\
& =\int_{S^{n-1}}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-1} f(r \theta) d r\right) d \theta . \tag{17}
\end{align*}
$$

Similarly, we can express the volume of a section of K by an $(n-k)$-dimensional subspace H of \mathbb{R}^{n} as

$$
\begin{align*}
\mu(K \cap H) & =\int_{H} \chi\left(\|x\|_{K}\right) f(x) d x \\
& =\int_{S^{n-1} \cap H}\left(\int_{0}^{\|\theta\|_{K}^{-1}} t^{n-k-1} f(t \theta) d t\right) d \theta \\
& =\mathcal{R}_{n-k}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-k-1} f(r \theta) d r\right)(H), \tag{18}
\end{align*}
$$

where the Radon transform is applied to a function of the variable $\theta \in S^{n-1}$.
We need the following lemma, which was also used by Zvavitch in his proof.
Lemma 6 Let $a, b, k \in \mathbb{R}^{+}$, and α be a non-negative function on $(0, \max \{a, b\})$, such that the integral below converges. Then

$$
\begin{aligned}
& \int_{0}^{a} r^{n-1} \alpha(r) d t-a^{k} \int_{0}^{a} r^{n-k-1} \alpha(r) d r \\
& \quad \leq \int_{0}^{b} r^{n-1} \alpha(r) d r-a^{k} \int_{0}^{b} r^{n-k-1} \alpha(r) d r
\end{aligned}
$$

Proof The result follows from

$$
a^{k} \int_{a}^{b} r^{n-k-1} \alpha(r) d r \leq \int_{a}^{b} r^{n-1} \alpha(r) d r .
$$

Proof of Theorem 2 Using (18), inequality (3) can be written as

$$
\begin{align*}
& \mathcal{R}_{n-k}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-k-1} f(r \theta) d r\right)(H) \\
& \leq \mathcal{R}_{n-k}\left(\int_{0}^{\|\theta\|_{L}^{-1}} r^{n-k-1} f(r \theta) d r\right)(H)+\varepsilon, \quad \forall H \in G(n, n-k) . \tag{19}
\end{align*}
$$

As in the proof of Theorem 1, let μ_{0} be the positive functional associated with the generalized k-intersection body K. Applying μ_{0} to both sides of (19) and then using (14), we get

$$
\begin{align*}
& \int_{S^{n-1}}\|\theta\|_{K}^{-k}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-k-1} f(r \theta) d r\right) d \theta \\
& \quad \leq \int_{S^{n-1}}\|\theta\|_{K}^{-k}\left(\int_{0}^{\|\theta\|_{L}^{-1}} r^{n-k-1} f(r \theta) d r\right) d \theta+\varepsilon \mu_{0}\left(1_{G}\right) . \tag{20}
\end{align*}
$$

Applying Lemma 6 with $a=\|\theta\|_{K}^{-1}, b=\|\theta\|_{L}^{-1}$ and $\alpha(r)=f(r \theta)$ and then integrating over the sphere, we get

$$
\begin{aligned}
& \int_{0}^{\|\theta\|_{K}^{-1}} r^{n-1} f(r \theta) d r-\|\theta\|_{K}^{-k} \int_{0}^{\|\theta\|_{K}^{-1}} r^{n-k-1} f(r \theta) d r \\
& \leq \int_{0}^{\|\theta\|_{L}^{-1}} r^{n-1} f(r \theta) d r-\|\theta\|_{K}^{-k} \int_{0}^{\|\theta\|_{L}^{-1}} r^{n-k-1} f(r \theta) d r
\end{aligned}
$$

and

$$
\begin{align*}
& \int_{S^{n-1}}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-1} f(r \theta) d r\right) d \theta \\
& \quad-\int_{S^{n-1}}\|\theta\|_{K}^{-k}\left(\int_{0}^{\|\theta\|_{K}^{-1}} r^{n-k-1} f(r \theta) d r\right) d \theta \\
& \quad \leq \int_{S^{n-1}}\left(\int_{0}^{\|\theta\|_{L}^{-1}} r^{n-1} f(r \theta) d r\right) d \theta \\
& \quad-\int_{S^{n-1}}\|\theta\|_{K}^{-k}\left(\int_{0}^{\|\theta\|_{L}^{-1}} r^{n-k-1} f(r \theta) d r\right) d \theta \tag{21}
\end{align*}
$$

Adding (20) and (21) and using (17) we get

$$
\mu(K) \leq \mu(L)+\varepsilon \mu_{0}\left(1_{G}\right) .
$$

As shown in the proof of Theorem 1,

$$
\mu_{0}\left(1_{G}\right) \leq \frac{n}{n-k} c_{n, k} \operatorname{Vol}_{n}(K)^{k / n},
$$

which completes the proof.
As mentioned earlier, every intersection body is a generalized k-intersection body for every k, so if K is an intersection body, the results of Theorems 1 and 2 hold for all k at the same time, as well as the results of Corollaries $3,4,5$.

Acknowledgments The first named author wishes to thank the US National Science Foundation for support through grant DMS-1001234.

References

1. Ball, K.: Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math. vol. 1317, Springer, Berlin, pp. 224-231 (1988)
2. Bourgain, J.: On high-dimensional maximal functions associated to convex bodies. Am. J. Math. 108, 1467-1476 (1986)
3. Bourgain, J.: Geometry of Banach spaces and harmonic analysis. In: Proceedings of the International Congress of Mathematicians (Berkeley, CA, 1986), American Mathematical Society, Providence, pp. 871878 (1987)
4. Bourgain, J.: On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis, Israel seminar (1989-90), Lecture Notes in Mathematics, vol. 1469, Springer, Berlin, pp. 127-137 (1991)
5. Bourgain, J.: On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal. 1, 1-13 (1991)
6. Bourgain, J., Zhang, Gaoyong: On a generalization of the Busemann-Petty problem. Convex Geometric Analysis, Math. Sci. Res. Inst. Publ. vol. 34, Cambridge University Press, Cambridge, pp. 53-58 (1999)
7. Busemann, H., Petty, C.M.: Problem on convex bodies. Math. Scand. 4, 88-94 (1956)
8. Dafnis, N., Paouris, G.: Small ball probability estimates, ψ_{2}-behavior and the hyperplane conjecture. J. Funct. Anal. 258, 1933-1964 (2010)
9. Eldan, R., Klartag, B.: Approximately gaussian marginals and the hyperplane conjecture, preprint, arXiv:1001.0875
10. Gardner, R.J.: Intersection bodies and the Busemann-Petty problem. Trans. Am. Math. Soc. 342, 435445 (1994)
11. Gardner, R.J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. (2) 140, 435-447 (1994)
12. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)
13. Gardner, R.J., Koldobsky, A., Schlumprecht, Th.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. (2) 149, 691-703 (1999)
14. Giannopoulos, A.: A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies. Mathematika 37, 239-244 (1990)
15. Grinberg, E., Zhang, G.: Convolutions, transforms and convex bodies. Proc. Lond. Math. Soc. 78, 77-115 (1999)
16. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, New York (1996)
17. Klartag, B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274-1290 (2006)
18. Koldobsky, A.: Intersection bodies, positive definite distributions and the Busemann-Petty problem. Am. J. Math. 120, 827-840 (1998)
19. Koldobsky, A.: Intersection bodies in \mathbb{R}^{4}. Adv. Math. 136, 1-14 (1998)
20. Koldobsky, A.: Fourier analysis in convex geometry. American Mathematical Society, Providence (2005)
21. Koldobsky, A.: A functional analytic approach to intersection bodies. Geom. Funct. Anal. 10, 1507-1526 (2000)
22. Koldobsky, A.: Stability in the Busemann-Petty and Shephard problems. Adv. Math. 228, 2145-2161 (2011)
23. Koldobsky, A.: A hyperplane inequality for measures of convex bodies in $\mathbb{R}^{n}, n \leq 4$. Discrete. Comput. Geom. 47, 538-547 (2012)
24. Koldobsky, A., Lifshits, M.: Average volume of sections of star bodies. In: Milman, V., Schechtman, G. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1745, pp. 119-146 (2000)
25. Koldobsky, A., Yaskin, V.: The interface between convex geometry and harmonic analysis. CBMS Regional Conference Series in Mathematics, 108, American Mathematical Society, Providence (2008)
26. Larman, D.G., Rogers, C.A.: The existence of a centrally symmetric convex body with central sections that are unexpectedly small. Mathematika 22, 164-175 (1975)
27. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232-261 (1988)
28. Milman, E.: Generalized intersection bodies. J. Funct. Anal. 240(2), 530-567 (2006)
29. Milman, E.: A comment on the low-dimensional Busemann-Petty problem. GAFA Seminar Notes 2004-5. Lect. Notes Math. 1910, 245-253 (2007)
30. Milman, E.: Generalized intersection bodies are not equivalent. Adv. Math. 217(6), 2822-2840 (2008)
31. Papadimitrakis, M.: On the Busemann-Petty problem about convex, centrally symmetric bodies in \mathbb{R}^{n}. Mathematika 39, 258-266 (1992)
32. Rubin, B.: The lower dimensional Busemann-Petty problem for bodies with the generalized axial symmetry. Israel J. Math. 173, 213-233 (2009)
33. Rubin, B., Zhang, G.: Generalizations of the Busemann-Petty Problem for sections of convex bodies. J. Funct. Anal. 213(2), 473-501 (2004)
34. Yaskin, V.: The Busemann-Petty problem in hyperbolic and spherical spaces. Adv. Math. 203(2), 537-553 (2006)
35. Yaskin, V.: A solution to the lower dimensional Busemann-Petty problem in the hyperbolic space. J. Geom. Anal. 16(4), 735-745 (2006)
36. Zhang, G.: Centered bodies and dual mixed volumes. Trans. Am. Math. Soc. 345, 777-801 (1994)
37. Zhang, G.: Intersection bodies and Busemann-Petty inequalities in \mathbb{R}^{4}. Ann. Math. (2) 140, 331-346 (1994)
38. Zhang, Gaoyong: A positive answer to the Busemann-Petty problem in four dimensions. Ann. Math. (2) 149, 535-543 (1999)
39. Zhang, G.: Section of convex bodies. Am. J. Math. 118, 319-340 (1996)
40. Zvavitch, A.: The Busemann-Petty problem for arbitrary measures. Math. Ann. 331, 267-887 (2005)

[^0]: A. Koldobsky (\boxtimes) • D. Ma

 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
 e-mail: koldobskiya@missouri.edu
 D. Ma
 e-mail: madan516@gmail.com

