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The problem of finding the maximal hyperplane section of Bn
p , where p > 2, has been

open for a long time. It is known that the answer depends on both p and n. In this paper,
using the well-known equivalence between hyperplane sections and the isotropic constant
of a body, we give an upper bound estimate for the volume of hyperplane sections of
normalized �n

p-balls that does not depend on n and p. In addition, on the basis of results
of Meyer, Pajor and Schmuckenschläger, we show further the corresponding extremal body
and hyperplane section when this volume attains its minimum.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Bn
p denote the unit ball of �n

p-space, that is, Bn
p = {x ∈ R

n | ‖x‖p � 1}, if 0 < p < +∞, and Bn∞ = {x ∈ R
n |

max1�i�n |xi | � 1}. A very concrete problem of finding the extremal sections of �n
p-balls has motivated some beautiful math-

ematics; the problem seems to be quite difficult, for example, the maximal hyperplane section of �n
p-balls with 2 < p < ∞

is still open (see [18]). However, there are many interesting partial results concerning this subject (see Refs. [4,5,19,18]). In
particular, for the unit cube (p = ∞), the following theorem is well known:

Theorem A. (See Hadwiger [9], Hensley [11], Ball [2].) For every ξ ∈ Sn−1 ,

1 � voln−1

(
1

2
Bn∞ ∩ ξ⊥

)
�

√
2.

Equality on the left-hand side holds for ξ = (1,0, . . . ,0), and equality on the right-hand side holds for ξ = (1/
√

2,1/
√

2,0, . . . ,0),
respectively.

In fact, Hensley [11] proved that hyperplane sections of the cube are bounded from above by a constant not depending
on the dimension in 1979, and the exact value

√
2 was given by Ball [2] in 1986. The minimal hyperplane sections of the

cube were first found by Hadwiger [9], other proofs were given by Vaaler [26] and Hensley [11].
In general case, Oleszkiewicz [24] showed that the solution to the problem of finding the maximal hyperplane sections

of �n
p-balls must depend on both p and n, for p > 2 in 2003. In this paper, using the well-known equivalence between

hyperplane sections and the isotropic constant of a body, we give an upper bound estimate for the volume of hyperplane
sections of normalized �n

p-balls that does not depend on n and p. In addition, the lower bound estimate for the volume
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of hyperplane sections of normalized �n
p-balls, Meyer and Pajor [21] proved that for all p � 2 and p = 1: voln−1(rn,p Bn

p ∩
ξ⊥) � 1 (in fact Meyer and Pajor in [21] proved that voln−k(rn,p Bn

p ∩ E) � 1 for any subspace E ⊂ R
n of codimension k), and

Schmuckenschläger [25] showed that voln−1(rn,p Bn
p ∩ ξ⊥) � 1 for all 1 < p < 2. On the basis of results of Meyer, Pajor and

Schmuckenschläger, we show further the corresponding extremal body and hyperplane section when this volume attains its
minimum. Our main result may be formulated as follows:

Theorem 1.1. Let p � 1. Then, for every ξ ∈ Sn−1 ,

1 � voln−1
(
rn,p Bn

p ∩ ξ⊥)
�

√
πe,

where rn,p = vol−1/n
n (Bn

p). In addition, the minimum occurs for the unit cube with ξ = (1,0, . . . ,0).

Otherwise, Meyer and Pajor [21] proved also that among central hyperplane sections of Bn
1 the central section orthogonal

to (1,1, . . . ,1) had the smallest volume, and they conjectured that the results were still correct for 0 < p � 2. Ten years
later, Koldobsky [17] verified the conjecture.

Theorem B. (See Koldobsky [17].) For 0 < p � 2, and every ξ ∈ Sn−1 ,

p

π(n − 1)�((n − 1)/p)

∞∫
0

γ n
p (t/

√
n)dt � voln−1

(
Bn

p ∩ ξ⊥)
� (2�(1 + 1/p))n−1

�(1 + (n − 1)/p)
,

where γp denotes the Fourier transform of the function z 
→ exp(−|z|p) (z ∈ R), equality on the left-hand side holds for ξ =
( 1√

n
, . . . , 1√

n
), equality on the right-hand side holds for ξ = (1, . . . ,0), respectively.

By Theorem 3 in Huang et al. [13], the inequalities for the volume of Bn
p yield the following consequence.

Theorem 1.2. For 0 < p � 2, n � 2 and every ξ ∈ Sn−1 ,

0 < voln−1
(
rn,p Bn

p ∩ ξ⊥)
< p

√
e,

where rn,p = vol−1/n
n (Bn

p).

As p tends to zero, p
√

e tends to infinity, and Bn
p degenerates to the axes of coordinates. The situation is really bad.

2. Extremum of the isotropic constant of Bn
p

Let K be a convex body of volume 1 (a compact, convex subset with nonempty interior) in R
n , whose barycenter is

at the origin (i.e., b(K ) = ∫
K x dx = 0). It is well known (see Ref. [23]) that there exists a unique positive definite linear

transformation φ with det(φ) = 1, such that for any unit vector u ∈ Sn−1,∫
φK

〈x, u〉2 dx = L2
K

independently of u, where Sn−1 denotes the Euclidean unit sphere in R
n . The number LK is referred to as the isotropic

constant of the convex body K ; if the transformation φ is the identity map, we say that K is isotropic, or that it is in
isotropic position. It is known that the slicing problem is equivalent to the question of whether there is a uniform upper
bound, independent of dimension, on the isotropic constants of isotropic bodies of volume 1.

To date, the slicing problem is solved for several classes of convex sets: unconditional convex bodies [23], zonoids,
duals to zonoids [22], bodies with a bounded out volume ratio [23], random bodies [16], unit ball of Schatten norms [20],

and others (e.g., [6] and [14]). However, the best estimate of the upper bound available for arbitrary bodies is n
1
4 by

Klartag [15], which slightly improves Bourgain’s estimate, n
1
4 log(n + 1) (see Ref. [8]). Interesting results are also established

in [7] and [10].
For the isotropic constant of Bn

p , we have the following lemma.

Lemma 2.1. Let 1 � p � ∞, then Bn
p is an isotropic convex body in R

n. Furthermore, its isotropic constant is

LBn
p
=

(
�(1 + 3/p)�(1 + n/p)1+ 2

n

12�(1 + (n + 2)/p)�(1 + 1/p)3

) 1
2

. (2.1)
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Proof. Since Bn
p is convex, when p � 1, the lemma is followed from direct calculations (see Ref. [25] or [27]). �

Although to minimize the expression (2.1) seems to be difficult, in the following, we utilize some skills of the analysis
and get the result as required. To this end, we first optimize the expression (2.1) for a given positive integer n, and then
optimize the expression (2.1) for some given p � 1.

Lemma 2.2. Let p > 0. Then, for each given positive integer n,

F (p) = �(1 + 3/p)�(1 + n/p)1+ 2
n

�(1 + (n + 2)/p)�(1 + 1/p)3

attains its minimum at p = 2.

Proof. It is sufficient to show that ln F attains its minimum at p = 2. Take the logarithmic derivative of F , and this gives

d ln F (p)

dp
= n + 2

p2

(
ψ

(
1 + n + 2

p

)
− ψ

(
1 + n

p

))
− 3

p2

(
ψ

(
1 + 3

p

)
− ψ

(
1 + 1

p

))
, (2.2)

where ψ(x) = �′(x)/�(x). Consider

(n + 2)

(
ψ

(
1 + n + 2

p

)
− ψ

(
1 + n

p

))
, (2.3)

and in (2.3), we get

(n + 2)

∞∫
0

1

z

(
1

(1 + z)1+ n
p

− 1

(1 + z)1+ n+2
p

)
dz (2.4)

from the following integral representation for the function ψ (see Ref. [1])

ψ(x) =
∞∫

0

1

z

(
e−z − 1

(1 + z)x

)
dz.

Introduce a change of variable, t = p
√

1 + z, then (2.4) is equal to

−p

∞∫
1

t2 − 1

t p − 1
d

1

tn+2
. (2.5)

Let n = 1 in (2.5), then

3

(
ψ

(
1 + 3

p

)
− ψ

(
1 + 1

p

))
= −p

∞∫
1

t2 − 1

t p − 1
d

1

t3
.

Thus,

d ln F (p)

dp
= 1

p

∞∫
1

t2 − 1

t p − 1
d

(
1

t3
− 1

tn+2

)
.

It is not hard to show that

d ln F

dp

∣∣∣∣
p=2

= 1

2

∞∫
1

d

(
1

t3
− 1

tn+2

)
= 0, (2.6)

and also

d ln F (p)

dp
= 1

p

∞∫
1

t2 − 1

t p − 1
d

(
1

t3
− 1

tn+2

)

= − 1

p

∞∫
1

2t[(1 − p
2 )t p + p

2 · t p−2 − 1]
(t p − 1)2

(
1

t3
− 1

tn+2

)
dt

< 0, (2.7)
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if 0 < p < 2. In fact, it follows from the arithmetic–geometric means inequality, i.e. (1 − λ)x + λy � x1−λ yλ , where x, y � 0
and 0 < λ < 1. Similarly,

d ln F (p)

dp
= 1

p

∞∫
1

t2 − 1

t p − 1
d

(
1

t3
− 1

tn+2

)

=
∞∫

1

t[(1 − 2
p )t p + 2

p t0 − t p−2]
(t p − 1)2

(
1

t3
− 1

tn+2

)
dt

> 0, (2.8)

if p > 2. The theorem directly follows from (2.6), (2.7), (2.8). �
For a given positive integer n, it follows from Lemmas 2.1 and 2.2 that LBn

p
is minimal when p = 2 and the minimum is

equal to

(
�(1 + n/2)1+ 2

n

2π�(2 + n/2)

) 1
2

. (2.9)

To find the minimum of LBn
p

, it remains to find the minimum of (2.9). Noting that �(2 + n/2) = (1 + n/2)�(1 + n/2) by
�(x + 1) = x�(x), (2.9) becomes

(
1

2π

1

1 + n/2
�(1 + n/2)2/n

) 1
2

.

Lemma 2.3. Let n be a positive integer. Then

G(n) = 1

1 + n/2
�(1 + n/2)2/n (2.10)

is decreasing.

Proof. It is not hard to calculate that G(1) > G(2) > G(3). And, for the proof of the theorem, it is sufficient to show that
G(x) (x ∈ R, x > 1) is decreasing.

Write

g(x) = ln G(x) = 1

x
ln�(1 + x) − ln(1 + x),

for x ∈ R, x > 1. Using the representation (see Ref. [1])

dψ(x)

dx
=

∞∑
k=0

1

(x + k)2
,

we have

1

x

(
x2 g′(x)

)′ = ψ ′(1 + x) − x + 2

(x + 1)2

=
∞∑

k=1

1

(x + k)2
− x + 2

(x + 1)2

<
1

(x + 1)2
+

∞∫
1

dt

(x + t)2
− x + 2

(x + 1)2
= 0.

Thus, for each x > 1,

x2 g′(x) < g′(1) = −γ + 1

2
< 0,

where γ stands for the Euler constant and it is equal to 0.5772 . . . . Therefore G(x) is decreasing for x > 1. �
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We derive from Lemmas 2.2, 2.3 and Stirling’s asymptotic formula (see Ref. [1])

�(x) ∼ √
2πx

(
x

e

)x

as �x → ∞

that LBn
p

must not be less than 1/
√

2πe for p � 1.
For the upper bound of LBn

p
, it is not hard to show that

LBn
p
� max{LBn

1
, LBn∞},

since d ln F (p)/dp < 0, when 0 < p < 2, and d ln F (p)/dp > 0, when p > 2. Noting that

LBn
1
< LB1

1
= LBn∞ = 1/(2

√
3),

for each positive integer n, therefore, LBn
p

must not be greater than (2
√

3)−1 for p � 1.
We summarize the discussion above in the following propositions.

Proposition 2.4. Let 1 � p � ∞, LBn
p

denotes the isotropic constant of Bn
p . Then,

1/
√

2πe � LBn
p
� 1/(2

√
3),

where the minimum occurs when p = 2 and n tends to infinity, and the maximum occurs when n = 1 or p = +∞.

For the sake of finding isotropic constants of Bn
p , for 0 < p < 1, we extend the definition of isotropic body to compact

sets, since they are no longer convex (see Ref. [18, p. 21]).

Remark 2.5. Noting that formula (2.1) also holds for 0 < p < 1,

∫
rn,p Bn

p

〈x, ξ〉2 dx = L2
rn,p Bn

p
= �(1 + 3/p)�(1 + n/p)1+ 2

n

12�(1 + (n + 2)/p)�(1 + 1/p)3
,

for every ξ ∈ Sn−1, where rn,p = vol−1/n
n (Bn

p), although Bn
p (0 < p < 1) is really not convex. Furthermore, for each positive

integer n, Lrn,p Bn
p

, say, tends to infinity when p tends to zero; and due to Lemma 2.2 and direct calculation, we have

Proposition 2.6. Let 0 < p < 1. Then,

LBn
p
� 1/(

√
2e),

where the equality occurs when p = 1 and n tends to infinity.

3. Estimates for the extremal sections of �n
p-balls

We refer back to [23], for the aim of formulating the equivalence.

Lemma 3.1. (See [23].) Let K be a symmetric convex body in R
n, p > 0. Then

(
1

voln(K )

∫
K

∣∣〈x, ξ〉∣∣p
dx

)1/p

� voln(K )

voln−1(K ∩ ξ⊥)

1

2(p + 1)1/p
.

The equality occurs for a cylinder in the direction of ξ .

Lemma 3.2. (See [23].) Let K be a symmetric convex body in R
n, p > 0 and ξ ∈ Sn−1 . Then

(
1

voln(K )

∫
K

∣∣〈x, ξ〉∣∣p
dx

)1/p

� voln(K )

voln−1(K ∩ ξ⊥)

(
n

2

)(
n!

(p + 1)(p + 2) · · · (p + n)

)1/p

.

The equality occurs for a cone based on ξ⊥ with ξ as summit.

Lemma 3.2 for p = 2 is due to Hensley [12]. The following can be summarized from the lemmas.
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Lemma 3.3. Let K be a symmetric convex body of volume 1 in R
n and ξ ∈ Sn−1 ,

1

2
√

3

(∫
K

〈x, ξ〉2 dx

)−1/2

� voln−1
(

K ∩ ξ⊥)
� 1√

2

(∫
K

〈x, ξ〉2 dx

)−1/2

,

where equality in the left-hand side holds for a cylinder in the direction of ξ , and equality in the right-hand side holds for a cone based
on ξ⊥ with ξ as summit when n tends to infinity.

Proof. It is sufficient to consider the case p = 2, in Lemmas 3.1 and 3.2. Since

n√
(n + 1)(n + 2)

(3.1)

is increasing when the positive integer n is increasing, the maximum of (3.1) occurs as n tends to infinity. (The lemma also
can be derived from Proposition 10 in [3].) �

Now we complete the proof of our main result.

Proof of Theorem 1.1. Write rn,p = vol−1/n
n (Bn

p). Then, rn,p Bn
p is isotropic, since its volume is 1. Hence,

( ∫
rn,p Bn

p

〈x, ξ〉2 dx

)1/2

= Lrn,p Bn
p
=

(
�(1 + 3/p)�(1 + n/p)1+ 2

n

12�(1 + (n + 2)/p)�(1 + 1/p)3

) 1
2

followed from Lemma 2.1 and formula (2.1). Therefore, Proposition 2.4 and Lemma 3.3 lead to the inequalities in the
theorem. The situation where the equalities occur is determined by Proposition 2.4, Lemma 3.3 and Theorem A. �
Lemma 3.4. (See [13].) For all integers n � p − 1, we have

a vol
n

n+1
n+1

(
Bn+1

p

)
� voln

(
Bn

p

)
< b vol

n
n+1
n+1

(
Bn+1

p

)
,

where a = p−1
p

√
�(2)/�(

p−1
p + 1), and b = p

√
e.

Proof of Theorem 1.2. Referring back to Theorem B, we have

voln−1
(

Bn
p ∩ ξ⊥)

� (2�(1 + 1/p))n−1

�(1 + (n − 1)/p)
= voln−1

(
Bn−1

p

)
, (3.2)

for 0 < p � 2, and every ξ ∈ Sn−1. Then, the theorem is followed from (3.2) and Lemma 3.4. �
Acknowledgments

The authors would like to thank the anonymous referee for the very careful reading of the original manuscript and for many valuable suggestions for
improving it.

References

[1] G. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 2000.
[2] K. Ball, Cube slicing in R

n , Proc. Amer. Math. Soc. 97 (1986) 465–473.
[3] K. Ball, Logarithmically concave functions and sections of convex sets in R

n , Studia Math. 88 (1988) 69–84.
[4] J. Bastero, Upper bounds for the volume and diameter of m-dimensional sections of convex bodies, Proc. Amer. Math. Soc. 135 (6) (2007) 1851–1859.
[5] J. Bastero, F. Galve, A. Peña, et al., Inequalities for the gamma function and estimates for the volume of sections of Bn

p , Proc. Amer. Math. Soc. 130 (1)
(2001) 183–192.

[6] J. Bourgain, B. Klartag, V. Milman, A reduction of the slicing problem to finite volume ratio bodies, C. R. Acad. Sci. Paris Ser. I 336 (2003) 331–334.
[7] J. Bourgain, B. Klartag, V. Milman, Symmetrization and isotropic constants of convex bodies, in: Lecture Notes in Math., vol. 1850, 2004, pp. 101–116.
[8] J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, in: Lecture Notes in Math., vol. 1469, 1991, pp. 127–137.
[9] H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972) 410–418.

[10] B. He, G. Leng, Isotropic bodies and Bourgain problem, Sci. China Ser. A 48 (5) (2005) 666–679.
[11] D. Hensley, Slicing the cube in R

n and probability (bounds for the measure of a central cube slice in R
n by probability methods), Proc. Amer. Math.

Soc. 73 (1979) 95–100.
[12] D. Hensley, Slicing convex bodies—bounds for slice area in terms of the body’s covariance, Proc. Amer. Math. Soc. 79 (1980) 619–625.
[13] Z. Huang, B. He, M. Huang, Inequalities for the volume of the unit ball in �n

p , Filomat 22 (1) (2008) 105–114.
[14] B. Klartag, An isomorphic version of the slicing problem, J. Funct. Anal. 218 (2005) 372–394.
[15] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (6) (2006) 1274–1290.
[16] B. Klartag, G. Kozma, On the hyperplane conjecture for random convex sets, Israel J. Math. 170 (1) (2009) 253–268.



D. Ma, B. He / J. Math. Anal. Appl. 376 (2011) 725–731 731
[17] A. Koldobsky, An application of the Fourier transform to sections of star bodies, Israel J. Math. 106 (1998) 157–164.
[18] A. Koldobsky, Fourier Analysis in Convex Geometry, Amer. Math. Soc., Providence, RI, 2005.
[19] A. Koldobsky, M. Zymonopoulou, Extremal sections of complex �p -balls, 0 < p � 2, Studia Math. 159 (2003) 185–194.
[20] H. König, M. Meyer, A. Pajor, The isotropy constants of the Schatten classes are bounded, Math. Ann. 312 (4) (1998) 773–783.
[21] M. Meyer, A. Pajor, Sections of the unit ball of �n

q , J. Funct. Anal. 88 (1988) 109–123.
[22] E. Milman, Dual mixed volumes and the slicing problem, Adv. Math. 207 (2006) 566–598.
[23] V. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: Lecture Notes in Math.,

vol. 1376, 1989, pp. 64–104.
[24] K. Oleszkiewicz, On p-pseudostable random variables, Rosenthal spaces and �n

p -ball slicing, in: Lecture Notes in Math., vol. 1807, 2003, pp. 188–210.
[25] M. Schmuckenschläger, Volume of intersections and sections of the unit ball of �n

p , Proc. Amer. Math. Soc. 126 (5) (1998) 1527–1530.
[26] J.D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979) 543–553.
[27] L. Xue, Q. Chen, B. He, Isotropic constant of Bn

p and its asymptotic properties, J. Shanghai Univ. Nat. Sci. 14 (3) (2008) 260–264 (in Chinese).


	Estimates for the extremal sections of lpn-balls
	Introduction
	Extremum of the isotropic constant of Bpn
	Estimates for the extremal sections of lpn-balls
	Acknowledgments
	References


