部门:数理学院
聘任技术职务:副教授
学位:理学博士学位
学历:博士研究生毕业
毕业院校:华东师范大学
联系电话:
电子邮箱:wanyuanxu@shnu.edu.cn
办公地点:数理学院3号楼315
通讯地址:

研究方向

1. 2005-2009 就读于武汉大学数学基地班;

2. 2009-2014 保送至华东师范大学硕博连读, 师从长江学者 谈胜利 教授, 研究方向为代数几何: 主要研究代数簇的纤维化, 曲线模空间, 一般型代数曲面基本群;

3. 2014-2015, 以色列巴伊兰大学博士后;

4. 2015-2017,复旦大学博士后;

5. 2017——至今,上海师范大学数学系。


Publications:

1. (with S.-L. Tan) On Szpiro inequality for semistable families of curves,  J. of Number Theory, 151, 2015, 36-45.

2. (with X. Lu, S.-L. Tan, K. Zuo)  On the minimal number of singular fibers with non-compact Jacobians for families of curves over P^1,  J. Math. Pure. Appl., 105(9), 2016, 724-733.

3. (with M. Amram, C. Gong, M. Teicher) Moduli spaces of arrangements of 11 projective lines with a quintuple point, Turkish Journal of Math, (2015) 39: 618-644.

4. On the Arakelov inequality in positive characteristic, Math. Zeit289, 1-2109-117.

5. (with M. Amram, C. Gong, S.-L. Tan, M. Teicher) The fundamental groups of Galois covers of planar Zappatic deformations of type E_kInt. J. of Algebra and computation, 2019, 29(06), 905-925.

6.(with C. Gong)On the Mordell-Weil rank of a surface fibrationCommunications in algebra2020, 48(2), 724-732.

7. (with M. Amram, S.-L. Tan, M. Yoshpe) Calculating the Fundamental Group of Galois Cover of the (2,3)-embedding of CP^1 * T,  Acta MathSinica, English Series2020, 36(3), 273-291.

8. (with M. Amram, C. Gong, U. Sinichkin, S.-L. Tan,  M. Yoshpe) Fundamental group of Galois covers of degree 6 surfaces, Journal of Topology and Analysis, 15(03), 593-613, 2023.

9. (with M. Amram, C. Gong, M. Teicher) Fundamental group of Galois covers of surfaces of degree 5 degenerating to nice plane arrangements, Turk. J. Math., (2021) 45: 1517-1542.

10. (with G.M. Li, H.-T. Zhang) A remark on a conjecture of Tan, Monatsh. Math., 202pages 831-836 (2023).

11. Strict Arakelov type inequalities for a family of curves, Math. Nachr., 297(3),  2024, 1136-1141.



 Preprint: (with Jun Lu) On a conjecture of Schnell, submitted.


学术成果

教学工作

教职工课程信息
开课学年开课学期课程名称
2023-20241高等代数与解析几何Ⅲ
2022-20232高等代数与解析几何II
2022-20231高等代数与解析几何I
2021-20222初等数论
2021-20221高等代数与解析几何Ⅲ
2020-20211高等代数与解析几何I
2019-20202高等几何
2019-20201高等代数与解析几何Ⅲ
2018-20191高等数学Ⅰ
2018-20191高等数学Ⅰ
2018-20192高等数学Ⅱ
2020-20212高等代数与解析几何Ⅱ
2017-20182高等数学Ⅱ
2023-20242近世代数
2024-20251高等代数与解析几何I
2024-20252高等代数与解析几何II

荣誉奖励

社会兼职