研究方向
王飞飞,博士,教授。2009年7月博士毕业于中国科学院上海硅酸盐研究所,2009年9月起工作于上海师范大学物理系。2008年至2009年先后于香港理工大学应用物理系、电子工程系开展合作研究,2013年至2014年于澳大利亚悉尼大学先进材料与技术研究中心访问,2018年于澳大利亚新南威尔士大学材料学院访问。担任电子元器件关键材料与器件委员会常务委员,国家自然科学基金委评审专家。 研究方向为压电/热释电信息功能材料、物理与器件。主持国家自然科学基金面上项目、青年科学基金、上海市教委“晨光计划”、上海市自然科学基金、上海市教委科研创新、中科院重点实验室开放课题等,并作为主要研究人员参与并完成了多项国家及地方的科研项目,如863、国防科工委重点项目及香港政府科技创新项目。 目前在Appl. Phys. Lett.、Nature Comm.、Sci. Adv.、Phys. Rev. Lett.、Phys. Rev. B、Adv. Mater.、Energ. Environ. Sci.、ACS Appl. Mater. Interfaces、J. Mater. Chem. A/C、J. Appl. Phys.、J. Am. Ceram. Soc.等国际重要影响力刊物上发表SCI论文120余篇,授权专利2项,担任30余个国际学术刊物审稿人。 与美国宾州州立大学、弗吉尼亚理工大学、澳大利亚悉尼大学、新南威尔士大学、香港理工大学、中科院上海硅酸盐所、上海交通大学等国内外著名科研院校保持长期良好的合作关系,联合培养多名研究生。指导研究生获上海市优秀硕士学位论文、国家奖学金、挑战杯、科创杯、优秀毕业生等荣誉。 ORCID: http://orcid.org/0000-0001-8502-966X Web of Science:https://publons.com/researcher/1345547/feifei-wang/ 代表性论著: 1) F. F. Wang*, L. H. Luo, D. Zhou, X. Y. Zhao, and H. S. Luo, Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71Pb (Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal, Appl. Phys. Lett. 90, 212903 (1-3) (2007). 2) S. D. Xue, J. P. Ma, X. Y. Zhao, F. F. Wang*, D. Z. Sun, T Wang, W. Z. Shi, Z. Q. Fu, H. F. Zhou, and H. S. Luo, Nanoscale insight into the giant piezoelectric response in lead-free Fe-doped 0.95(Na1/2Bi1/2)TiO3-0.05BaTiO3 single crystal, Appl. Phys. Lett. 111, 162902 (2017). 3) Z. B. Chen, L. Hong, F. F. Wang, S. P. Ringer, L. Q. Chen, H. S. Luo, and X. Z. Liao, Facilitation of Ferroelectric Switching via Mechanical Manipulation of Hierarchical Nanoscale Domain Structures,Phys. Rev. Lett. 118, 017601 (2017). 4) J. P. Ma, S. D. Xue, X. Y. Zhao*, F. F. Wang*, Y. X. Tang, Z. H. Duan, T Wang, W. Z. Shi, Q. W. Yue, H. F. Zhou, H. S. Luo, and B. J. Fang, High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal, Appl. Phys. Lett.111, 092903 (2017). 5) F. Y. Fan, W.Y. Zhao, T. W. Chen, J. M. Yan, J.P. Ma, L. Guo, G. Y. Gao, F. F. Wang*, and R. K. Zheng*, Excellent structural, optical, and electrical properties of Nd-doped BaSnO3 optically transparent thin films, Appl. Phys. Lett.113, 202102 (2018). 6) Y. M. Jia, H. S. Luo, X. Y. Zhao, and F. F. Wang, Giant magnetoelectric response from the combination of piezoelectric/magnetostrictive laminated composite with a piezoelectric transformer, Adv. Mater. 20, 1-4 (2008). 7) Q. R. Yao, F. F. Wang*,F. Xu, C. M. Leung, T. Wang, Y. X. Tang, X. Ye, Y. Q. Xie, D. Z. Sun, W. Z. Shi, Electric field induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics, ACS Appl. Mater. Interfaces 7, 5066 (2015). 8) F. F. Wang, D. Liu, Z. B. Chen, Z. H. Duan, Y. Zhang, D. Z. Sun, X. Y. Zhao, W. Z. Shi, R. K. Zheng and H. S. Luo, In situ reversible tuning of photoluminescence of an epitaxial thin film via piezoelectric strain induced by a Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal, J. Mater. Chem. C 5, 9115 (2017). 9) B. Liu, B. Lu, X. Q. Chen, X. Wu, S. J. Shi, L. Xu, Y. Liu, F. F. Wang*, X. Y. Zhao*, and W. Z. Shi, High-performance flexible piezoelectric energy harvester based on lead-free (Na0.5Bi0.5)TiO3-BaTiO3 piezoelectric nanofibers, J. Mater. Chem. A 5, 23634 (2017). 10) M. B. Ghasemian, A. Rawal, F. F. Wang*, D. W. Chua, and D. Y. Wang*, Lattice evolution and enhanced piezoelectric properties of hydrothermally synthesized 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 nanofibers, J. Mater. Chem. C 5, 10976 (2017). 11)H. L. You, X. X. Ma, Z. Wu, L. F. Fei, X. Q. Chen, J. Yang, Y. S. Liu, Y. M. Jia*, H. M. Li, F. F. Wang*, and H. T. Huang, Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro- bi-catalytic dye decomposition of NaNbO3 nanofibers, Nano Energy52, 351 (2018). 12) H. You, Y. M. Jia, Z. Wu, F. F. Wang, H. T. Huang, Y. Wang, Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation, Nature Comm. 9, 2889 (2018). 13) X. Xu, L. Xiao, Y. M. Jia, Z. Wu,F. F. Wang, Y. Wang, et al., Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold–hot alternation energy near room-temperature. Energ. Environ. Sci. 11, 2198 (2018). 14) X. L. Xu, L. B. Xiao, Z. Wu, Y. M. Jia*, X. Ye, F. F. Wang*, B. Yuan, Y. Yu, H. T. Huang, and G. F. Zou*, Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite, Nano Energy78, 105351 (2020). 15) X. B. Li, S. D. Nie, F. F. Wang*, X. Y. Zhao, H. W. Zhang, H. S. Luo, G. R. Li, J. H. Ko, Z. Guo, Z. Jiang, R. Z. Tai, Local-structure evidence for a phase transition in a lead-free single crystal of (Na1/2Bi1/2)TiO3-0.06BaTiO3 by absorption fine-structure spectroscopy with synchrotron x-ray radiation, Phys. Rev. B 101, 104105 (2020). |