(0)

基本信息

  • 聘任技术职务:副教授
  • 学历:博士研究生毕业
  • 联系电话:021-57125268
  • 电子邮箱:contact@issc.group
  • 部门:信息与机电工程学院
  • 学位:工学博士学位
  • 毕业院校:同济大学
  • 办公地址:奉贤校区科技楼A座810室

研究方向

研究方向:

赵勤,副教授,上海市徐汇区政协委员,智能社会与科学计算科研团队负责人,IEEE Senior Member,中国计算机学会杰出会员,任上海市科委智能教育大数据工程技术研究中心副主任,兼任中国计算机学会科学教育创新论坛秘书长。2016年毕业于同济大学嵌入式系统与服务计算教育部重点实验室,获工学博士学位,导师为中国工程院院士蒋昌俊教授。主持国家重点研发计划子课题、国家自然科学基金、上海张江重大项目课题、国家教育部重点实验室课题,以及上海市科委、教委、经信委等十余项重要科研项目,并作为主要研究人员参与国家973计划、863计划、国家基金委重大研究计划及上海市市级科技重大研究专项等多项研究工作,在IEEE TNNLS、TSMC、TCSS、J-STARS、ESWA、NEUCOM、ATMOSRES、IJCAI等国际高水平学术期刊和会议上发表学术论文五十余篇,申请发明专利十余项,获上海市科技进步奖二等奖一项,上海市计算机学会科技进步奖一等奖一项。

访问课题组网站 https://issc.group 可获取更多信息。

主要研究方向:智能教育、社交网络分析、金融风险防控、大气环境预测等。


主要项目:

[1]  国家重点研发计划专项“面向微小型数据中心的系统软件”(项目编号2022YFB4501700)子课题“数据原位计算与热敏制导存储技术”,主持,在研。

[2]  国家自然科学基金青年科学基金项目“基于情感的社交网络信息推荐关键技术研究”(项目编号61702333),主持,已结题。

[3]  上海张江国家自主创新示范区专项发展资金重大项目委托课题“细胞培养AI质量监控与再生医学新模型构建研究”,主持,在研。

[4]  上海市经信委政策咨询项目“人工智能时代的职业教育发展趋势和政策咨询研究”,主持,在研。

[5]  上海市教委中小学在线教育研究基地项目“人工智能驱动的在线远程智能教育模式与建设路径研究”,主持,已结题。

[6]  国家教育部嵌入式系统与服务计算重点实验室开放课题“大数据环境下的社交网络信息表达方法研究”(项目编号ESSCKF2019-03),主持,已结题。

[7]  国家教育部嵌入式系统与服务计算重点实验室开放课题“基于情感的混合领域社交网络信息推荐方法研究”(项目编号ESSCKF 2016-01),主持,已结题。

[8]  上海高校青年教师培养资助计划项目“基于用户情感的重叠社区检测研究”,主持,已结题。

[9]  上海师范大学教学改革项目“新工科视野下的信息工程数学:《线性代数》数字课程建设”,主持,已结题。

[10] 国家重点基础研究发展计划(973计划)项目“信息服务的模型与机理研究”(项目编号2010CB328100),参与,已结题。

[11] 国家自然科学基金重大研究计划集成项目“可信网络交易软件系统试验环境与示范应用”(项目编号91218301),参与。

[12] 国家高技术研究发展计划(863计划)课题“软件安全性病态模型及其检测、防治技术研究”(2009AA01Z401),参与,已结题。

[13] 上海市基础研究领域重大科技项目“大规模信息流处理计算式的基础研究” (10DJ1400300),参与,已结题。


代表性论文(标*为通讯作者):

社交网络分析:

[1]  Q. Zhao, P. Wu, G. Liu, D. An, J. Lian*, and M. Zhou, "Sociological-Theories-Based Multi-Topic Self-Supervised Recommendation," IEEE Transactions on Neural Networks and Learning Systems, vol. 36, no. 6, pp. 11228-11242, 2025. (SCI, 中科院一区, TOP期刊)

[2]  Q. Zhao, C. Wang, P. Wang, M. Zhou, and C. Jiang*, "A Novel Method on Information Recommendation via Hybrid Similarity," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 3, pp. 448-459, 2018. (SCI, 中科院一区, TOP期刊)

[3]  P. Wu, H. Qi, S. Huang, D. An, J. Lian, and Q. Zhao*, "Wave-driven Graph Neural Networks with Energy Dynamics for Over-smoothing Mitigation," in Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25), 2025, pp. 6579–6587. (人工智能顶级会议, CCF-A)

金融风险防控:

[4]  Q. Zhao, J. Huang, G. Liu*, Y. Miao, and P. Wang*, "A Multiinterest and Social Interest-Field Framework for Financial Security," IEEE Transactions on Computational Social Systems, vol. 11, no. 2, pp. 1685-1695, 2024. (SCI, 中科院二区, 社会计算领域TOP期刊)

[5]  D. An, Y. Yang, X. Gao, H. Qi, Y. Yang, X. Ye, M. Li, and Q. Zhao*, "Reinforcement Learning-Based Secure Training for Adversarial Defense in Graph Neural Networks," Neurocomputing, vol. 630, pp. 129704, 2025. (SCI, 中科院二区, TOP期刊)

大气环境预测:

[6]  Q. Zhao, J. Liu, X. Yang, H. Qi, and J. Lian*, "Spatiotemporal PM2.5 Forecasting via Dynamic Geographical Graph Neural Network," Environmental Modelling and Software, vol. 186, pp. 106351, 2025. (SCI, 中科院二区)

[7]  J. Lian, X. Wang, S. Huang, D. Wang, and Q. Zhao*, "AirMamba: A Deep Learning Framework for Long-Term PM2.5 Forecasting Integrating Multi-Scale Correlations and Time-Frequency Dynamics," Expert Systems with Applications, vol. 299, no. 129937, 2026. (SCI, 中科院一区, TOP期刊)

[8]  J. Lian, J. Shao, H. Yu, R. Chen, S. Huang, G. Chen, and Q. Zhao*, "Multi-modal Fusion Learning for Predicting Tropical Cyclone Intensity over Western North Pacific," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 18, pp. 7048-7063, 2025. (SCI, 中科院二区, TOP期刊)


2025年:

[1]  Q. Zhao, P. Wu, G. Liu, D. An, J. Lian*, and M. Zhou, "Sociological-Theories-Based Multi-Topic Self-Supervised Recommendation," IEEE Transactions on Neural Networks and Learning Systems, vol. 36, no. 6, pp. 11228-11242, 2025. (SCI, 中科院一区, TOP期刊)

[2]  Q. Zhao, J. Liu, X. Yang, H. Qi, and J. Lian*, "Spatiotemporal PM2.5 Forecasting via Dynamic Geographical Graph Neural Network," Environmental Modelling and Software, vol. 186, pp. 106351, 2025. (SCI, 中科院二区)

[3]  D. An, Y. Yang, X. Gao, H. Qi, Y. Yang, X. Ye, M. Li, and Q. Zhao*, "Reinforcement Learning-Based Secure Training for Adversarial Defense in Graph Neural Networks," Neurocomputing, vol. 630, pp. 129704, 2025. (SCI, 中科院二区, TOP期刊)

[4]  Q. Zhao, G. Yang, Y. Miao, J. Lian, H. Qi*, and Z. Kou, "Adaptive Sampling-based Heterogeneous Graph Enhancement," Computing and Informatics, vol. 44. no. 3, pp. 635-660, 2025. (SCI)

[5]  J. Lian, J. Shao, H. Yu, R. Chen, S. Huang, G. Chen, and Q. Zhao*, "Multi-modal Fusion Learning for Predicting Tropical Cyclone Intensity over Western North Pacific," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 18, pp. 7048-7063, 2025. (SCI, 中科院二区, TOP期刊)

[6]  P. Wu, H. Qi, S. Huang, D. An, J. Lian, and Q. Zhao*, "Wave-driven Graph Neural Networks with Energy Dynamics for Over-smoothing Mitigation," in Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25), 2025, pp. 6579–6587. (人工智能顶级会议, CCF-A)

[7]  J. Lian, X. Wang, S. Huang, D. Wang, and Q. Zhao*, "AirMamba: A Deep Learning Framework for Long-Term PM2.5 Forecasting Integrating Multi-Scale Correlations and Time-Frequency Dynamics," Expert Systems with Applications, vol. 299, no. 129937, 2026. (SCI, 中科院一区, TOP期刊)

[8]  X. Yang, X. Li*, and Q. Zhao, "A Multi-View Fusion Data-Augmented Method for Predicting BODIPY Dye Spectra," Mathematics, vol. 13, no. 18, pp. 2947, 2025. (SCI, JCR Q1)


2024年:

[1]  Q. Zhao, J. Huang, G. Liu*, Y. Miao, and P. Wang*, "A Multiinterest and Social Interest-Field Framework for Financial Security," IEEE Transactions on Computational Social Systems, vol. 11, no. 2, pp. 1685-1695, 2024. (SCI, 中科院二区, 社会计算领域TOP期刊)

[2]  Q. Zhao, F. Yang, D. An, and J. Lian*, "Modeling Structured Dependency Tree with Graph Convolutional Networks for Aspect-level Sentiment Classification," Sensors, vol. 24, no. 2, pp. 418, 2024. (SCI)

[3]  Q. Zhao, C. Yu, J. Huang, J. Lian, and D. An*, "Sentiment Analysis Based on Heterogeneous Multi-relation Signed Network," Mathematics, vol. 12, no. 2, pp. 331, 2024. (SCI, JCR Q1)

[4]  Q. Zhao, Y. Miao, D. An, J. Lian*, and M. Li, "HGNN-QSSA: Heterogeneous Graph Neural Networks with Quantitative Sampling and Structure-aware Attention," IEEE Access, vol. 12, pp. 25512-25524, 2024. (SCI)

[5]  Q. Zhao, Y. Miao, J. Lian, X. Li, and D. An*, "Louvain-Based Fusion of Topology and Attribute Structure of Social Networks," Computing and Informatics, vol. 43, no.1, pp. 94-125, 2024. (SCI)

[6]  C. Yu, X. Lin, Y. Yan, Y. Cheng, H. Wang, Y. Huang, W. Zhao, L. Liu, Q. Zhao*, J. Wang*, and L. Zhang*, "AbDPP: Target-oriented Antibody Design with Pre-training and Prior Biological Structure Knowledge," Proteins: Structure, Function, and Bioinformatics, vol. 92, no. 10, pp. 1147-1160, 2024. (SCI)

[7]  J. Lian, S. Wu, S. Huang, and Q. Zhao*, "A Novel Sequence-to-Sequence Based Deep Learning Model for Satellite Cloud Image Time Series Prediction," Atmospheric Research, vol. 306, pp. 107457, 2024. (SCI, 中科院二区, TOP期刊)

[8]  Q. Zhao, P. Wu, J. Lian, D. An*, and M. Li, "TaneNet: Two-level Attention Network Based on Emojis for Sentiment Analysis," IEEE Access, vol. 12, pp. 86106-86119, 2024. (SCI)

[9]  D. An, Z. Pan, Q. Zhao, W. Liu, and J. Liu*, "Unsupervised Graph Structure Learning Based on Optimal Graph Topology Modeling and Adaptive Data Augmentation," Mathematics, vol. 12, no. 13, pp. 1991, 2024. (SCI, JCR Q1) 

[10] D. An, Y. Yang, W. Liu, Q. Zhao, J. Liu, H. Qi,  and J. Lian*, "A Secure GNN Training Framework for Partially Observable Graph," Electronics, vol. 13, no. 14, pp. 2721, 2024. (SCI)

[11] D. An, H. Zhang, Q. Zhao, J. Liu, J. Shi*, Y. Huang, Y. Yang, X. Liu, and S. Qin, "Graph Convolutional Network Robustness Verification Algorithm Based on Dual Approximation," in Proceedings of International Conference on Formal Engineering Methods, pp. 146-161, 2024. (CCF-C)


2023年:

[1]  Q. Zhao, G. Liu, F. Yang, R. Yang*, Z. Kou, and D. Wang, "Self-Supervised Signed Graph Attention Network for Social Recommendation," in Proceedings of the International Joint Conference on Neural Networks, pp. 1-9, 2023. (CCF-C)

[2]  H. Huang, P. Wang*, Z. Zhang, and Q. Zhao, "A Spatio-Temporal Attention-based GCN for Anti-Money Laundering Transaction Detection," in Proceedings of the 19th International Conference on Advanced Data Mining and Applications, pp. 634-648, 2023. (CCF-C)


2022年:

[1]  Q. Zhao, Z. Zhou, J. Li, S. Jia, and J. Pan*, "Time-Dependent Prediction of Microblog Propagation Trends Based on Group Features," Electronics, vol. 11, no. 16, pp. 2585, 2022. (SCI)

[2]  N. Fu, Q. Zhao*, Y. Miao, B. Zhang, and D. Wang, "A Representation Learning Method of Graph Convolutional Network Based on Structure Enhancement," Computing and Informatics, vol. 41, no. 6, pp. 1563–1588, 2022. (SCI)

[3]  J. Pan, H. Li, J. Teng, Q. Zhao*, and M. Li*, "Dynamic Network Representation Learning Method Based on Improved GRU Network," Computing and Informatics, vol. 41, no. 6, pp. 1491–1509, 2022. (SCI)


2021年以前:

[1]  Q. Zhao*, C. Wang, and C. Jiang, "HSim: A Novel Method on Similarity Computation by Hybrid Measure," in Proceedings of IEEE International Conference on Information and Communication Systems (ICICS), pp. 160-165, 2015. (EI)

[2]  赵勤, 王成, 王鹏伟. 一种基于社区分类的社交网络用户推荐方法[J]. 计算机科学, 2016, 43(5): 198-203. (CCF-B)

[3]  Q. Zhao, Y. He, C. Jiang*, P. Wang, M. Qi, and M. Li, "Integration of Link and Semantic Relations for Information Discovery and Recommendation," Computing and Informatics, vol. 35, no. 1, pp. 30-54, 2016. (SCI)

[4]  B. Zhang, H. Zhang, M. Li*, Q. Zhao, and J. Huang, "Trust Traversal: A Trust Link Detection Scheme in Social Network," Computer Networks, vol. 120, pp. 105-125, 2017. (SCI)

[5]  B. Zhang, C. Mu, Q. Zhao*, Z. Peng, J. Ding, and B. Liu, "A Multidimensional Comprehensive Recommendation Method Based on Social Network," in Proceedings of 5th International Conference on Advanced Cloud and Big Data (CBD), Shanghai, China, 2017.08.13-08.16. (EI)

[6]  张波, 金玉鹏, 张倩, 赵勤, 王娇燕. 试论一种新型在线教育资源大数据组织框架, 中国电化教育, 2018 (3): 41-46. (CSSCI)

[7]  Q. Zhao, C. Wang, P. Wang, M. Zhou, and C. Jiang*, "A Novel Method on Information Recommendation via Hybrid Similarity," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 3, pp. 448-459, 2018. (SCI, 中科院一区, TOP期刊)

[8]  D. Qin, J. Yu, G. Zou, R. Yong, Q. Zhao*, and B. Zhang*, "A Novel Combined Prediction Scheme Based on CNN and LSTM for Urban PM2.5 Concentration," IEEE Access, vol. 7, pp.20050-20059, 2019. (SCI)

[9]  W. Liu, P. Wang*, Y. Meng, Q. Zhao*, C. Zhao, and Z. Zhang, "A Novel Model for Optimizing Selection of Cloud Instance Types," IEEE Access, vol. 7, pp. 120508 – 120521, 2019. (SCI)

[10] 秦东明, 丁志军, 金玉鹏, 赵勤*. 基于自编码网络的空气污染物浓度预测[J]. 同济大学学报: 自然科学版, 2019, 47(5): 681-687. (EI)

[11] S. Huang, Q. Zhao*, X. Xu, B. Zhang*, and D. Wang, "Emojis-Based Recurrent Neural Network for Chinese Microblogs Sentiment Analysis," in Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 59-64, November 2019. (EI)

[12] 秦东明, 喻剑, 张波, 赵勤*. 基于分布式无共享架构的海量数据并行查询平台[J]. 计算机科学, 2019, 46(4): 44-49. (CCF-B)

[13] B. Zhang, L. Zhang, C. Mu, Q. Zhao, Q. Song, and X. Hong*, "A Most Influential Node Group Discovery Method for Influence Maximization in Social Networks: A Trust-Based Perspective," Data & Knowledge Engineering, vol. 121, pp. 71–87, 2019. (SCI, CCF-B)

[14] C. Wang, H. Zhu, C. Wang, Q. Zhao, and B. Zhang, "Transport Complexity of Data Dissemination in Large-Scale Online Social Networks," in Proceedings of the ACM Turing Celebration Conference-China, pp. 1–5, 2019. (EI)

[15] G. Zou, B. Zhang*, R. Yong, D. Qin, and Q. Zhao, "FDN-learning: Urban PM2. 5-concentration Spatial Correlation Prediction Model Based on Fusion Deep Neural Network," Big Data Research, vol. 26, pp. 100269, 2021. (SCI)

 

授权发明专利:

  • [1]  赵勤, 高浩然, 陈宇宁, 卢柄屹, 侯瑞君, 徐腾. 基于人脸表情识别的顾客满意度获取方法: CN 2019106455516. 2023-05-30.

  • [2]  赵勤, 苗亚茹, 刘港, 廉洁, 安冬冬. 一种基于跨主题对比学习的社交推荐方法: CN 2023108494225. 2025-06-10.

  • [3]  赵勤, 苗亚茹, 寇祖亮, 杨茹, 张波. 一种基于图压缩的社区发现方法: CN 2023103294862. 2025-10-28.

  • [4]  赵勤, 刘嘉俊, 廉洁, 祁宏达, 安冬冬. 一种基于半动态图神经网络的区域多站点PM2.5预测方法: CN 202411892693X. 2025-10-03.

    • [5]  潘建国, 张波, 张倩, 李美子, 赵勤. 一种基于聚类的社交网络意见领袖挖掘方法: CN 201710729792X. 2020-10-16.

    • [6]  张波, 穆翠, 赵勤, 张倩. 一种基于社交网络的多维度综合推荐方法: CN 2016108946627. 2020-10-16.

学术成果(以下信息源于科研管理系统)

教学工作

荣誉奖励

荣誉奖励:

2024年上海市科技进步奖二等奖(第二完成人)

2024年上海市计算机学会科技进步奖一等奖(第三完成人)

2025年上海师范大学第三届“我心目中的好导师”

2024年九三学社上海市委社会服务工作先进个人

2023年九三学社上海师范大学委员会优秀社员

2023年中国计算机学会“杰出传播者”

2023年上海师范大学优秀教师

2022年中国计算机学会“杰出传播者”

2022年获上海师范大学“美承奖教金”

2021年入选上海市“数字人文资源建设与研究”重点创新团队

2021年获上海市计算机学会教学成果奖二等奖

2021年获上海师范大学教学成果奖二等奖

2019年获上海师范大学校级记功表彰

指导学生立项大学生创新创业项目国家级2项,上海市级2项,校级2项

指导学生获得上海市大学生“创造杯”三等奖1项

社会兼职

社会兼职:

上海市徐汇区第十五届政协委员

上海市科委智能教育大数据工程技术研究中心 副主任

IEEE Senior Member

中国计算机学会 杰出会员

中国计算机学会科学教育创新论坛 秘书长

中国计算机学会教育专业委员会 执行委员

中国计算机学会传播工作委员会 执行委员

中国自动化学会网络计算专业委员会 委员

中国人工智能学会自然计算与数字智能城市专业委员会 委员

九三学社上海市委科技专门委员会 委员

国家自然科学基金通讯评审专家

国家教育部学位中心论文评审专家

上海市计算机学会人工智能专业委员会 委员

上海市计算机学会协同与服务计算专委会 委员

上海市人工智能学会智联网络系统专业委员会 委员

上海市高等学校信息技术水平考试人工智能学科命题组专家