赵振宇
发布人:赵振宇 发布时间:2025-06-18 浏览次数:362
论文
-
[1] 赵振宇. SATII 物理试卷与上海高考物理卷中热学试题的比较研究. 教育参考,2017,3(3):103-112.
-
[2] 赵振宇. SAT II物理试卷与高考上海卷光學考題的比较研究. 现代基础教育研究,2017,25(2):.
-
[3] 赵振宇,胡海濤. SAT II 物理试卷与高考上海卷中力学部分的比较研究. 现代基础教育研究,2016,21(3):134-142.
-
[4] 赵振宇,万浩. SAT Ⅱ物理试卷与上海高考物理卷中电磁学考题的比较研究. 教育参考,2016,2(2):44-51.
-
[5] 金亚东,闫爱民,吴俊,胡志娟,赵振宇,石旺舟. Optimum beam teering of optical phased arrays using mixed weighting technique. OPTIK,2014,125(9):4568-4571.
-
[6] 赵振宇,宋志强,石旺舟,赵全忠. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring. OPTICS EXPRESS,2014,22(10):11654-11659.
-
[7] 赵振宇,陈之战,石旺舟. An investigation of terahertz response in monocrystalline 6H-SiC for electro-optic sampling. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REV,2014,53(02):022601-1~022601-6.
-
[8] 罗从文,赵振宇,石旺舟,陈之战. An investigation on terahertz response in electro-optic crystals excited at 1.03 μm wavelength. CHINESE SCIENCE BULLETIN,2014,59(11):1187-1191.
-
[9] 罗从文,赵振宇,闫爱民,胡志娟,石旺舟,陈之战. 掺镱飞秒脉冲激光激发DAST晶体产生THz谱的可行性研究. 华东师范大学学报.自然科学版,2014,4(4):88~93.
-
[10] 赵振宇,Gudrun Niehues,Stefan Funkner,Elmer Estacio,韩奇峰,Kohji Yamamoto,张敬涛,石旺舟,郭其新,Masahiko Tani. Terahertz surface emission from Cu2ZnSnSe4 thin film photovoltaic material excited by femtosecond laser pulses. APPLIED PHYSICS LETTERS,2014,105(23):231104-1~231104-4.
-
[11] 何晓勇,赵振宇,石旺舟. Graphene-supported tunable near-IR metamaterials. OPTICS LETTERS,2015,40(2):178-181.
-
[12] 何晓勇,刘春林,赵振宇,张浩,石旺舟. Tunable graphene opto-electronics devices. 上海师范大学学报自然科学版,2015,44(4):379-388.
-
[13] 赵振宇,闫爱民,胡志娟,石旺舟,孙真荣,林健. Femtosecond transient grating effect and stoichiometry of TeO2–Nb2O5–TiO2 glass. JOURNAL OF NON-CRYSTALLINE SOLIDS,2013,382(12):70-73.
-
[14] 代秀松,赵振宇,宋志强,何晓勇,石旺舟. Nd2O3掺杂对CaCu3Ti4O12陶瓷在太赫兹频段的介电调制作用. 光学学报,2016,36(2):0216002-1~-6.
-
[15] 赵振宇,宋志强,石旺舟,彭炜. Plasmon-induced transparency-like behavior atterahertz region via dipole oscillation detuning in a hybrid planar metamaterial. OPTICAL MATERIALS EXPRESS,2016,6(7):2190~2200.
-
[16] 赵振宇,万浩. SAT Ⅱ物理试卷与上海高考物理卷中电磁学考题的比较研究. 教育参考,2016,2(2):44-51.
-
[17] 刘春林,何晓勇,赵振宇,张浩,石旺舟. Theoretical investigation of semiconductor supported tunable terahertz dielectric loaded surface plasmons waveguides. OPTICS COMMUNICATIONS,2015,356(1):64-69.
-
[18] 刘春林,何晓勇,赵振宇,林方婷,刘锋,石旺舟. Tunable graphene near-IR dielectric loaded waveguides. JOURNAL OF PHYSICS D-APPLIED PHYSICS,2016,49(26):265102.
-
[19] 宋志强,赵振宇,彭炜,石旺舟. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators. JOURNAL OF APPLIED PHYSICS,2015,118(19):193103-1~193103-5.
-
[20] 赵振宇,宋志强,柏峰,石旺舟,赵全忠. Terahertz refractive anisotropy on femtosecond laser pulse ablated semi-insulating gallium arsenide surface. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING,2017,123(3):232-238.
-
[21] 赵振宇,郑孝波,彭炜,赵红卫,张建兵,罗智坚,石旺舟. Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING,2017,123(3):266-1-266-9.
-
[22] 赵振宇,宋志强,彭炜,赵红卫,何晓勇,石旺舟,罗智坚,郑孝波. The Influence of Element Deformation on Terahertz Mode Interaction in Split-Ring Resonator-Based Meta-Atoms. PLASMONICS,2017,12(13):1391-1398.
-
[23] 赵振宇,郑孝波,石旺舟,彭炜. Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules. OPTICAL MATERIALS EXPRESS,2017,7(3):1035-1047.
-
[24] 赵振宇,郑孝波,彭炜,赵红卫,张建兵,罗智坚,石旺舟. Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators. OPTICAL MATERIALS EXPRESS,2017,7(6):1950-1961.
-
[25] 赵振宇,郑孝波,彭炜,张建兵,赵红卫,罗智坚,石旺舟. Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule. OPTICS EXPRESS,2017,25(20):24410-24424.
-
[26] 赵振宇,赵红卫,彭炜,石旺舟. Polarization Dependence of Terahertz Fabry–Pérot Resonance in Flexible Complementary Metamaterials. PLASMONICS,2015,10(6):1587-1592.
-
[27] 宋志强,赵振宇,赵红卫,彭炜,何晓勇,石旺舟. Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. JOURNAL OF APPLIED PHYSICS,2015,118(4):043108-1 ~ 043108-6.
-
[28] 赵振宇,宋志强,石旺舟,张敬涛. Feasibility of terahertz generation and detection in 3C-SiC single crystal. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REV,2015,54(8):082601-1~082601-6.
-
[29] JULIEN MADÉO,赵振宇,ATHANASIOS MARGIOLAKIS,PETER J. HALE,MICHAEL K. L. MAN,趙全忠,彭炜,石旺舟,KESHAV M. DANI. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics. OPTICS LETTERS,2015,40(14):3388-3391.
-
[30] 代秀松,赵振宇,何晓勇,石旺舟. CaCu3Ti4O12陶瓷在太赫兹频段的介电特性研究. 光学学报,2015,35(5):0516005-1~0516005-6.
-
[31] 赵振宇. Temperature dependence of terahertz emission of interdigitated photoconductive antenna based on semi-insulating gallium arsenide. 上海师范大学学报自然科学版,2015,44(4):362-367.
-
[32] 赵振宇. SAT Ⅱ物理试卷与高考上海卷中原子物理学考题的比较研究. 教育参考,2018,8(4):42-49.
-
[33] Xiaobo Zheng,赵振宇. Tuning the terahertz trapped modes of conductively coupled Fano-resonators in reflectional and rotational symmetry. OPTICAL MATERIALS EXPRESS,2018,8(1):105-118.
-
[34] 赵振宇. Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency. OPTICAL MATERIALS EXPRESS,2018,8(8):2345-2354.
-
[35] 赵振宇. Dual terahertz slow light plateaus in bilayer asymmetric metasurfaces. Optical Materials Express,2019,9(4):1608-1619.
-
[36] 赵振宇. Terahertz electromagneticallyinduced. Scientific Reports,2019,9(9):6205.
-
[37] 赵振宇. 高考物理上海卷单项选择题与美国SAT物理专项试题的比较研究. 物理教学,2019,41(5):69-76.
-
[38] 赵振宇,Zhidong Gu. Fano-resonance collapse induced terahertz magnetic dipole oscillation in complementary meta-atoms via local symmetry breaking. JOURNAL OF APPLIED PHYSICS,2019,125(14):143102.
-
[39] 赵振宇. SAT 物理专项试卷与高考上海卷中核物理考题的比较研究. 教育参考,2019,无(1):56-78.
-
[40] 赵振宇,ZHIDONG GU. Terahertz multiple modes defined by fractal symmetry in complementary meta-atoms. Optical Materials Express,2019,9(10):4138-4153.
-
[41] 赵振宇. Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows. OPTICS EXPRESS,2019,27(19):26459-26470.
-
[42] 赵振宇,Hui Zhao,Rajour Tanyi Ako,Simon Nickl,Sharath Sriram. Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry. APPLIED PHYSICS LETTERS,2020,117(1):011105-1~5.
-
[43] 赵振宇,王怡婷. 美国SAT 物理专项考试与上海高考物理卷半定量试题编制的异同. 物理教学,2020,42(8):67-75.
-
[44] 赵辉,赵振宇,黄磊. Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice. Applied Physics Express,2020,13(9):092001-1~6.
-
[45] 陈桠娜,赵振宇,贺伟,柏萍,陆建非,冯杰. 中英两国中学物理教材编排对学生非智力因素的影响———以“力和运动”为例. 中学物理,2020,38(17):31-35.
-
[46] 赵振宇,ZHIDONG GU,RAJOUR TANYI AKO,HUI ZHAO,SHARATH SRIRAM. Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface. OPTICS EXPRESS,2020,28(10):15573-15586.
-
[47] 赵振宇,Xiaobo Zheng,Zoltan Ollmann,Mozhgan Hayati,Wei Peng,Thomas Feurer. Terahertz Selective Emission Enhancement from a Metasurface-Coupled Photoconductive Emitter in Quasi-Near-Field Zone. Plasmonics,2020,15(2):263-269.
-
[48] 赵振宇,姚昱晨. 美中两国大学先修课程物理考试力学部分的比较研究. 物理与工程,2020,30(5):107-112.
-
[49] 邹琦,张毅,郭文雨,张龙,赵振宇,刘锋,叶翔,石旺舟,Liting Yang. MXene-based ultra-thin film for terahertz radiation shielding. NANOTECHNOLOGY,2020,31(10):505710.
-
[50] 王磊,赵振宇,Rajour Tanyi Ako,Sharath Sriram. Terahertz superlattice modes in moiré metasurface composed of twisted square and hexagonal lattices. Applied Physics Express,2021,14(6):062003-1~-6.
-
[51] lei wang,赵振宇,Mingjie Du,秦华,Rajour Tanyi Ako,Sharath Sriram. Tuning symmetry-protected quasi bound state in the continuum using terahertz meta-atoms of rotational and reflectional symmetry. OPTICS EXPRESS,2022,30(13):23631-23639.
-
[52] lei wang,赵振宇,Mingjie Du,秦华,Rajour Tanyi Ako,Sharath Sriram. Polarization insensitive symmetry protected quasi-bound states in the continuum at terahertz band. JOURNAL OF APPLIED PHYSICS,2021,130(23):233102.
-
[53] 赵振宇,Mingjie Du,秦华,Rajour Tanyi Ako,Sharath Sriram. Dual band symmetry-protected terahertz bound states in the continuum inside the spoof localized surface plasmon induced-transparency windows. JOURNAL OF PHYSICS D-APPLIED PHYSICS,2023,56(04):045104-9.
-
[54] 赵振宇,Weimin Huang,秦华,李腊. An insight into terahertz electromagnetic interference shielding of two‑dimensional titanium carbide thin film: the key role of functional groups. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING,2023,129(23):144-10.
-
[55] 赵振宇,Mingjie Du,蒋春萍,Rajour Tanyi Ako,Sharath Sriram,秦华. Terahertz inner and outer edge modes in a tetramer of strongly coupled spoof localized surface plasmons. OPTICS LETTERS,2023,48(6):1343-1346.
-
[56] 赵振宇,薛永辉,王琎,秦华,杨晓彤. Identification of macrophage polarization phenotypes in agarose matrix using metasurface-based terahertz biosensor of quasi-bound state continuum. APPLIED PHYSICS LETTERS,2023,123(18):183701.
-
[57] 赵振宇,薛永辉,刘培良,秦华,Rajour Tanyi Ako,Sharath Sriram. The impact of contact and contactless interactions between the meta-atoms on terahertz bound states in the continuum. JOURNAL OF PHYSICS D-APPLIED PHYSICS,2023,57(6):055103.
科研项目
-
[1] 赵振宇.国家自然科学基金(联合资助基金项目):用于太赫兹天文探测的新型滤波器件研究,结题.
-
[2] 赵振宇.国家自然科学基金(青年科学基金项目):太赫兹近场激发型分子传感器,结题.
-
[3] 赵振宇.上海市教育委员会科研创新项目(一般项目):基于新型铁电材料的THz波电控调制器,结题.
-
[4] 赵振宇.校一般科研项目:对称破缺太赫兹超材料电磁响应研究,在研.
-
[5] 赵振宇.校一般科研项目:太赫兹超表面EIT与BIC效应及其在肿瘤相关巨噬细胞生物活性检测中的应用,在研.
专利成果
-
[1] 赵振宇,赵全忠,宋志强,石旺舟,凯沙夫?达尼,彼得?黑尔. 一种太赫兹光导天线及其制作方法. 中国专利:ZL201410280979.2,2018-01-26.
-
[2] 赵振宇,宋志强,石旺舟. 一种双频率太赫兹带通滤波器. 中国专利:ZL201410401306.8,2017-07-11.
-
[3] 赵振宇,宋志强,罗从文. 氮离子太赫兹特征谱线探测的滤波器谐振单元及制造方法. 中国专利:ZL201510035761.5,2017-12-01.
-
[4] 赵振宇,宋志强,郑孝波. 一种幅度可调的太赫兹近场激发型分子传感器及其制造方法. 中国专利:ZL201610387745.7,2017-10-03.
-
[5] 赵振宇,宋志强,郑孝波. 一种电控太赫兹幅度调制器及其制造方法. 中国专利:ZL201610387859.1,2019-02-15.
-
[6] 赵振宇,宋志强. 一种太赫兹双波段带阻式滤波器谐振单元及制造方法. 中国专利:申请状态(申请号:201510713514.6).
-
[7] 赵振宇,陈桠娜,兰银燕,周重仪,方志云. 一种太赫兹波段的慢光器件及其制作. 中国专利:ZL201710585798.4,2019-12-13.
-
[8] 赵振宇,顾志东. 用于碳离子太赫兹特征谱线探测的滤波器及其制备方法. 中国专利:申请状态(申请号:201910301276.6).
-
[9] 赵振宇,赵辉. CO 太赫兹特征谱线检测的滤波器谐振单元及制备方法. 中国专利:申请状态(申请号:201910496922.9).
-
[10] 赵振宇. 一种面向第六代移动通讯的宽带带通滤波器及其谐振模块. 中国专利:申请状态(申请号:2020109876204).
-
[11] 赵振宇,赵辉. 一种面向第六代移动通讯的宽带带通滤波器及其谐振模块. 中国专利:ZL202010987620.4,2021-08-03.