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Abstract

All SL(n) contravariant vector valuations on polytopes in Rn are completely
classified without any additional assumptions. The facet vector is defined. It turns out
to be the unique class of such valuations for n ≥ 3. In dimension two, the classification
corresponds to the known case of SL(2) covariant valuations.

1 Introduction
The study of geometric notions which are compatible with transformation groups are
important tasks in geometry as proposed in Felix Klein’s Erlangen program in 1872. As
many functions defined on geometric objects satisfy the inclusion-exclusion principle, the
property of being a valuation is natural to consider in the classification of those functions.
Here, a function Z defined on Pn, the space of all polytopes in Rn, and taking values in an
abelian semigroup is called a valuation if

Z(P ) + Z(Q) = Z(P ∪Q) + Z(P ∩Q) (1.1)

for every P,Q, P ∪ Q ∈ Pn. A function Z defined on some subspace of Pn is also called a
valuation if (1.1) holds whenever P,Q, P ∪Q,P ∩Q contained in this subspace. Valuations
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also have their origins in Dehn’s solution of Hilbert’s Third Problem in 1901. The most
famous result is Hadwiger’s characterization theorem which classifies all continuous and rigid
motion invariant real valuations on the space of convex bodies in Rn. This celebrated result
initiated a systematic study on the classification of valuations compatible with certain linear
transforms.

These studies are also a classical part of geometry with important applications in integral
geometry (see [6, Chap. 7], [13], [29, Chap. 6]). They turned out to be extremely fruitful
and useful especially in the affine geometry of convex bodies (see [2–4, 9, 12, 17]). Examples
of valuations are intrinsic volumes [8, 20], affine surface areas [24, 25], the projection bodies
[7, 16, 19, 22], the intersection bodies [23] and other Minkowski valuations [5, 30, 32].

The aim of this paper is to obtain a complete classification of SL(n) contravariant vector
valuations on polytopes without any additional assumptions.

A function Z : Pn → Rn is called a vector valuation if the addition in (1.1) is the
vector addition. It is called SL(n) contravariant if Z(ϕP ) = ϕ−tZ(P ) for all P ∈ Pn and
ϕ ∈ SL(n), and is called SL(n) covariant if Z(ϕP ) = ϕZ(P ) for all P ∈ Pn and ϕ ∈ SL(n).
If Z is either SL(n) contravariant or SL(n) covariant, then Z is SL(n) intertwining. In
2002, Ludwig [18] established the first classification of measurable, SL(n) intertwining vector
valuations on Pn

(o) with some assumptions of homogeneity, where Pn
(o) is the space of polytopes

in Rn that contain the origin in their interiors. Later, Haberl and Parapatits [10] removed
the homogeneity assumption in Ludwig’s result. Recently, Zeng and the second author [34]
obtained a complete classification of SL(n) covariant vector valuations on Pn without any
additional assumptions. There are also some interesting characterizations of matrix and
tensor valuations (see [1, 11, 21, 27, 28]). Surprisingly, classifications of SL(n) contravariant
vector valuations are still missing on Pn with any conditions and it should be indispensable
for further classifications of SL(n) contravariant tensor valuations. We remark that the SL(n)
invariant real valued valuations classified by Ludwig and Reitzner [26] are SL(n) contravariant
tensor valuations of order 0 and the SL(n) contravariant vector valuations considered in this
paper are SL(n) contravariant tensor valuations of order 1.

An intuitive example of SL(n) contravariant vector valuation is the sum of all facet
normals. However, the Minkowski relation shows that it vanishes (see [29, §8.2.1]). More
precisely, in the case of polytopes, it means the following. For u ∈ Sn−1, we define aP (u) by
the (n − 1)-dimensional volume of F (P, u) = P ∩ {x ∈ Rn : x · u = hP (u)}, where hP (u) =
max {x · u : x ∈ P} denotes the support function of P . For P ∈ Pn, we have∑

u∈N (P )

aP (u)u = o,

where N (P ) denotes the set of all outer unit normals of facets of P . However, it is also
meaningful to consider the partial sum over facets that do not contain the origin, for example,
the new projection body ΠoP defined by Ludwig [22].

In general, for ζ ∈ C = {solutions of Cauchy’s functional equation f : [0,∞) → R}, the
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facet vector M0,1
ζ (P ) of P ∈ Pn is defined by

M0,1
ζ (P ) =

∑
u∈N (P )\No(P )

ζ(V (P, u))

|hP (u)|
u,

where No(P ) denotes the set of outer unit normals of facets of P that contain the origin in
their affine hulls, and V (P, u) denotes the volume of the cone [o, F (P, u)], the convex hull of
F (P, u) and the origin. We use the notation M0,1 coinciding with (0, 1)-tensor in [11]. Also,
it is related with (0, 1)-Minkowsi tensor in [29, §5.4.2].

Here, we say f : [0,∞) → R is a solution of Cauchy’s functional equation if

f(x+ y) = f(x) + f(y)

for every x, y ∈ [0,∞). If we assume some “regularity” conditions on f (e.g., continuous,
bounded, or measurable), then f has to be a linear function. However, if no further conditions
are assumed, then there are infinitely many other solutions of Cauchy’s functional equation.

For ζ ∈ C, the mapping ζ 7→ M0,1
ζ is injective. Indeed, we have M0,1

ζ (s
1
nT n) = ζ(s/n!)1,

for s ≥ 0 and ζ ∈ C (see Section 2 for notation). Let ζ1, ζ2 ∈ C. Then, M0,1
ζ1

= M0,1
ζ2

implies M0,1
ζ1

(s
1
nT n) = M0,1

ζ2
(s

1
nT n). Thus, ζ1(s/n!) = ζ2(s/n!). Setting t = s/n!, we obtain

ζ1(t) = ζ2(t), for t ≥ 0.
In this paper, we show that the facet vector is essentially the unique class of SL(n)

contravariant vector valuations on Pn
o for n ≥ 3.

Let Pn
o be the space of polytopes in Rn that contain the origin,

Theorem 1.1. Let n ≥ 3. A function Z : Pn
o → Rn is an SL(n) contravariant valuation if

and only if there exists ζ ∈ C
Z(P ) =M0,1

ζ (P )

for every P ∈ Pn
o .

Using a relation with SL(2) covariant vector valuations, we obtain the classification in
the case of dimension two. We also find that the vector Bζ defined in [34] turns out to be a
rotation of the facet vector in this case (see Section 3 for details).
Theorem 1.2. A function Z : P2

o → R2 is an SL(2) contravariant valuation if and only if
there exist constants c1, c2 ∈ R and ζ ∈ C such that

Z(P ) =M0,1
ζ (P ) + c1ρπ

2
M1,0(P ) + c2ρπ

2
A(P )

for every P ∈ P2
o , where ρπ

2
is the counter-clockwise rotation in R2 of the angle π

2
.

Here, for P ∈ Pn, M1,0(P ) is the moment vector of P , which is defined by M1,0(P ) =∫
P
xdx. The notation also coincides with (1, 0)-tensor in [11] and is related with (1, 0)-

Minkowsi tensor in [29, §5.4.2]. The valuation A : P2
o → R2 is defined by

A(P ) =


v + w, if dimP = 2 and P has two edges [o, v] , [o, w] ,
2(v + w), if P = [v, w] contains the origin,
o, otherwise,
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where we view [v, w] that contains the origin as two edges [o, v] and [o, w].
If we identify A as a valuation taking values in the dual space of Rn, then we have

A(P ) · x = hP (x)− h−P (x)− hoP (x) + ho−P (x), x ∈ Rn

for all P ∈ P2
o . Here hoP := −

∑
u∈Fo(P )(−1)dimFh−F and Fo(P ) is the set of (all dimensional)

faces (including P itself) of P which contain the origin. Let F(P ) be the set of faces of P .
Shephard [33] established the following Euler-type relation:

hP = −
∑

F∈F(P )

(−1)dimFh−F ,

Thus, we also have

A(P ) · x =
∑

u∈F(P )\Fo(P )

(−1)dimFhF (x)−
∑

u∈F(P )\Fo(P )

(−1)dimFh−F (x), x ∈ Rn

for all P ∈ P2
o . We refer to [15] for further study of hoP and Euler-type relations in a more

general setting.
Similar to the classification of Minkowski valuations by Schuster and Wannerer [31], we

further extend these results to Pn.

Theorem 1.3. Let n ≥ 3. A function Z : Pn → Rn is an SL(n) contravariant valuation if
and only if there exist ζ1, ζ2 ∈ C such that

Z(P ) =M0,1
ζ1

(P ) +M0,1
ζ2

([o, P ]) (1.2)

for every P ∈ Pn, where [o, P ] is the convex hull of P and the origin.

Again, the case of dimension two is different.

Theorem 1.4. A function Z : P2 → R2 is an SL(2) contravariant valuation if and only if
there exist constants c1, c2, c̃1, c̃2 ∈ R and ζ1, ζ2 ∈ C such that

Z(P ) =M0,1
ζ1

(P ) +M0,1
ζ2

([o, P ]) + c1ρπ
2
M1,0(P ) + c̃1ρπ

2
M1,0([o, P ])

+ c2ρπ
2
A([o, P ]) + c̃2ρπ

2
A([o, v1, . . . , vr])

for every polytope P ∈ P2 with vertices v1, . . . , vr visible from the origin and labeled counter-
clockwisely, where a vertex v of P is called visible from the origin if P ∩ relint [o, v] = ∅.

It should be remarked that vector valuations are special Minkowski valuations [7], since
vectors can be viewed as convex bodies and the vector addition coincides with the Minkowski
addition. Also, vectors can be viewed as linear functions on Rn. Hence vector valuations
are also embedded in the space of continuous-function valued valuations [14]. However,
classifications of valuations in [7, 14] both need some assumptions of regularity. But as we
have seen, it is not a problem for vector valuations.
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2 Notation and preliminaries
2.1 Basic settings
We work in n-dimensional Euclidean space Rn with the standard basis {e1, . . . , en}. We
write a vector x ∈ Rn in coordinates by x = (x1, . . . , xn)

t. The inner product of x, y ∈ Rn is
denoted by x · y. Denote the vector with all coordinates 1 by 1, the n×n identity matrix by
In = (e1, . . . , en) and the determinant of a matrix A by detA. The affine hull, the boundary,
the dimension, the interior and the relative interior of a given set in Rn are denoted by aff,
bd, dim, int and relint, respectively.

Denote by [v1, . . . , vk] the convex hull of v1, . . . , vk ∈ Rn. A polytope is the convex hull
of finitely many points in Rn. Two basic classes of polytopes are the k-dimensional standard
simplex T k = [o, e1, . . . , ek] and one of their (k − 1)-dimensional facets T̃ k = [e1, . . . , ek]. In
general, an i-dimensional simplex is the convex hull of i+ 1 affinely independent points. For
i = 1, . . . , n, let T i denote the set of i-dimensional simplices with one vertex at the origin,
and T̃ i denote the set of (i− 1)-dimensional simplices T ⊂ Rn with o /∈ aff T . Indeed, every
polytope can be triangulated into simplices. We define a triangulation of a k-dimensional
polytope P into simplices as a set of k-dimensional simplices {T1, . . . , Tr} which have pairwise
disjoint interiors, with P = ∪Ti and with the property that for arbitrary 1 ≤ i1 < · · · < ij ≤ r
the intersections Ti1 ∩ · · · ∩ Tij are again simplices.

2.2 Backgrounds on valuations
We refer to [6, Chap. 7], [13] and [29, Chap. 6] for classical backgroud on valuations. Let
Qn be either Pn

o or Pn. First, we have the inclusion-exclusion principle (see [13]).

Lemma 2.1. Let Z : Qn → Rn be a valuation. Then

Z(P1 ∪ · · · ∪ Pk) =
∑

∅̸=S⊆{1,2,...,k}

(−1)|S|−1Z(
∩
i∈S

Pi)

for all k ∈ N and P1, P2, . . . , Pk ∈ Qn with P1 ∪ · · · ∪ Pk ∈ Qn.

We can use triangulations and the inclusion-exclusion principle to get the following result
(see e.g., [14, Lemma 4.5 and Lemma 4.6]).

Lemma 2.2. Let Z and Z ′ be SL(n) contravariant vector valuations on Pn
o . If Z(sT d) =

Z ′(sT d) for every s > 0 and 0 ≤ d ≤ n, then ZP = Z ′P for every P ∈ Pn
o .

Lemma 2.3. Let Z and Z ′ be SL(n) contravariant vector valuations on Pn. If Z(sT d) =
Z ′(sT d) and Z(sT̃ d) = Z ′(sT̃ d) for every s > 0 and 0 ≤ d ≤ n, then ZP = Z ′P for every
P ∈ Pn.
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2.3 Basic results
A valuation on Qn is called simple if it vanishes on P ∈ Qn with dimP < n.

Next, we mention a series of triangulations that will be used several times in this paper.
Let λ ∈ (0, 1) and denote by H the hyperplane through the origin with the normal vector
(1− λ)e1 − λe2. Write

H+ = {x ∈ Rn : x · ((1− λ)e1 − λe2) ≥ 0} and H− = {x ∈ Rn : x · ((1− λ)e1 − λe2) ≤ 0}.

Clearly, H+ and H− are the two halfspaces bounded by H. This hyperplane induces the
series of triangulations of T i as well as T̃ i for i = 2, . . . , n. There are two representations
corresponding to these triangulations due to the following definitions.

Definition 1. For λ ∈ (0, 1), define the linear transform ϕ1 ∈ SL(n) by

ϕ1e1 = λe1 + (1− λ)e2, ϕ1e2 = e2, ϕ1en = en/λ, ϕ1ej = ej, where j ̸= 1, 2, n,

and ψ1 ∈ SL(n) by

ψ1e1 = e1, ψ1e2 = λe1 + (1− λ)e2, ψ1en = en/(1− λ), ψ1ej = ej, where j ̸= 1, 2, n.

Let T̂ k−1 = [o, e1, e3, . . . , ek] for 2 ≤ k ≤ n.

Proposition 2.4. Let Z : Pn
o → Rn be an SL(n) contravariant valuation. Then,(
ϕ−t
1 + ψ−t

1 − In
)
Z(T i) = ϕ−t

1 Z(T̂
i−1), (2.1)

for 2 ≤ i < n.

Proof. It is clear that T i ∩ H+ = ψ1T
i, T i ∩ H− = ϕ1T

i and T i ∩ H = ϕ1T̂
i−1. By the

inclusion-exclusion principle, we have

Z(T i) + Z(T i ∩H) = Z(T i ∩H+) + Z(T i ∩H−).

Thus,
Z(T i) + Z(ϕ1T̂

i−1) = Z(ϕ1T
i) + Z(ψ1T

i).

Since Z is SL(n) contravariant, we derive(
ϕ−t
1 + ψ−t

1 − In
)
Z(T i) = ϕ−t

1 Z(T̂
i−1).

Definition 2. For λ ∈ (0, 1), define the linear transform ϕ2 ∈ GL(n) by

ϕ2e1 = λe1 + (1− λ)e2, ϕ2e2 = e2, ϕ2ej = ej, where j = 3, . . . , n,

and ψ2 ∈ GL(n) by

ψ2e1 = e1, ψ2e2 = λe1 + (1− λ)e2, ψ2ej = ej, where j = 3, . . . , n.
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Proposition 2.5. Let Z : Pn
o → Rn be an SL(n) contravariant valuation. Then,

Z(s
1
nT n) + λ

1
nϕ−t

2 Z((λs)
1
n T̂ n−1)

=λ
1
nϕ−t

2 Z((λs)
1
nT n) + (1− λ)

1
nψ−t

2 Z(((1− λ)s)
1
nT n),

(2.2)

for s > 0.

Proof. It is clear that sT n ∩H+ = ψ2sT
n, sT n ∩H− = ϕ2sT

n and sT n ∩H = ϕ2sT̂
n−1. By

the inclusion-exclusion principle, we have

Z(sT n) + Z(sT n ∩H) = Z(sT n ∩H+) + Z(sT n ∩H−).

Thus,
Z(sT n) + Z(ϕ2sT̂

n−1) = Z(ϕ2sT
n) + Z(ψ2sT

n).

Since ϕ2/λ
1
n and ψ2/(1− λ)

1
n belong to SL(n), we obtain

Z(sT n) + λ
1
nϕ−t

2 Z(λ
1
n sT̂ n−1) = λ

1
nϕ−t

2 Z(λ
1
n sT n) + (1− λ)

1
nψ−t

2 Z((1− λ)
1
n sT n).

Replacing s by s 1
n in the equation above yields

Z(s
1
nT n) + λ

1
nϕ−t

2 Z((λs)
1
n T̂ n−1)

=λ
1
nϕ−t

2 Z((λs)
1
nT n) + (1− λ)

1
nψ−t

2 Z(((1− λ)s)
1
nT n).

3 The facet vector
First, we show that the facet vector is a simple valuation on Pn.

Lemma 3.1. Let ζ ∈ C. Then, the facet vector M0,1
ζ : Pn → Rn is a simple valuation.

Proof. In order to prove that M0,1
ζ is a valuation, we need to show that

M0,1
ζ (P ∪Q) +M0,1

ζ (P ∩Q) =M0,1
ζ (P ) +M0,1

ζ (Q) (3.1)

for all P,Q ∈ Pn with P ∪Q ∈ Pn. We distinguish three sets of unit vectors:

I1 := {u ∈ Sn−1 : hP (u) < hQ(u)},

I2 := {u ∈ Sn−1 : hP (u) = hQ(u)},

I3 := {u ∈ Sn−1 : hP (u) > hQ(u)}.
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Note that the sets I1, I3 are both open and that hP∪Q = max{hP , hQ} and hP∩Q =
min{hP , hQ} if P ∪ Q is convex. Recall that aP (u) is the (n − 1)-dimensional volume of
F (P, u). Then,

V (P, u) =
1

n
aP (u)hP (u).

For u ∈ I1, we have

F (P ∪Q, u) = F (Q, u), F (P ∩Q, u) = F (P, u).

Hence,

aP∪Q(u) = aQ(u), hP∪Q(u) = hQ(u), aP∩Q(u) = aP (u), hP∩Q(u) = hP (u).

Thus,
V (P ∪Q, u) = V (Q, u) and V (P ∩Q) = V (P, u), for u ∈ I1.

Analogous for I3. Note that

(N (P ∪Q) \ No(P ∪Q)) ∩ I1 = (N (Q) \ No(Q)) ∩ I1,

(N (P ∩Q) \ No(P ∩Q)) ∩ I1 = (N (P ) \ No(P )) ∩ I1,

(N (P ∪Q) \ No(P ∪Q)) ∩ I3 = (N (P ) \ No(P )) ∩ I3,

(N (P ∩Q) \ No(P ∩Q)) ∩ I3 = (N (Q) \ No(Q)) ∩ I3.

Therefore, we have∑
u∈(N (P∪Q)\No(P∪Q))∩I1

ζ(V (P ∪Q, u))
hP∪Q(u)

u+
∑

u∈(N (P∩Q)\No(P∩Q))∩I1

ζ(V (P ∩Q, u))
hP∩Q(u)

u

+
∑

u∈(N (P∪Q)\No(P∪Q))∩I3

ζ(V (P ∪Q, u))
hP∪Q(u)

u+
∑

u∈(N (P∩Q)\No(P∩Q))∩I3

ζ(V (P ∩Q, u))
hP∩Q(u)

u

=
∑

u∈(N (Q)\No(Q))∩I1

ζ(V (Q, u))

hQ(u)
u+

∑
u∈(N (P )\No(P ))∩I1

ζ(V (P, u))

hP (u)
u

+
∑

u∈(N (P )\No(P ))∩I3

ζ(V (P, u))

hP (u)
u+

∑
u∈(N (Q)\No(Q))∩I3

ζ(V (Q, u))

hQ(u)
u.

It follows that (3.1) is equivalent to∑
u∈(N (P∪Q)\No(P∪Q))∩I2

ζ(V (P ∪Q, u))
hP∪Q(u)

u+
∑

u∈(N (P∩Q)\No(P∩Q))∩I2

ζ(V (P ∩Q, u))
hP∩Q(u)

u

=
∑

u∈(N (P )\No(P ))∩I2

ζ(V (P, u))

hP (u)
u+

∑
u∈(N (Q)\No(Q))∩I2

ζ(V (Q, u))

hQ(u)
u.

(3.2)
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Fix u ∈ Sn−1. Since for P ∈ Pn, P 7→ aP (u) is a valuation, we have

aP∪Q(u) + aP∩Q(u) = aP (u) + aQ(u)

for all P,Q ∈ Pn with P ∪Q ∈ Pn. Note that

hP∪Q(u) = hP∩Q(u) = hP (u) = hQ(u)

for u ∈ I2. Then,
V (P ∪Q, u) + V (P ∩Q, u) = V (P, u) + V (Q, u)

for u ∈ I2. Since ζ is a solution of Cauchy’s functional equation, we obtain

ζ(V (P ∪Q, u))
hP∪Q(u)

+
ζ(V (P ∩Q, u))

hP∩Q(u)
=
ζ(V (P, u))

hP (u)
+
ζ(V (Q, u))

hQ(u)
(3.3)

for u ∈ I2, where P,Q ∈ Pn with P ∪Q ∈ Pn. Also, note that

(N (P ∪Q) \ No(P ∪Q)) ∩ I2 = (N (P ∩Q) \ No(P ∩Q)) ∩ I2
=(N (P ) \ No(P )) ∩ I2 = (N (Q) \ No(Q)) ∩ I2.

(3.4)

Combined with (3.3) and (3.4), we obtain (3.2), and therefore the desired valuation property.
Next, we will show that the facet vector operator vanishes in the following two cases.
If dimP ≤ n− 2, it is clear that M0,1

ζ (P ) = 0 as N (P ) = ∅.
If dimP = n− 1, then hP (u) = −hP (−u), where u,−u are the outer unit normals of P .

By the definition of the facet vector, we obtain M0,1
ζ (P ) = 0.

Next, we prove the SL(n) contravariance of the facet vector.

Lemma 3.2. Let ζ ∈ C. Then, the facet vector operator M0,1
ζ : Pn → Rn is SL(n)

contravariant.

Proof. Let ϕ ∈ SL(n). Note that

u ∈ N (P ) \ No(P ) ⇔ ũ ∈ N (ϕP ) \ No(ϕP ) (3.5)

with
ũ :=

∥∥ϕ−tu
∥∥−1

ϕ−tu

and that
hϕP (ũ) = hP (ϕ

tũ) =
∥∥ϕ−tu

∥∥−1
hP (u), aϕP (ũ) =

∥∥ϕ−tu
∥∥ aP (u).

We have
V (ϕP, ũ) = V (P, u). (3.6)

9



Applying (3.5), (3.6) and the definition of the facet vector, we obtain

M0,1
ζ (ϕP ) =

∑
ũ∈N (ϕP )\No(ϕP )

ζ(V (ϕP, ũ))

hϕP (ũ)
ũ

=
∑

u∈N (P )\No(P )

ζ(V (P, u))

∥ϕ−tu∥−1 hP (u)
(
∥∥ϕ−tu

∥∥−1
ϕ−tu)

=
∑

u∈N (P )\No(P )

ζ(V (P, u))

hP (u)
ϕ−tu

= ϕ−tM0,1
ζ (P ).

Thus, we have finished the proof of the SL(n) contravariance of the facet vector.

Finally, the facet vector is related to an SL(2) covariant valuation in dimension two up
to a rotation. Let ζ ∈ C. Define Bζ : P2

o → R2 by

Bζ(P ) =
r∑

i=2

ζ (det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi)

if dimP = 2 and P = [o, v1, . . . , vr] with o ∈ bdP and the vertices {o, v1, . . . , vr} are labeled
counter-clockwisely;

Bζ(P ) =
ζ (det(vr, v1))

det(vr, v1)
(vr − v1) +

r∑
i=2

ζ (det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi)

if o ∈ intP and P = [v1, . . . , vr] with the vertices {v1, . . . , vr} are labeled counter-clockwisely;

Bζ(P ) = o

if P = {o} or P is a line segment. We remark that if v1, v2 are vertices of P ∈ P2
o in counter-

clockwise order, then det(v1, v2) > 0. Indeed, there exist r1, r2 > 0 and θ1, θ2 ∈ [0, 2π)
with 0 < θ2 − θ1 < π, such that v1 = r1(cos θ1, sin θ1)

t and v2 = r2(cos θ2, sin θ2)
t. Thus,

det(v1, v2) = r1r2 sin(θ2 − θ1) > 0.

Lemma 3.3. Let ζ ∈ C. Then

M0,1
ζ (P ) =

1

2
ρπ

2
Bζ(P ),

for all P ∈ P2
o .

Proof. For dimP = 2 and P = [o, v1, . . . , vr] with o ∈ bdP and the vertices {0, v1, . . . , vr}
are labeled counter-clockwisely, we have

Bζ(P ) =
r∑

i=2

ζ (det(vi−1, vi))

det(vi−1, vi)
(vi−1 − vi) =

r∑
i=2

ζ (2V ([o, vi−1, vi]))

2V ([o, vi−1, vi])
(vi−1 − vi).
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Write ui =
ρπ

2
(vi−1−vi)

∥vi−1−vi∥ . Then, ui is the outer unit normal of [vi−1, vi] and [o, vi−1, vi] is the
cone [o, F (P, ui)]. Therefore,

ρπ
2
Bζ(P ) =

r∑
i=2

ζ (2V (P, ui))

2V (P, ui)
∥vi−1 − vi∥ui

= 2
r∑

i=2

ζ (V (P, ui))

∥vi−1 − vi∥hP (ui)
∥vi−1 − vi∥ui

= 2
∑

u∈N (P )\No(P )

ζ(V (P, u))

hP (u)
u

= 2M0,1
ζ (P ).

Similar arguments also prove other cases.

4 Proof of the main results on Pn
o

4.1 The two-dimensional case
First, we show a relation between SL(2) covariant functions and SL(2) contravariant
functions. Let Q2 be either P2

o or P2.

Lemma 4.1. Let Z : Q2 → R2. Then, Z is SL(2) covariant if and only if ρπ
2
Z is SL(2)

contravariant.

Proof. A direct calculation shows that ρπ
2
ϕ = ϕ−tρπ

2
for all ϕ ∈ SL(2), which implies the

Lemma.

We will use the following result.

Theorem 4.2 (Zeng & Ma [34]). A function Z : P2
o → R2 is an SL(2) covariant valuation

if and only if there exist constants c1, c2 ∈ R and ζ ∈ C such that

Z(P ) = c1M
1,0(P ) + c2A(P ) +Bζ(P )

for every P ∈ P2
o .

Now, Theorem 1.2 follows immediately from Lemma 4.1, Theorem 4.2 and Lemma 3.3.

4.2 The higher-dimensional case
First, we state the following simple proposition.

Proposition 4.3. Let n ≥ 3 and Z : Pn
o → Rn be an SL(n) contravariant function. Then,

there exists a function f : [0,∞) → R such that Z(sT n) = f(s)1, for s ≥ 0.

11



Proof. Let s ≥ 0. We first consider n = 3. Write Z(sT 3) = (x1, x2, x3)
t and

σ0 =

 0 0 1
1 0 0
0 1 0

 ∈ SL(3).

The SL(3) contravariance of Z implies

Z(sT 3) = Z(σ0sT
3) = σ−t

0 Z(sT 3),

i.e.  x1
x2
x3

 =

 0 0 1
1 0 0
0 1 0

 x1
x2
x3

 =

 x3
x1
x2

 .

Thus, x1 = x2 = x3.
Next, we consider n ≥ 4. Write Z(sT n) = (x1, . . . , xn)

t and

σ =

 Ir
σ0

In−r−3

 ∈ SL(n),

where r = 0, 1, . . . , n − 3 and σ0 moves along the main diagonal of σ. Using the SL(n)
contravariance of Z, we have Z(sT n) = Z(σsT n) = σ−tZ(sT n). This yields x1 = · · · = xn.
Therefore, there exists a function f : [0,∞) → R such that Z(sT n) = f(s)1, since the
coordinates depend on s.

Next, we obtain a sufficient condition for a valuation becoming a simple valuation.

Lemma 4.4. Let n ≥ 2 and Z : Pn
o → Rn be an SL(n) contravariant valuation. Then, Z is

simple if Z(T k) = 0 for k = 0, 1, . . . , n− 1.

Proof. First, using triangulations of polytopes, it suffices to prove Z vanishes on T k for
k = 0, 1, . . . , n− 1. Since every T ∈ T k is an SL(n) image of sT k for s ̸= 0, we only need to
consider sT k. Now, write

ρ =

 sIk
In−k−1

s−k

 ∈ SL(n).

The SL(n) contravariance of Z gives Z(sT k) = Z(ρT k) = ρ−tZ(T k). By the assumption
that Z(T k) = 0 for k = 0, 1, . . . , n − 1, we obtain that Z vanishes on all sT k for s ̸= 0 and
k = 0, 1, . . . , n− 1. Therefore, Z is simple.

Now, we investigate SL(n) contravariant valuations on T k.
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Lemma 4.5. Let n ≥ 3 and Z : Pn
o → Rn be an SL(n) contravariant valuation. Then, Z is

simple.

Proof. Due to Lemma 4.4, it suffices to prove Z vanishes on T k for k = 0, 1, . . . , n − 1. We
prove the statement by induction on the dimension k.

For k = 0, write Z({o}) = (v1, . . . , vn)
t,

σ1 =

(
−1 0
0 −1

)
and σ2 =

 Ir
σ1

In−r−2

 ∈ SL(n),

where r = 0, 1, . . . , n−2. Using the SL(n) contravariance of Z, we have Z({o}) = Z(σ2 {o}) =
σ−t
2 Z({o}). Hence, v1 = · · · = vn = 0.

For k = 1, write Z(T 1) = (w1, . . . , wn)
t and

σ3 =

Ir σ1
In−r−2

 ∈ SL(n),

where r = 1, . . . , n − 2. Using the SL(n) contravariance of Z, we have Z(T 1) = Z(σ3T
1) =

σ−t
3 Z(T 1). Thus, w2 = · · · = wn = 0 and Z(T 1) = w1e1.

For k = 2, write Z(T 2) = (x1, . . . , xn)
t. If n = 3, we consider

σ4 =

0 1 0
1 0 0
0 0 −1

 ∈ SL(3).

The SL(3) contravariance of Z implies Z(T 2) = Z(σ4T
2) = σ−t

4 Z(T 2). Thus, x1 = x2 and
x3 = 0. If n ≥ 4, we consider

σ5 =

(
σ4 0
0 In−3

)
∈ SL(n) and σ6 =

Ir σ1
In−r−2

 ∈ SL(n),

where r = 2, . . . , n − 2. By the SL(n) contravariance of Z, we have Z(T 2) = Z(σ5T
2) =

σ−t
5 Z(T 2) and Z(T 2) = Z(σ6T

2) = σ−t
6 Z(T 2). Thus, x1 = x2, x3 = · · · = xn = 0 and

Z(T 2) = x1(e1 + e2). Now, we use the triangulation in Definition 1. Equation (2.1) is
equivalent to

1
λ

−1−λ
λ

0 · · · 0
− λ

1−λ
1

1−λ
0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 0




x1
x1
0
...
0

 =


1
λ

−1−λ
λ

0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · λ




w1

0
0
...
0

 .
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This yields x1 = w1 = 0. Therefore, Z vanishes on T 1 and T 2.
Next, assume Z(T k−1) = 0 for 3 ≤ k ≤ n− 1. Write Z(T k) = (y1, . . . , yn)

t and

σ7 =


1

1
In−3

−1

 ∈ SL(n).

By the SL(n) contravariance of Z, we have Z(T k) = Z(σ7T
k) = σ−t

7 Z(T k). Thus y1 = y2.
Finally, we use the triangulation in Definition 1. Equation (2.1) is equivalent to

1
λ

−1−λ
λ

0 · · · 0
− λ

1−λ
1

1−λ
0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1




y1
y2
y3
...
yn

 =


0
0
0
...
0

 .

Together with y1 = y2, this yields y1 = · · · = yn = 0. Therefore, Z(T k) = 0, which completes
the proof.

Finally, we obtain the following classification.

Proof of Theorem 1.1. Let ζ ∈ C. Due to Lemmas 3.1 and 3.2, M0,1
ζ is an SL(n) contravariant

valuation on Pn
o . It remains to show the reverse statement.

We use the triangulation in Definition 2. By (2.2) and Lemma 4.5, we have for s > 0

Z(s
1
nT n) = λ

1
nϕ−t

2 Z((λs)
1
nT n) + (1− λ)

1
nψ−t

2 Z(((1− λ)s)
1
nT n).

By Proposition 4.3, there exists a function f : [0,∞) → R such that Z(sT n) = f(s)1 and

f(s
1
n )1 = λ

1
nϕ−t

2 f((λs)
1
n )1+ (1− λ)

1
nψ−t

2 f(((1− λ)s)
1
n )1.

In other words,
f(s

1
n ) = λ

1
nf((λs)

1
n ) + (1− λ)

1
nf(((1− λ)s)

1
n ).

Set s = a+ b, λ = a/(a+ b) for a, b > 0, and g(x) = x
1
nf(x

1
n ) for x > 0 to get

g(a+ b) = g(a) + g(b).

Hence, g is a solution of Cauchy’s functional equation and

Z(s
1
nT n) =

g(s)

s
1
n

1.

Setting ζ(s) = g(n!s), we obtain Z(s
1
nT n) = M0,1

ζ (s
1
nT n). The proof is now completed by

Lemma 2.2.
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5 Proof of the main results on Pn

5.1 The two-dimensional case
First, we treat the case for P2. We need the following result.

Theorem 5.1 (Zeng & Ma [34]). A function Z : P2 → R2 is an SL(2) covariant valuation
if and only if there exist constants c1, c2, c̃1, c̃2 ∈ R and ζ1, ζ2 ∈ C such that

Z(P ) = Bζ1([o, P ]) +
r∑

i=2

Bζ2([o, vi−1, vi])

+ c1M
1,0(P ) + c̃1M

1,0([o, P ]) + c2A([o, P ]) + c̃2A([o, v1, . . . , vr])

for every polytope P ∈ P2 with vertices v1, . . . , vr visible from the origin and labeled counter-
clockwisely.

Now, similar to the proof of Theorem 1.2, we obtain the characterization in dimension
two.

Proof of Theorem 1.4. By Lemma 4.1, Theorem 5.1 and Lemma 3.3, there exist constants
c1, c2, c̃1, c̃2 ∈ R and ζ̄1, ζ̄2 ∈ C such that

Z(P ) =M0,1

2ζ̄1
([o, P ]) +

r∑
i=2

M0,1

2ζ̄2
([o, vi−1, vi])

+ c1ρπ
2
M1,0(P ) + c̃1ρπ

2
M1,0([o, P ]) + c2ρπ

2
A([o, P ]) + c̃2ρπ

2
A([o, v1, . . . , vr]).

Then, Lemma 3.1 yields
r∑

i=2

M0,1

2ζ̄2
([o, vi−1, vi]) =M0,1

2ζ̄2
([o, P ])−M0,1

2ζ̄2
(P ).

Finally, we set ζ1 = −2ζ̄2 and ζ2 = 2(ζ̄1 + ζ̄2) to conclude the proof.

5.2 The higher-dimensional case
In the final step, we extend Theorem 1.1 to Pn.

Proof of Theorem 1.3. Let ζ1, ζ2 ∈ C. First, due to Lemmas 3.1 and 3.2, M0,1
ζ1

is an SL(n)
contravariant valuation on Pn. Next, for P,Q ∈ Pn with P ∪Q ∈ Pn, we have [o, P ∪Q] =
[o, P ] ∪ [o,Q] and [o, P ∩Q] = [o, P ] ∩ [o,Q]. Notice that [o, ϕP ] = ϕ [o, P ] for all ϕ ∈ SL(n)
and P ∈ Pn. Again by Lemmas 3.1 and 3.2, we obtain that the function P 7→ M0,1

ζ2
([o, P ])

for P ∈ Pn is also an SL(n) contravariant valuation on Pn.
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It remains to show the reverse statement. Indeed, we only need to show that Z has the
corresponding representation on sT k and sT̃ k for s > 0 and 0 ≤ k ≤ n. By Theorem 1.1,
there exists η1 ∈ C such that

Z(sT k) =M0,1
η1

(sT k).

Let T n
o be the set of simplices in Rn with one vertex at the origin. For any T ∈ T n

o \ {o},
we write T̃ as its facet opposite to the origin. We define the new map Z̃ : T n

o → R by
Z̃(T ) = Z(T̃ ) for every T ∈ T n

o \ {o} and Z̃{o} = o. It is not hard to check that Z̃ is
an SL(n) contravariant valuation on T n

o . From the proof of Theorem 1.1, one can see that
Theorem 1.1 also holds on T n

o . Hence there exists η2 ∈ C such that

Z(sT̃ k) = Z̃(sT k) =M0,1
η2

(sT k).

Now, we set ζ1 = η1 − η2 and ζ2 = η2 such that (1.2) holds for both sT k and sT̃ k for
0 ≤ k ≤ n, which completes the proof by Lemma 2.3.
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