袁非牛
(0)
  • 性别:
  • 聘任技术职务:教授
  • 学历:博士研究生毕业
  • 联系电话:
  • 电子邮箱:yfn@shnu.edu.cn
  • 通讯地址:
  • 部门:信息与机电工程学院
  • 学位:工学博士学位
  • 毕业院校:中国科学技术大学
  • 办公地址:

研究方向:

袁非牛

博士,教授,博士生导师,副院长

研究方向:人工智能、自然语言处理、数字人文、图像分割、目标检测

博士招生方向:数字人文、算法与计算复杂性(人工智能)

Email: yfn@ustc.edu.cn


个人简介

    袁非牛,男,教授,博士,博士生导师,副院长,校学科建设委员会委员,学科带头人,上海市重点研究基地上海市中小学在线教育研究基地执行主任。中国计算机学会(CCF)杰出会员,电气与电子工程师协会(IEEE)高级会员,中国图象图形学会(CSIG)会员,CCFCSIG多媒体专委会执行委员,上海市图像图形学会理事。担任中科院1区IEEE Transactions on Multimedia副主编(Associate Editor)2019年度江西省自然科学奖一等奖、部级优秀毕业生、中国科学院院长优秀奖等。获ESI高被引论文(1%)ESI热点论文(0.1%)等。连续多年同时入选美国斯坦福大学发布的全球2%顶尖科学家榜单年度科学影响力榜单”(2020-现在)和“终身科学影响力榜单(2021-现在)

    主持国家科技支撑计划子专题、国家自然科学基金项目、中国博士后基金等项目。参加国家重点研发计划等国家级重点、重大项目研究。在IEEE Transactions on Image ProcessingIEEE Transactions on Biomedical EngineeringIEEE Transactions on Systems, Man, and Cybernetics: SystemsIEEE Transactions on MultimediaPattern RecognitionMedical Image AnalysisInformation Sciences、计算机学报等上发表论文100多篇。其中,SCI论文70余篇,中科院1区近20篇。授权国内发明专利6项。

     开展产学研合作。成功为深圳神盾卫民警用设备有限公司、江西科泰华软件公司解决人脸识别、人像抠图、姿态估计和美颜等算法难题,这些算法已经应用在自助拍照机等产品上,并研发出基于WindowsAndroidiOS系统的证件照抠图算法模块,相关产品已在在全国各地公安派出所应用,产生很好的社会效应和几千万元的经济效益。采用深度学习算法,提出一种专门的端对端人像抠图网络模型,实现了快速、准确的全自动人像抠图智能算法,并在二代身份证自助拍照系统、驾驶证自助拍照系统等广泛应用。



1. 学习工作经历

    19982001年分别获得合肥工业大学学士和硕士学位,2004年获得中国科学技术大学博士学位,2006年从中国科学技术大学火灾科学国家重点实验室博士后流动站出站。2006年进入江西财经大学工作,历任副教授、教授、硕士生导师、博士生导师等。20102012年,在新加坡科学技术研究局(A*STAR)任资深研究员(Senior Research Fellow)2018进入上海师范大学工作,任教授、博士生导师、学科带头人等。

2. 学生科研团队

    指导毕业博士生4人,在读博士生3人,在读硕士生12人。

3. 主讲课程

    本科:深度学习及其编程、数据库应用、计算机基础、Visual C++程序开发、面向对象程序设计C++ (双语)

    硕士:深度学习、计算机视觉、现代信号处理、虚拟现实技术、模式识别、数字图像处理

    博士:人工智能前沿、深度神经网络

4. 发表的部分论文

[1].Feiniu YuanYuhuan Peng, Qinghua Huang, Xuelong Li, A Bi-directionally Fused Boundary Aware Network for Skin Lesion Segmentation,  IEEE Transactions on Image Processing, vol. 33, Nov. 2024, pp.6340-6353. (中科院1区,影响因子13.7,CCF-A类)

[2].  Lin Zhang, Jing Wu, Feiniu Yuan(通讯作者), Yuming Fang,“Smoke-Aware Global-Interactive Non-local Network for Smoke Semantic Segmentation,” IEEE Transactions on Image Processing, vol. 33, Feb. 2024, pp. 1175-1187. (中科院1区,影响因子13.7,CCF-A类)

[3].  Feiniu Yuan, Lin Zhang, Xue Xia, Qinghua Huang, Xuelong Li, A Gated Recurrent Network with Dual Classification Assistance for Smoke Semantic Segmentation, IEEE Transactions on Image Processing, vol. 30, 2021, pp. 4409-4422. (中科院1区,影响因子13.7,CCF-A类)

[4].  Feiniu Yuan, Lin Zhang, Xue Xia, Qinghua Huang, Xuelong Li,  A Wave-shaped Deep Neural Network for Smoke Density Estimation,IEEE Transactions on Image Processing, vol. 29, 2020, pp. 2301-2313. (中科院1区,影响因子13.7,CCF-A类)

[5].  Chunlin Wen, Hui Huang, Yan Ma, Feiniu Yuan, Hongqing Zhu, “Dual-Guided Frequency Prototype Network for Few-Shot Semantic Segmentation,”IEEE Transactions on Multimedia, vol. 26, 2024, pp.8874-8888. (中科院1,影响因子9.7,CCF-B类)

[6].  Feiniu Yuan, Changhong Xie, Biao Xiang, “A Comprehensive Feature Aggregation Network for Efficient Image Super-Resolution, ”  IEEE Transactions on Consumer Electronics, early access, online. (中科院2,影响因子10.9)

[7].  Kang Li, Feiniu Yuan (通讯作者), Chunmei Wang,  Frequency-Space Interaction with Hierarchical Aggregation Network for Lightweight Smoke Image Segmentation,  IEEE Transactions on Consumer Electronics, vol. 7, no. 2, pp. 2632-2643. (中科院2,影响因子10.9)

[8].  Yuming Fang, Guanqun Ding, Wenying Wen, Feiniu Yuan, Yong Yang, Zhijun Fang, Weisi Lin, Salient Object Detection by Spatiotemporal and Semantic Features in Real-Time Video Processing Systems,IEEE Transactions on Industrial Electronics, vol. 67, no. 11, 2020, pp. 9893-9903. (中科院1区,影响因子7.515)

[9].  Yuming Fang, Zhijun Fang, Feiniu Yuan, Yong Yang, Shouyuan Yang, Neal N. Xiong, “Optimized Multi-operator Image Retargeting Based on Perceptual Similarity Measure, ” IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume 47, Issue 11pp. 2956-2966, Oct. 2017. (中科院1区,影响因子9.309)

[10].  Feiniu Yuan, Kai-Hsiang Chuang, and Jimin Liu, “A Variational Surface Deformation and Subdivision Based Modeling Framework for Noisy and Small n-Furcated Tube-Like Structures, ” IEEE Transactions on Biomedical Engineering, vol. 60, no. 6, pp. 1589-1598, Jun. 2013. (中科院2区,影响因子4.424)

[11]. Feiniu Yuan, Yanling Chi, Su Huang, and Jimin Liu, “Modeling n-Furcated Liver vessels From a 3D Segmented Volume Using Hole Making and Subdivision Methods,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 2, pp. 552-561, Feb. 2012. (中科院2区,影响因子4.424)

[12].Qinghua Huang, Yonghao Huang, Yaozhong Luo, Feiniu Yuan, Xuelong Li, Segmentation of breast ultrasound image with semantic classification of superpixels, Medical Image Analysis, vol. 61, 2020, pp. 1-13. (中科院1区,影响因子11.148)

[13].Chunmei Wang, Yuan Luo, Chunli Meng, Feiniu Yuan(通讯作者), An adaptive dual graph convolution fusion network for aspect-based sentiment analysis,  ACM Transactions on Asian and Low-Resource Language Information Processing, volume 23, issue 6, Jun 2024.

[14].Yuming Fang, Xiaoqiang Zhang, Feiniu Yuan (通讯作者), Nevrez Imamoglu, Haiwen Liu,  Video Saliency Detection by Gestalt Theory,  Pattern Recognition, vol. 96, no. 12, Dec. 2019, pp. 1-11. (中科院1区,影响因子7.6,CCF-B类)

[15].Feiniu Yuan, Zhengxiao Zhang, and Zhijun Fang, An Effective CNN and Transformer Complementary Network for Medical Image Segmentation, Pattern Recognition, vol. 136, Apr. 2023, 109228, pp. 1-12. (中科院1区,影响因子7.6,CCF-B类)

[16].Feiniu Yuan, Zeshu Dong, Lin Zhang, Xue Xia, Jinting Shi, “Cubic-cross convolutional attention and count prior embedding for smoke segmentation,” Pattern Recognition, vol. 131, Nov. 2022, 108902. (中科院1区,影响因子7.6,CCF-B类)

[17].Feiniu Yuan, Yu Zhou, Xue Xia, Xueming Qian, Jian Huang, “A Confidence Prior for Image Dehazing,” Pattern Recognition, vol. 119, 2021, pp. 1-16. (中科院1区,影响因子7.6,CCF-B类)

6. 主持的部分项目

[1].  融合微观机理和宏观形态信息的浓度场估计国家自然科学基金项目负责人,2023-2026。

[2].  基于Gabor卷积网络的多隐层高斯过程烟雾特征建模研究,国家自然科学基金,项目负责人,2019-2022

[3].  烟雾流形建模及其在视频烟雾事件检测中的应用,国家自然科学基金,项目负责人,2014-2017

[4].  面向烟雾检测的局部二元模式多级提升方法研究,国家自然科学基金,项目负责人,2011-2013

(以下信息源于科研管理系统)

学术成果:
论文
  • [1] 袁非牛,Zhengxiao Zhang,Zhijun Fang. An Effective CNN and Transformer Complementary Network for Medical Image Segmentation. PATTERN RECOGNITION,2023,136(1):1-12.
  • [2] 袁非牛,Zhaoda Tang,汪春梅,Qinghua Huang,Jinting Shi. A Multiple Gated Boosting Network for Multi-Organ Medical Image Segmentation. IET Image Processing,2023,17(10):3028-3039.
  • [3] 袁非牛,Zeshu Dong,Lin Zhang,Xue Xia,Jinting Shi. Cubic-cross convolutional attention and count prior embedding for smoke segmentation. PATTERN RECOGNITION,2022,131(1):1-10.
  • [4] 袁非牛,Jinting Shi,Xue Xia,Qinghua Huang,Xuelong Li. Co-occurrence Matching of Local Binary Patterns for Improving Visual Adaption and Its application to Smoke Recognition. IET Computer Vision,2019,13(2):178–187.
  • [5] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [6] 袁非牛. Encoding Pairwise Hamming Distances of Local Binary Patterns for Visual Smoke Recognition. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,468(1):193-212.
  • [7] 袁非牛,Zhengxiao Zhang,Zhijun Fang. An Effective CNN and Transformer Complementary Network for Medical Image Segmentation. PATTERN RECOGNITION,2023,136(1):1-12.
  • [8] 袁非牛,Zhaoda Tang,汪春梅,Qinghua Huang,Jinting Shi. A Multiple Gated Boosting Network for Multi-Organ Medical Image Segmentation. IET Image Processing,2023,17(10):3028-3039.
  • [9] 袁非牛. Deep Smoke Segmentation. NEUROCOMPUTING,2019,357(1):248–260.
  • [10] 袁非牛. Convolutional Neural Networks based on Multi-Scale Additive Merging Layers for Visual Smoke Recognition. MACHINE VISION AND APPLICATIONS,2019,30(2):345–358.
  • [11] 袁非牛. A Gated Recurrent Network with Dual Classification Assistance for Smoke Semantic Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30(5):4409-4422.
  • [12] 袁非牛. A Confidence Prior for Image Dehazing. PATTERN RECOGNITION,2021,119(7):1-16.
  • [13] 袁非牛. 自编码神经网络理论及应用综述. 计算机学报,2019,42(1):203-230.
  • [14] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [15] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [16] 袁非牛,Yu Zhou,Xue Xia,Jinting Shi,Yuming Fang. Image dehazing based on a transmission fusion strategy by automatic image matting. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,194(5):1-11.
  • [17] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [18] 袁非牛,Jinting Shi,Xue Xia,Qinghua Huang,Xuelong Li. Co-occurrence Matching of Local Binary Patterns for Improving Visual Adaption and Its application to Smoke Recognition. IET Computer Vision,2019,13(2):178–187.
  • [19] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [20] 袁非牛. Encoding Pairwise Hamming Distances of Local Binary Patterns for Visual Smoke Recognition. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,468(1):193-212.
  • [21] 袁非牛,Zeshu Dong,Lin Zhang,Xue Xia,Jinting Shi. Cubic-cross convolutional attention and count prior embedding for smoke segmentation. PATTERN RECOGNITION,2022,131(1):1-10.
  • [22] 袁非牛,Yu Zhou,Xue Xia,Jinting Shi,Yuming Fang. Image dehazing based on a transmission fusion strategy by automatic image matting. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,194(5):1-11.
  • [23] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [24] 袁非牛,Xue Xia,Jinting Shi,Lin Zhang,黄继风. Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. INFORMATION SCIENCES,2018,468(1):193-212.
  • [25] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [26] 袁非牛,Kang Li,汪春梅,Jinting Shi,Yaowen Zhu. Fully Extracting Feature Correlation Between and Within Stages for Semantic Segmentation. DIGITAL SIGNAL PROCESSING,2022,127(103578):1-11.
  • [27] 袁非牛,Jinting Shi,Xue Xia,Qinghua Huang,Xuelong Li. Co-occurrence Matching of Local Binary Patterns for Improving Visual Adaption and Its application to Smoke Recognition. IET Computer Vision,2019,13(2):178–187.
  • [28] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [29] 袁非牛. Encoding Pairwise Hamming Distances of Local Binary Patterns for Visual Smoke Recognition. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,468(1):193-212.
  • [30] 袁非牛. Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition. KSII Transactions on Internet and Information Systems,2019,13(4):2078-2093.
  • [31] 袁非牛. Deep Smoke Segmentation. NEUROCOMPUTING,2019,357(1):248–260.
  • [32] 袁非牛. Convolutional Neural Networks based on Multi-Scale Additive Merging Layers for Visual Smoke Recognition. MACHINE VISION AND APPLICATIONS,2019,30(2):345–358.
  • [33] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [34] 袁非牛,Kang Li,汪春梅,Jinting Shi,Yaowen Zhu. Fully Extracting Feature Correlation Between and Within Stages for Semantic Segmentation. DIGITAL SIGNAL PROCESSING,2022,127(103578):1-11.
  • [35] 袁非牛,Jinting Shi,Xue Xia,Qinghua Huang,Xuelong Li. Co-occurrence Matching of Local Binary Patterns for Improving Visual Adaption and Its application to Smoke Recognition. IET Computer Vision,2019,13(2):178–187.
  • [36] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [37] 袁非牛,Zeshu Dong,Lin Zhang,Xue Xia,Jinting Shi. Cubic-cross convolutional attention and count prior embedding for smoke segmentation. PATTERN RECOGNITION,2022,131(1):1-10.
  • [38] 袁非牛,Yu Zhou,Xue Xia,Jinting Shi,Yuming Fang. Image dehazing based on a transmission fusion strategy by automatic image matting. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,194(5):1-11.
  • [39] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [40] 袁非牛,Yaowen Zhu,Kang Li,Zhijun Fang,Jinting Shi. An Anisotropic Non-local Attention Network for Image Segmentation. MACHINE VISION AND APPLICATIONS,2022,33(23):1-15.
  • [41] 袁非牛,Xue Xia,Jinting Shi. Mixed Co-occurrence of Local Binary Patterns and Hamming-distance-based Local Binary Patterns. INFORMATION SCIENCES,2018,460–461(1):202-222.
  • [42] 袁非牛. Encoding Pairwise Hamming Distances of Local Binary Patterns for Visual Smoke Recognition. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,468(1):193-212.
  • [43] 袁非牛. 采用聚合Gabor核和局部二元模式的烟雾识别方法. 小型微型计算机系统,2019,40(4):827-833.
  • [44] 袁非牛. 自编码神经网络理论及应用综述. 计算机学报,2019,42(1):203-230.
  • [45] 袁非牛,Zhengxiao Zhang,Zhijun Fang. An Effective CNN and Transformer Complementary Network for Medical Image Segmentation. PATTERN RECOGNITION,2023,136(1):1-12.
  • [46] 袁非牛. Encoding Pairwise Hamming Distances of Local Binary Patterns for Visual Smoke Recognition. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,468(1):193-212.
  • [47] 袁非牛. Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition. KSII Transactions on Internet and Information Systems,2019,13(4):2078-2093.
  • [48] 袁非牛. Deep Smoke Segmentation. NEUROCOMPUTING,2019,357(1):248–260.
  • [49] 袁非牛. Convolutional Neural Networks based on Multi-Scale Additive Merging Layers for Visual Smoke Recognition. MACHINE VISION AND APPLICATIONS,2019,30(2):345–358.
  • [50] 袁非牛. A Gated Recurrent Network with Dual Classification Assistance for Smoke Semantic Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30(5):4409-4422.
  • [51] 袁非牛. A Confidence Prior for Image Dehazing. PATTERN RECOGNITION,2021,119(7):1-16.
  • [52] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [53] 袁非牛,Yaowen Zhu,Kang Li,Zhijun Fang,Jinting Shi. An Anisotropic Non-local Attention Network for Image Segmentation. MACHINE VISION AND APPLICATIONS,2022,33(23):1-15.
  • [54] 袁非牛,Xue Xia,Jinting Shi. Mixed Co-occurrence of Local Binary Patterns and Hamming-distance-based Local Binary Patterns. INFORMATION SCIENCES,2018,460–461(1):202-222.
  • [55] 袁非牛,Xue Xia,Jinting Shi,Lin Zhang,黄继风. Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. INFORMATION SCIENCES,2018,468(1):193-212.
  • [56] 袁非牛,Lin Zhang,Xue Xia,Qinghua Huang,Xuelong Li. A Wave-shaped Deep Neural Network for Smoke Density Estimation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2020,29(11):2301-2313.
  • [57] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [58] 袁非牛,Kang Li,汪春梅,Jinting Shi,Yaowen Zhu. Fully Extracting Feature Correlation Between and Within Stages for Semantic Segmentation. DIGITAL SIGNAL PROCESSING,2022,127(103578):1-11.
  • [59] 袁非牛. 面向烟雾识别与纹理分类的Gabor网络. 中国图象图形学报,2019,42(2):269-281.
  • [60] 袁非牛. 采用聚合Gabor核和局部二元模式的烟雾识别方法. 小型微型计算机系统,2019,40(4):827-833.
  • [61] 袁非牛. 自编码神经网络理论及应用综述. 计算机学报,2019,42(1):203-230.
  • [62] 袁非牛,Zhengxiao Zhang,Zhijun Fang. An Effective CNN and Transformer Complementary Network for Medical Image Segmentation. PATTERN RECOGNITION,2023,136(1):1-12.
  • [63] 袁非牛. Deep Smoke Segmentation. NEUROCOMPUTING,2019,357(1):248–260.
  • [64] 袁非牛. Convolutional Neural Networks based on Multi-Scale Additive Merging Layers for Visual Smoke Recognition. MACHINE VISION AND APPLICATIONS,2019,30(2):345–358.
  • [65] 袁非牛. A Gated Recurrent Network with Dual Classification Assistance for Smoke Semantic Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30(5):4409-4422.
  • [66] 袁非牛. A Confidence Prior for Image Dehazing. PATTERN RECOGNITION,2021,119(7):1-16.
  • [67] 袁非牛,Yaowen Zhu,Kang Li,Zhijun Fang,Jinting Shi. An Anisotropic Non-local Attention Network for Image Segmentation. MACHINE VISION AND APPLICATIONS,2022,33(23):1-15.
  • [68] 袁非牛,Xue Xia,Jinting Shi. Mixed Co-occurrence of Local Binary Patterns and Hamming-distance-based Local Binary Patterns. INFORMATION SCIENCES,2018,460–461(1):202-222.
  • [69] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [70] 袁非牛,Kang Li,汪春梅,Jinting Shi,Yaowen Zhu. Fully Extracting Feature Correlation Between and Within Stages for Semantic Segmentation. DIGITAL SIGNAL PROCESSING,2022,127(103578):1-11.
  • [71] 袁非牛,Zhengxiao Zhang,Zhijun Fang. An Effective CNN and Transformer Complementary Network for Medical Image Segmentation. PATTERN RECOGNITION,2023,136(1):1-12.
  • [72] 袁非牛,Zhaoda Tang,汪春梅,Qinghua Huang,Jinting Shi. A Multiple Gated Boosting Network for Multi-Organ Medical Image Segmentation. IET Image Processing,2023,17(10):3028-3039.
  • [73] 袁非牛,Zeshu Dong,Lin Zhang,Xue Xia,Jinting Shi. Cubic-cross convolutional attention and count prior embedding for smoke segmentation. PATTERN RECOGNITION,2022,131(1):1-10.
  • [74] 袁非牛,Yu Zhou,Xue Xia,Jinting Shi,Yuming Fang. Image dehazing based on a transmission fusion strategy by automatic image matting. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,194(5):1-11.
  • [75] 袁非牛. Convolutional Neural Networks based on Multi-Scale Additive Merging Layers for Visual Smoke Recognition. MACHINE VISION AND APPLICATIONS,2019,30(2):345–358.
  • [76] 袁非牛. A Gated Recurrent Network with Dual Classification Assistance for Smoke Semantic Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30(5):4409-4422.
  • [77] 袁非牛. A Confidence Prior for Image Dehazing. PATTERN RECOGNITION,2021,119(7):1-16.
  • [78] 袁非牛. Single image haze removal by feature mapping. IEEE International Conference on Multimedia and Expo,2019.
  • [79] 袁非牛,Lin Zhang,Xue Xia,Qinghua Huang,Xuelong Li. A Wave-shaped Deep Neural Network for Smoke Density Estimation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2020,29(11):2301-2313.
  • [80] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [81] 袁非牛,Kang Li,汪春梅,Jinting Shi,Yaowen Zhu. Fully Extracting Feature Correlation Between and Within Stages for Semantic Segmentation. DIGITAL SIGNAL PROCESSING,2022,127(103578):1-11.
  • [82] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [83] 袁非牛,Yaowen Zhu,Kang Li,Zhijun Fang,Jinting Shi. An Anisotropic Non-local Attention Network for Image Segmentation. MACHINE VISION AND APPLICATIONS,2022,33(23):1-15.
  • [84] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [85] 袁非牛,Kang Li,汪春梅,Jinting Shi,Yaowen Zhu. Fully Extracting Feature Correlation Between and Within Stages for Semantic Segmentation. DIGITAL SIGNAL PROCESSING,2022,127(103578):1-11.
  • [86] 袁非牛. 面向烟雾识别与纹理分类的Gabor网络. 中国图象图形学报,2019,42(2):269-281.
  • [87] 袁非牛,Zhaoda Tang,汪春梅,Qinghua Huang,Jinting Shi. A Multiple Gated Boosting Network for Multi-Organ Medical Image Segmentation. IET Image Processing,2023,17(10):3028-3039.
  • [88] 袁非牛,Jinting Shi,Xue Xia,Qinghua Huang,Xuelong Li. Co-occurrence Matching of Local Binary Patterns for Improving Visual Adaption and Its application to Smoke Recognition. IET Computer Vision,2019,13(2):178–187.
  • [89] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [90] 袁非牛. Encoding Pairwise Hamming Distances of Local Binary Patterns for Visual Smoke Recognition. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,468(1):193-212.
  • [91] 袁非牛. Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition. KSII Transactions on Internet and Information Systems,2019,13(4):2078-2093.
  • [92] 袁非牛. 采用聚合Gabor核和局部二元模式的烟雾识别方法. 小型微型计算机系统,2019,40(4):827-833.
  • [93] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [94] 袁非牛,Xue Xia,Jinting Shi,Lin Zhang,黄继风. Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. INFORMATION SCIENCES,2018,468(1):193-212.
  • [95] 袁非牛. Single image haze removal by feature mapping. IEEE International Conference on Multimedia and Expo,2019.
  • [96] 袁非牛,Lin Zhang,Xue Xia,Qinghua Huang,Xuelong Li. A Wave-shaped Deep Neural Network for Smoke Density Estimation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2020,29(11):2301-2313.
  • [97] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [98] 袁非牛. Holistic learning-based high-order feature descriptor for smoke recognition. International Journal of Wavelets Multiresolution and Information Processing,2019,91(2):1-18.
  • [99] 袁非牛,Xue Xia,Jinting Shi. Mixed Co-occurrence of Local Binary Patterns and Hamming-distance-based Local Binary Patterns. INFORMATION SCIENCES,2018,460–461(1):202-222.
  • [100] 袁非牛. Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition. KSII Transactions on Internet and Information Systems,2019,13(4):2078-2093.
  • [101] 袁非牛. Deep Smoke Segmentation. NEUROCOMPUTING,2019,357(1):248–260.
  • [102] 袁非牛. Convolutional Neural Networks based on Multi-Scale Additive Merging Layers for Visual Smoke Recognition. MACHINE VISION AND APPLICATIONS,2019,30(2):345–358.
  • [103] 袁非牛. A Gated Recurrent Network with Dual Classification Assistance for Smoke Semantic Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30(5):4409-4422.
  • [104] 袁非牛. A Confidence Prior for Image Dehazing. PATTERN RECOGNITION,2021,119(7):1-16.
  • [105] 袁非牛. 采用聚合Gabor核和局部二元模式的烟雾识别方法. 小型微型计算机系统,2019,40(4):827-833.
  • [106] 袁非牛. 自编码神经网络理论及应用综述. 计算机学报,2019,42(1):203-230.
  • [107] 袁非牛,Zhengxiao Zhang,Zhijun Fang. An Effective CNN and Transformer Complementary Network for Medical Image Segmentation. PATTERN RECOGNITION,2023,136(1):1-12.
  • [108] 袁非牛,Zhaoda Tang,汪春梅,Qinghua Huang,Jinting Shi. A Multiple Gated Boosting Network for Multi-Organ Medical Image Segmentation. IET Image Processing,2023,17(10):3028-3039.
  • [109] 袁非牛,Zeshu Dong,Lin Zhang,Xue Xia,Jinting Shi. Cubic-cross convolutional attention and count prior embedding for smoke segmentation. PATTERN RECOGNITION,2022,131(1):1-10.
  • [110] 袁非牛,Yu Zhou,Xue Xia,Jinting Shi,Yuming Fang. Image dehazing based on a transmission fusion strategy by automatic image matting. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,194(5):1-11.
  • [111] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.
  • [112] 袁非牛,Yaowen Zhu,Kang Li,Zhijun Fang,Jinting Shi. An Anisotropic Non-local Attention Network for Image Segmentation. MACHINE VISION AND APPLICATIONS,2022,33(23):1-15.
  • [113] 袁非牛,Kang Li,汪春梅,Zhijun Fang. A Lightweight Network for Smoke Semantic Segmentation. PATTERN RECOGNITION,2023,137(1):1-11.
  • [114] 袁非牛. 面向烟雾识别与纹理分类的Gabor网络. 中国图象图形学报,2019,42(2):269-281.
  • [115] 袁非牛. 采用聚合Gabor核和局部二元模式的烟雾识别方法. 小型微型计算机系统,2019,40(4):827-833.
  • [116] 袁非牛,Yu Zhou,Xue Xia,Jinting Shi,Yuming Fang. Image dehazing based on a transmission fusion strategy by automatic image matting. COMPUTER VISION AND IMAGE UNDERSTANDING,2020,194(5):1-11.
  • [117] 袁非牛,Yu Shi,Lin Zhang,Yuming Fang. A Cross-scale Mixed Attention Network for Smoke Segmentation. DIGITAL SIGNAL PROCESSING,2023,134(0):1-11.