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1. Introduction and main results

The problem of limit cycle bifurcations of Liénard equation of the form

X+ fxx+gx) =0

or its equivalent form

x=y—Fx, y=-gk,

where F(x) = fé‘f(x) dx, has been extensively considered, see [1-23] for instance. In [2,3,17,23,22]
the number of local limit cycles were obtained in Hopf bifurcation when f and g are polynomials of
certain degrees. In [16], the authors considered a system of the form

x=y, y=—-x—€gn® —ef)y,
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where f, and gm are polynomials of degrees n and m respectively, and € is a small parameter. A num-
ber Hpm was introduced in [16] for the above system which is the maximal number of limit cycles
bifurcating from the periodic orbits of the linear center x =y, y = —x. By using the averaging theory
of order 3, the authors [16] obtained

~ n+m-—1
s [221],
Consider a more general system of the form
x=py)-Fxa, y=-gk, (11)

where F, g and p are C* functions near the origin with

£(0)=0, g'(0)>0, p(0) =0, p'(0) >0, F(0,a)=0, aeR". (1.2)

Let

X

G(x):/g(x)dx, F(a(x),a)—F(x,a):ZB,-(a)xi, a=(ay,...,an)

0 i>1

where a(x) = —x + 0(x?) satisfies G(x(x)) = G(x) for |x| <« 1.
From [7] we have the following result.

Theorem 1. (See [7].) Let (1.2) hold. If there exists k > 1 such that

F(a(x),a)=F(x,a) whenByj;1=0, j=0,....k (1.3)
foralla e R", then

(1) the origin is a focus of order at most k of Eq. (1.1) unless it is a center,

(2) if Byjy1 =O(|B1, B3, ..., Byky1l) for j >k + 1, then for any N > O there exists a neighborhood Uy of
the origin such that Eq. (1.1) has at most k limit cycles in Uy for all |B1| 4 |B3| + - -- + |Bak+1| <N,

(3) suppose (1.3) holds for some 1 <k <n — 1. If further

d(B1, ..., Boks1)

=k+1,
a(at,...,an) a=ag

Byjt1(ag) =0, j=0,...,k, rank

then Eq. (1.1) has at most k limit cycles near the origin for all a near ap, and has k limit cycles near the
origin for some a near ag small. In other words, Eq. (1.1) has Hopf cyclicity k at the origin.

The above theorem has many applications to various Liénard systems and certain models from
biomathematics, see [7,9,10,20] and [21]. For example, Jiang et al. [10] considered the system

n
k:y—Zaixz”], y=—x(x*-1)
i=0

and proved that it has Hopf cyclicity n at the points A(1, yg) and B(—1, —yg) each, where yg =
3% ,ai. Hence, the maximal number of its small-amplitude limit cycles is 2n.



836 Y. Tian, M. Han / J. Differential Equations 251 (2011) 834-859

In recent years non-smooth systems were studied widely, see Coll et al. [4], Kiipper and
Moritz [12], Leine [13], Zou et al. [24]. Liu and Han [15] considered the following non-smooth Liénard

system
x=p@y) -Fxa, y=-g®,
where a € R",

Ft(x,a), x>0,
F~(x,a), x<0,

gr®), x>0,

F(X’a)zi g (), x<0.

yw={
F* and g* are all C* functions and satisfy

F£(0,0)=0, g=©0)=0, p@O=0, (g%) 0 =gF>0,
2
p'(0)=po>0, (Ff(0,a0))” —4pogy <0, aoeR".
Let

X

G(x):/g(u)du, a(x)=_(\/§/ g7)x+0(x%),

0

where o (x) satisfies G(x(x)) = G(x) for |x| <« 1. Suppose formally for 0 < x <« 1

Fla(x),a) = F(x.a)=F (a(®),a) — F* (x,a) =) _ Bi(@x".

i>1

(1.4)

(1.5)

(1.6)

Theorem 2. (See [15].) Let (1.5) and (1.6) hold. Then for the displacement function of (1.4), we have formally

d(r,a) = Zd,- (@yr! for |a — ag| small,

i>1
where
di(@) =BiNj(@),  di(a) = BiN;(a)+O(|Bi....,Bi_1l).
with N € C* and N (ap) > 0 fori > 1.
A polynomial system of the form

X=ypm(X) —qu(®), y=—-8X)pm(Xx)

was introduced in Jiang and Han [9], where

pn() =1+ bix, g =) ax
i=0

i=1

(1.7)

(1.8)

with a; and b; being parameters. Obviously, on the region p;;(x) > 0 the system (1.7) is equivalent to

the Liénard system
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_n (%)

, = —g(x). 1.9
P ) y=-8® (1.9)

X=

It is clear that the system (1.4) has a singular point with index +1 at (0, ag). By applying Theorem 1
it was proved in [9] that the system (1.7) or (1.9) has Hopf cyclicity [%’H] at the point (0, ap) if
(1.8) holds and g(0) =0, g’(0) > 0, and g(—x) = —g(x) for |x| small.

Based on a result of Petrov [1], Han [7] and Christopher and Lynch [3] separately proved the
following theorem.

Theorem 3. The Liénard system

X=y—qu(x), y=—-x(x+1) (1.10)
has Hopf cyclicity [#5-1] at the point (0, a).

In this paper we give a new proof to the above theorem by using Theorem 1 without using the
result of Petrov [1]. Then based on the idea in the new proof we obtained the following theorem
which is one of the main results of the paper.

Theorem 4. Let (1.8) hold. If g(x) = x(x + 1) in (1.7) or (1.9), then for Eq. (1.7) or (1.9) an upper bound of
the maximum number of limit cycles in a neighborhood of the point C(0, ap) is [W] — [%] asn>m
or [ME2n=A] _ M) ggm >,

From the following theorem one can see that the upper bound obtained in the above theorem is
the Hopf cyclicity at the point C(0, ap) in the case of m =n.

Theorem 5. Let (1.8) hold with m =n. If g(x) = x(x + 1) in (1.7) or (1.9), then Eq. (1.7) or (1.9) has Hopf
cyclicity 2n — 2 (= [6”3_4]) at the point C(0,ap) forn=1,2,3,4.

The conclusion in Theorem 5 is an improvement to Theorem 4 in the case of m=n < 4.
As another interesting application of Theorem 2, we study the Hopf bifurcation of the following
non-smooth Liénard system

x=y—-F®x, y=-g®), (111)

where

N oty
Yimax, x>0,

F(x) = .
( YiLiarx, x<0,

g =x(x+1). (112)

We consider ai+ and a; as parameters. It is clear that (1.11) has a singular point at the origin.
Another main result is the following theorem.

Theorem 6. Let (1.12) hold. Then the Hopf cyclicity of Eq. (1.11) at the origin is [3"”%] asm>=nor
(321 g5 n > m.
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2. Preliminary lemmas
For g(x) =x(x+ 1), we suppose

r x X3
G(x):/g(x)dx:;—i-?.

0

From (2.1) we have

Gla(x)) — G(x) B 1
o—x )

which gives

2x—34++/—12x2 —12x+9

—2x— 2, [2\’, 2
a(x) = =X—=Xx"—[Z)x -2
4 3 3

since G(x(x)) = G(x) for |x| < 1. Let

Ii j(0) = a'()x —ad (X,

and let I;(x) denote I; o(x) for short, i.e. I;(x) = ai(x) — x'. We have the following lemma.

Lemma 1. For any integer n > 0, we have

I30(x) = ZO( )13n i)

Proof. When n =1, since G(«) = G(x) we get from (2.1) that

3 3
L) =0 —x = E(ozz—x2)=—§12(x).

Thus, the conclusion is true for n =1.
Assume that the conclusion is true for n = k. That is,

k i
i3
I ==Y _Cp (5) I3 (%)
i=1

Let us prove that the conclusion is also true for n =k + 1.
Multiplication of (2.4) by o/ + x/ gives

I3k () (0! +x7) = ZCk( )Iak i) (o +x7), j

or

~(a +x)+%(a2+ax+x2),

(21)

(2.3)

(2.4)
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k /3 i
I3 (0 + I3 j0) == ) Gy (5) (I3k-igj 0 + I3e-i ), j=2,3. (2.5)
i=1
Multiplying both sides of (2.3) by o™ + x™, we get
m m 3 m m
I3(x) (o™ + x )=—§Iz(x)(0l +x™M),
which yields
3 3
Imy3(x) + 51m+2(x) =In3(x)+ ilm,z(x), (2.6)
where m is a positive integer. Then (2.5) and (2.6) together imply
3
Isgy3(%) + §I3k+2 (x)

1 3
=3 |:13k+3 (X) + I3k,3(%) + 5(131<+2(X) + 131<,2(X))]

k i
1 /3 3
=3 Z C;{(E) |:(13k—i+3 (%) + Isk—i3(%) + 5(131<—i+2(x) + 13k—i,2(x))]
i=1
1<n (3) 3 3
=3 ; q(i) [(13H+3(x) + 5 I3k-is2 (x)) + (Iakfis(x) + Elgkfi,z(x)ﬂ

——Xk:cf@)i(I » (x)+§1 i (x))
= a k 2 3k—i+3 2 3k—i+2 .

Hence

k i k+1
3 - (3
I3 () = —(1+ C,})§131<+2(X) - .Ez(C,'{ '4+c) <§> Isg43-i(X) — <§> Do2(%),
i=

which can be written as

K1 i
30 ==Y Ciyy (5) [3k43-i ().
i=1

Therefore the conclusion is true for n =k + 1, and the proof is completed. O
We introduce a new variable 6 by
x=(—1—+/3sin6 +cos0)/2=£(6) for|o| < 1.

Then it follows that
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—12x* — 12x +9=—3[(2x + 1)* — 4] = —3(3sin*0 + cos®  — 2v/3sinf cos ) — 4)
= —3(—sin?# — 3cos? @ — 2+/3 5inf cos b))
= 3(sin@ + v/3cos H)>.

Substituting the above into (2.2) yields that

a(x) = (—1 4+ +/3sin6 + cos§) /2 = £(—6).

Suppose that I (x) = In(£(0)) 57,1(9). Then we have 7n(0) =[E(—=0)]" — [£(6)]". Thus the periodic
function [ is odd in 6. Further, for its Fourier expansion we have the following lemma.

Lemma 2. For any positive integer n, the function Ta(6) has the following Fourier expansion

Ta(0)= > bnjsinio,

ieS(n)

where S(n) = {k | k # 0 (mod 3), 1 <k < n} and b,; are coefficients independent of 6 with by, =
27" 2sin IT.

Proof. For any integer n > 1, by the definition of T, we have
Ta(6) = (=1 ++/35sin6 + cos0)" /2" — (=1 — +/3sind + cosH)" /2"

n
=27"> " Ci[1 - (=1)/](/35in6)/ (—1 + cos0)"
j=0
n . ) -1 )
=l Z Ch(v/3)7sinf(1 — cos?0) 2 (—1+cosd)" .
j=1, j odd

Then using the expansions of (1 — cos? 9))%1 in cos?6 and (—1 + cos#)"~J in cos6 for j odd we
further have

n

n—1
Ta(0) =271 Z Cl(+v/3)sin6 ZBI’J cos' 9

j=1, j odd i=0

n—1 n
:27n+1z Z b;iCh(~/3)/ sin6 cos' 6

i=0 j=1, j odd
n—1
=l Zbi siné cos' 6,
i=0
where
2l+k=i n
¢ ko ol I+n—j—k . j .
bji= Y =D = 3 b iGi(v3), 0<i<n—1.
o<k<n—j 2 j=1, j odd

0<2I<j—1
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It can be seen that

n

binsi=(-DT.  bia= Y ()T I 27)

j=1, j odd

Using the formula 2 sinm6 cos# = sin(m + 1)6 + sin(m — 1)6, one can get

i1
sinf cos' 6 = ZB” sin j6, where b; ;. =27", fori>0. (2.8)
=
Hence, it follows that
n—1 i+1 n
To(0) =271 Zb Zb”sm]@ =2+l Z Z bib; jsin jo = an]sm]@
i=0 j=1 j=1li=j-1

where

0
b j=2"""1 Z bibij, 1<j<n.
i=j—1

In particular, (2.7) and (2.8) together give

n -
bun=2"""bpibu1a =222 Y W17
j=1, j odd

Noting that

n n

niw nmw; nw ; T T T b4

2" gin — =2"e3'—e"3")=2"cos = +isin— | —2"(cos— —isin=
3 3 3 3 3

=1 +iV3)' -1 -iV3)"=) AW - cl(—v3)iif

j=0 j=0

=2 Y W37 wherei= v,

j=1, j odd
we have

3 AW )T =2"sin o

3
j=1, j odd

Therefore, by 5 = 27" sin .
Obviously, in order to complete the proof we just need to show by 3, =0 for any positive inte-
ger m.
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In fact we have

s
/ (=1 ++/35in6 + cosO)" sin(3mo) do

-7
T n
. T . 5
/ (—l +251n(9 + €)> sin(3m6) do (letu =60— gﬂ)
—7T

T

I
—

(=1 —=2sinu)" sin[Bm (u + gn)] du

_1

/g

5
f (=1 =2sinu)" sin|:3m<u + %)] du
1

/g

|

B

—_

o

7
24

f . [ 7\ . ) 14
f(—l—Zsmu)"sm 3m<u+—> du + (—1—251nu)”sm|:3m(u+—)}du
) L i

6

1
-5 -5

T

H . [ 7\ . . b2
f (=1 —2sinu)"sin 3m<u+g> du-l-f(—l—Zsmu)”sm[3m<u+€)}du
7 B - Fid

6

—§7

ol

1
(=1 —=2sinu)" sin[3m<u + %)] du <let9 =u-+ 67[)

Il
\m:\'m

I
T n
. Y .
= / <—1 - Zsm(@ - E)) sin(3mH) do
-7

s
= /(—1 —+/35sin6 + cos6)" sin(3mh) do,

-

which implies

/7,1(0) sin(3mf) dg = /[(s(—e))” — (£(8))"]sin(3m#) dg = 0.
-7 -

Then by Fourier’s formula, we have by 3 = %ffﬂ 7,, (6) sin(3mO) d® = 0. The proof is completed. O

By Lemma 2 we have by # 0 for k # 0 (mod 3). Hence, noting that different functions sin(k¢)
for k # 0 (mod 3) are linearly independent, Lemma 2 implies that the functions I;(9), i € S(n), are
linearly independent for any positive integer n > 1. In other words, we have the following lemma.
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Lemma 3. For any integern > 1, the [%] + 1 functions I;(x), i € S(n), are linearly independent.

Then by Lemmas 1 and 3 we see the fact that the n functions I;(x), i=1,...,n, can span a linear
space of dimension [25-1]+ 1.

Let Inm(x) = Inm(£(0)) =7n,m(9). For the Fourier expansion of T,l,m(e) we have the following
lemma.

Lemma 4. For any positive integers n, m and n > m, the function 7n,m(9) has the following Fourier expansion

n+m
Inm(9) = Z bn,m.k sinko,
k=1

where by m k are coefficients independent of 0 with by m nim = 2-n=m+2gjp S,

Proof. Suppose that J(0) = a(X)X|x=¢(); it is easy to get that

(~1++/3sin6 +cos)(~1—v3sin6 +cos6) _ o
4 - 22

cosf 1

J(0) =

Further, we suppose that for positive integer m,

where

S N\ 2
Cmi= Y = CnCpi- (2.9)

j=max{0,i—m}

From Lemma 2, for n > m,

keS(n—m)

~ ~ cosd 1\" .
Inm®) = J™(O)1—m(©) = (cos2 0 — ———— 5) Z by_m k sinko
> bomk sinke)

2
2m )
( Z @mi COS' 6) <
i=0 keS(n—m)

2m
Z bn—mk (sink@ Z &mi cos'! 0) .
i=0

keS(n—m)

By using the formula 2 sinmé cos = sin(m + 1)0 + sin(m — 1)#, one can get

2m k-+2m
sinké Zémi cos'0 = Z €k,m,j sin jo,
i=0 j=1

with



844 Y. Tian, M. Han / J. Differential Equations 251 (2011) 834-859
> —2my —-2m
k,m,k+2m = 2 em,2m =2 ) (2.10)

since é;,,2m =1 by (2.9). And then

k+2m
Inm () = Z bn—m.k Z €k,m,j Sin jO
keS(n—m) Jj=1

n+m

n—-m
= Z Z bn_m.k€k,m,;jsin jo

j=1 k=max({1, j—2m}

n+m
= bnm,jsin j6
j=1
where
n—-m
bn,m,j = Z bn—m,kék,m,j-

k=max{1, j—2m}
In particular, by Lemma 2 and (2.10)

on—m
27 MH2 gip —5 T

bn,m,n+m = bn—m,n—mén—m.m,n+m =
The proof is completed. O
Suppose that J,(x) =a™ +x" and [,(x) = J,(£(0)) = 7n (0). Let us prove the following lemma.

Lemma 5. For any positive integer n, we have

Jn(®) =ch,,'cosi9,

i=0
where cpn = 272 cog ”T” and 7n(0) = Z?:o cp,i = 0since J,(0) =0.
Proof. For any integer n > 1, we get
Ta(®) = (=14 +/35in6 + cos0)"/2" + (—1 — +/3sin6 + cos H)" /2"

=2 Z C'Z‘[] + (_l)]](\/gSan)](—] + cos 9)"‘]
j=0

i |
. . A i
=21 3 A3 (1 —cos?0)? (=1 + coso)" .

j=0, j even

After expanding (1 — cos? 9)% (—1+ cos6)"J in the term of cos®, we obtain
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n

7n ®) = 27 Z C#(\/g)j ZE“ cosi @

j=0, j even i=0

n n
=2_”+1Z Z bjiCh(v/3) cos' 6

i=0 j=0, j even

n
=2l Zbi cos' 6,

i=0
where
_ 2l+k=i ) n - . .
bji= Y Cr itk = Y biCl(V3), 0<i<n.
0<kn—j 2 j=0, j even
0<2I<]
It can be seen that
= i . i ;
bjn=(-12,  bp= Y (-D2G(3). (211)

j=0, j even

Noting that for any integer m, we have 2 cosmé cos6 = cos(m + 1)0 + cos(m — 1)0, and hence

i
cos' g = ZEU cos j6, whereb;; =271 fori>1. (212)
=0

Further, let bgo = 1 and then we get

n i n n n
Ta() =271 Zb,- ZEU cos jo =271 ZZbiBiyj os jO = ch,j cos j6,
j=0

i=0  j=0 j=0i=j

where
n -
Cn,j = 2l Zbibi’j’ og<j<n.
i=j
Particularly, from (2.11) and (2.12), we get

n .
Cnn = 2_m_lbnlsn,n = 2—2n+2 Z C#(\/?)j(_l)%-

j=0, j even

Noting that
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n

n
nmw nw ; nw ; T T T T
2l cos— =2"(e3 ' +e”31)=2"[cos = +isin — 2" cos = —isin =
3 ( + ) 3 + 3 + 3 3

=1 +V3)"+ (1 - V3)" =Y W3+ Cl(—v3)i
j=0 j=0

=2 > CiV3)i (=1, wherei=v—T,

j=0, j even
we have that
. i ; j nmw
> GW3(-1)2 =2"cos?
j=0, j even
and hence cp, = 272 cos % The proof is completed. O
From Lemmas 2 and 5, we get the following lemma.

Lemma 6. For any integern > 1, I;(x), i € S(n), and J;(x), 1 <i < n, are linearly independent.

3. Proof of the main results

In this section we will give a proof of Theorems 3, 4, 5 and 6 respectively.

2n1

Proof of Theorem 3. Firstly, we prove that Eq. (1.10) has at most [
by Theorem 1.
From (1.8) we have

] limit cycles near the origin

In(@(®) —qu®) =Y _aili() =) Bix' = Qu(x). (31)

i=1 i>1

Then by Lemma 2 we have

Q) =) ali(®)=) ai Y bj;jsinjo = Qn(®).

i=1 i=1  jeSG)

Noting that S(j) = U{:l §,~, where g,- = {i} for i # 0 (mod 3) and §,‘ = for i =0 (mod 3), one has

n
Qn(e): Z Zaibi,jsinjez Z cjsin jo,

jesm i=j jesm)
where cj = > jalb” Then
o=y Y -1 121 =3 D' . g2+ (32)
" i 2 oir 2 i ¢ 1)1 2 :
jeSm) i=0 i=0

where
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~ 2241 .
C2ip1 = Z e, ixo0, (3.3)
Jjes@m)
since
. (=D i1 0
Slﬂ]@ — Z 7]21+1921+] .

>0 i+ 1!

From (3.3) we get that Cjq = A4 Cryq, where | = [2”3_1] and

(::1 Ciko kg k; e ké
N 3 Cry kg ki -k
Ciy1= . , Cri=| . | A1 = . A . )
C2[+1 Ckl kéH_l k%H_] . klzl+1

where k; € S(n), 0<i <!l and k; <kj if i < j. Because of

l

detAp = Hki l_[ (k? —k?) #0,

i=0  0<i<j<!

we have Cj1q = A7l Ci+1- Hence by (3.3) we can obtain

I+1
C2j+1 =O(|E1,E3,...,Ez[+1|) forj>1+1. (34)
Further, noting that 6 = —%x +0(x?), from (3.1) and (3.2) we have

(2\/5)2]41(_1)]41~ o . .
2 ) C2j41+0(C1,E3, ..., Caj1l), for j>0, (3.5)

Byjt1 =

which gives

321254+ 1)
(2v3)2H1 (=it

By (3.4), (3.5) and (3.6)

C2jy1 = Byji1+0(|B1, B3, ..., Baj_1]), for0<j<I (3.6)

Bojt1 =0(|B1,B3,...,le+1|) forj>1+41.

In particular, Q;(x) =0 when Bj;;1 =0, 0 < j <L It follows by Theorem 1 that Eq. (1.10) has at most
I limit cycles near the origin.

Finally, we prove that I limit cycles can appear near the origin. For simplicity, take a3; =0, 1 < j <
[%]. In this case, from (3.1), we have

T T
(B1, B3, ..., Bay1)” = Si(aky, Ays -+ -5 k) s

where S; is a constant matrix of order [ + 1. On the one hand, from Lemma 3, the functions
Iy (%), Ik, (X), ..., I, (x) are linearly independent, and hence from (3.1) it is easy to see that ai; = 0,
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0 < j <\ if and only if gp((x)) — gn(x) = 0. On the other hand, from the above proof, we see that
B2j+1=0,0< j < if and only if gn(c(x)) — gn(x) = 0. Therefore, we have det S; # 0, and the conclu-
sion follows by Theorem 1. The proof is completed. O

Proof of Theorem 4. Suppose n > m. It is obvious that the conclusion is true for Eq. (1.9) if and only
if it is true for the following system

X=v— (qn(x) — ao>, V=—g(x) (3.7)
Pm (%)

at the origin, where v =y — ay.
Suppose that bg =1 and

qn(x)
F(x) = — ap.
= ) %
Then
n@®) g _ Qum(x)

F(a(x)) —Fx) = (3.8)

Pm@®)  Pm®)  Ppm(@(®)pmx)’
where by (1.8)

Qum (%) = qn (X)) P (X) — qn () P (X (X))

(e () (B (o)

n m
=Y > abj(a’x’ —xa’)

i=0 j=0
m m n m
=Y Y abj(e’x’ —xal)+ Y > abj(a'x) —xal)
i=0 j=0 i=m+1 j=0
m m n m
=Y Y @bj—ajpp(a’x’ —xal)+ D D aibj(a’x) —xal),
j=0i=j+1 i=m+1 j=0

which can be written as

Qum(®) = Z Z cijlij(x) = Z Bix', (3.9)

=0 i=j+1 i>1

where

From Lemma 4, for i > j we have
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i+j

I;j(©) = > _bj jisinko, (3.10)
k=1

where b; j i+ j =2"""*2sin —n Then from (3.9) and (3.10) we get

i+j
Qnm(x) Z Z CUIU(G)_Z Z Cl] Zb,jkslnke
j=0i=j+1 j=0i=j+1 k=1
m+n i>j m-+n
= Z Z Cijbi, j k Sinkd = ch sinkd = Qun (),
k=1i+j>k

where ¢, = Z§:§>kcijbi,j,z¢. 1 <k <n+ m. Noting that if n — m =0 (mod 3), then cy4m =
Combn.m.min = 0 since by m.min =0, Qun(f) can be rewritten as

h+1
Qun(0) =Y _ cisinko,
k=1
where
h— n+2m—4 [n=mi_ m+n—1, m—nz0(mod3),
a 3 3 | |m+n—2, m—n=0(mod3).
Since

—1)i . .
sinkd = (,7)18'“92’“,

|
>0 i+ 1)!
we then obtain
i 1) : 1) :
Qun(0) = ch DR =N 0%, (311)
v [
>0 Qi+ 1! >0 2i+1)!
where
h+1 ]
Gip1 =y Kg, i=0. (3.12)
k=1
From (3.12) it follows that Enm = ApmCnm, Where
¢ c1 1 2 o h+1
N &3 e 122 .. (41
Cnm = : s Cnm = : s Anm = . . .
Coh+1 Cht1 1 221 L (4 1)

Since
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detAm=+1! ] (*—i%)#0,

1<i<j<h+1
we have Cpp = A 1Chm and hence by (3.12)
C2j4+1=0(|C1,83,...,Conal) forj=>h+1. (3.13)
Further, noting that 6 = —%?x +0(x?), from (3.9) and (3.11) we obtain

(2\/_)2k+1( ])k-H

B +0(|¢1,C3,...,Cok—1]), fork>0, 3.14
2 = TR T g 1y 2k (I61,¢5 2%-1) (3.14)
from which it follows that
N 321 2k + 1)1
Cokt1 = Bak+1+O(|B1, B3, ..., By—1l), for0O<k<h. (3.15)

(2\/§)2k+1 (_])k-H

So by (3.13), (3.14) and (3.15)

Byj+1=0(|B1, B3, ..., Bapyql), forj>h+1.

In particular, Cam =0 and Qum (x) =0 when Bygy1 =0, 0 <k < h. Thus, from (3.8) we can write

h
_ _ Qnm (%) 2k+1
Fla®) - F® =5 = ;0 21 (14 Pe()),

where Py(x) = O(x) € C® for |x| small. It follows by Theorem 1 that Eq. (3.7) has at most h limit
cycles near the origin for n > m.
If m > n, then

Qum () = qn (¢ (X)) Pm(X) — qn(X) pm (0t (X))
—[Pm(¢®))gn(X) — pm(0qn (2(x))]
=- Z Z Cijlij(x) = ZBiXi»
j=0i=j+1 i>1
where

e bia;j —bja;, 1<i<n,
v bia;j, n+1<i<m

Therefore, from the proof above, it is obvious that the conclusion is also true for m > n. The proof is
completed. O

Proof of Theorem 5. As before, we only need to show that the theorem is true for Eq. (3.7) at the
origin. There are four cases to consider below.
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Case 1. n =m = 1. In this case, from (2.2), (3.8) and (3.9) we have Q11(x) = (a1 — apb1)(@ — x) and

Q11(%)
F(a(x)) — F(x) = AP = —2(a; — aph1)x(1 + P1o(x)),

where P19(0) = 0. So it is obvious that the conclusion is true.

Case 2. n =m = 2. In this case, from (3.9) we have

Q22(X) =ez1(x — X) +ex(@® — ¥) +ex3(@’x —ax’) = Y " Bix, (3.16)
i1
where
ex1 =a1 —aobh1,  exp =a;—aghy,  ex3=axby —aihs. (317)

Substituting (2.2) into (3.16) yields B1 = R1Cq, where
5 By €21 =2 9 0
B = <33>, C1= (622), Ri=| —(5)? 3 2 . (3.18)
e -4(9)* 6(3)° 43

Because of rank Ry = 3, we have that C; =0 if and only if §1 =0. Hence from (3.8)

2
Q22(x) 2j+1
F —F) = ——2 =N By P (14 o),
()~ F p2(a(x))p2(x) =0 2 (1 Pas)

where P;;(0) =0. It follows by Theorem 1 that Eq. (3.7) has at most two limit cycles near the origin.
Next we prove that two limit cycles can appear near the origin. From (3.17) we have

d(e21, €22, €23) _<_b1 10 —a O)

b, 0 1 0 —ag
d(ag, ay, az, by, b2) 0 —by, by a —a

(3.19)

Further from (3.17), (3.18) and (3.19) we have By = B3 =0, Bs = —2(%)2, and ey; =0, ey = —%,

€23 =1 when ap =aq =b2 =0, a;= —%, b] = —%, and
d(B1, B d(B1,B d(ez1, e —
det 0B1:B3) _ \  0(B1.By) den 22)=‘ 222 2‘.’1 O‘;AO,
d(a1,az) dea,en)  dara) |[=(3)° 3| [0 1
which ensures that two limit cycles appear near the origin.
Case 3. n=m = 3. In this case, noting that & — x> = —%(a> — x%), from (3.9) we have

Q33(x) =e31(x —x) +e32 (azx — Ole) +e33 (013 — X3) + 634((13)( — OlX3) +e35 (Ol3X2 — a2x3),

where
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2
e31 =ay —aoby, e33 = (a3 — agh3) — 5(02 — agby), (3.20)
e32 = b1 —aiby, e34 =azby —aibs, e3s = azby —azbs. (3.21)

As before, we can obtain Ez = RyCy, where

B4 es1
. B3 32
B=]Bs|. Co=| es3
B7 €34
Bg ess
-2 0 0 0

—(3)? 2 -2 0 0

Ry=| —4(3)* 432 -6(3)? -2 | (3.22)

-21%)% 17(3)* -30(%)* —11(3>3 —9(3)?
—-127(3)® 93($)5 -178(3)% -63(3)° -43(%)*

In the same way as in Case 2, because of rank R, =5, we have that C; =0 if and only if Ez =0, and
that (3.8) can be rewritten as

4
_ _ Qn® 2j+1 ,
Fla®) - F® = o = ;0 Baj X1 (14 P3()),

where P3;(0) =0, which ensures that Eq. (3.7) has at most four limit cycles near the origin by Theo-
rem 1.
Next we prove that four limit cycles can appear near the origin. By (3.20) and (3.21) we have

—b1 1 0 0 —dop 0 0
0 —by bq 0 a —-aq 0
d(esq, e32, e33,€34,€
(e31, €32, €33, €34, €35) _ —b3+%b2 0 _% 1 0 %ao o |. 23
d(aop, ai, az,as, by, ba, b3) 0 b3 0 by a3 0 —q
0 0 —b3z by 0 as —az

When ag =a; =0, a; = J, a3 = —3, by = -2, by = %, b3 =0, by (3.22) and (3.23) we have

det3(31’83’85’87) _ d(B1, B3, Bs, B7) d(e31, €32, €33, €34) 20
d(ay,az,as, by) d(es1, €32, €33, €34) d(ay,az,as, by) '
and B1=B3=B5=B7=0, Bg= 2(%)6, e31 =0,e3=—1,e33=—1, e34 = %, €35 = —g. It implies

the existence of four limit cycles near the origin.

Case 4. n=m = 4. Multiplying the equation o —x*> = —2(a® — x*) by ax and « + x, respectively, we

get

(0 = %) + (®x — ax?) = —%[(oz4 —x) + (@Px—ax?)],

and then by (3.9) we have
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Qaa(X) =eq1(ax —x) +e42 (OIZX — OlX2) + 643( 3_ ) + 644(Ol3X2 — Ol2X3)

+eg5(a® —x*) + esg(a?x® — a?x?) + eq7 (2P — %),

where

9 3
e41 =dy — dob1, eqp = (azby —aiby) + Z(a4b1 —da1bg) — i(aalh —aibs),

2 9 3
e43 = (a3 — agbs) — 5(02 —agby) + Z(a4b1 —aiby) — 5(03171 —aibs),

3
e44 = asby —azbs, e45 = (as — apby) + 5(a4b] —a1bg) — (a3b1 —arb3),
e46 = aaby — asby, e47 = asbs —azbg.

Also as before, we have that §3 = R3(C3, where

B4 e41

Bs e42

~ Bs €43

Bs=1| B7 |, C3=|eqy |,

Bg e45

B11 e46

B13 €47
-2 0 0 0 0 0 0
—(3)? 2 -2 0 0 0 0
-4t 437 ~6(3)? -2 3 0 0
Ri=| —21%)° 173)*  -309)* 93?243’ 3 2
—127(3)% 933 17835 433t 148(3)° 18(3)3 16(3)?
-835(5)1°  577(5)® —1158(3)% —250(3)° 980(3)7 118(3)° 89(3)*

—5798(2)12 3858(%)10 —7986(3)!1° —1608(%)% 6828(%)° 802(%)” 556(%)°

Because of rank R3 = 7, we get that C3 =0 if and only if §3 = 0. Therefore,

6
_ _ Qa4(x) 2j+1
Flo) —F® = o ) pa ZZOBZ T 14 Py )

853

(3.24)
(3.25)

(3.26)

(3.27)

where P4;(0) = 0. It follows by Theorem 1 that Eq. (3.7) has at most six limit cycles near the origin.

Next we prove that six limit cycles can appear near the origin. From (3.24)—(3.27) we have

0(e41, €42, €43, €44, €45, €46)
d(ap, a, az,as, by, by)

—b1 1 0 0 —dgp 0
0 —by — %b4 + %b3 b %lﬁ a + %a4 - %(13 —a
_| —bs+3by  —3bs+3bs -2 3h 304 —3a3 %ao
0 0 —bs 0 0 as

—by — %b4 + b3 0
0 0 —b4 b2 0 aa
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When ap =a; =0, azzg—;,a3=—%,a4=%, bq =—%, bzz%, b3=—%, by =0, we have
det d(B1, B3, Bs, B7, Bg, B11)
d(ap, ay, az,ay, by, by)
_ det d(B1, B3, Bs, B7, By, B11) det (€41, €42, €43, €44, €45, €46) £0
- E)
0(e41, €42, €43, €44, €45, €46) d(ap, ar, az,as, by, by)

and By = B3 = Bs = B7 =Bg=B11 =0, B3 = ]8(%)10, and e41 =0, eqp = e43 = —45, egq = —12,
€45 = —24, e46 =38, €47 = —%. Thus, as before, six limit cycles can appear near the origin.
The proof is completed. O

Proof of Theorem 6. Suppose m > n. Firstly, we prove that Eq. (1.11) has at most [3™£2%=1] [imit
cycles near the origin.
For 0 <x « 1, from (1.12) we have

F(a(x) — F(x) = Za ol (x) — Za =Y (@h+aJix)=> Bx'=Q®. (3.28)

i=1 i>1
where
- gt - gt
a; +q 1 . a; —a;
- , 1<ign, _ , 1<i<n,
;= a_2 a; = a_2 (3.29)
- n+1<i<m, - n+1<i<<m,

and further from Lemmas 2 and 6 we have

Q=) (a@li(®) +ai®) =Z< iy bi,jsinje—i—&iZq,jcosz) =Q ().

i=1 i=1 Jjes() j=0

Noting that S(j) = _ N,-.w ere~1:i or i (mo an Ni:, or i =0 (mo , one has
i hat S(j 11_15 here S; = {i} f 0 d 3) and S; =0 f 0 d 3) h

(9) = Z Zalb,]sm]Q +ZZ(11C11C05J9

jesmy i=j j=0i=j
= Z Cjsin jo + Zc] cos jo, (3.30)
jesm)
where
m
51=Zﬁibi,]‘, jeSm; 5j=Za_iCi,j, 0<j<m, (3.31)

i=j

since S(i) C S(n) if i <n.
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Since Y, ¢; =0 we have
j=0%J

~ ] 1

jeSm) i>0 i1

2i+1 (G OPTIIRY ~
= E C2i410°7 + E —-C2i07 = Q1(0) + Q2(9),
(21+1)' > 2i)!
by using the fact that

=1 Pit1g2i+t : (GROPTRY
sin jO = Z 0 , COSJQZZ—,] 0,

i/ !
Qi+ 1)! £ @i
where
m .
Civi= y P 1200 =) M. izl (3.32)
jesam) =1
Write S(m) as S(m) = {k; |0 <i<h, and k;j <k; for i < j}, where h = [2%=1]. From (3.32) we get
C1=RyC and C, = R,C, where
c1 Eko ko k1 s kp,
c3 - Cky k3 Kook
C1= . , C= , Ry = ) . ) X . (3.33)
C2h+] Ekh kéh+] k%h+l . k’2h+]
c2 1 1 22 ... m?
cq _ 2 1 24 ..omt
= .|, c=|7]| rR=|. . . .| (3.34)
Com Cm 1 22m ... mp2m
Because of

h
detRi=[]ks ] (kK5—ki)#0

s=0 0<i<j<h
C1 =0 if and only if € =0, and hence C; =0 if and only if 01(0) = 0. In other words,
c2j4+1=0(lc1. €3, ..., Conyal) forj>=h+1. (3.35)
In the same way, we obtain that

c2j=0(c2, ¢4, ..., Com|) forj=m+1. (3.36)
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From (3.29) and (3.31), there exist matrices R and R such that C* = RA and C* = RA, where

Ekm Cnt1 (n11
Ck c a

~ 112 _ n+2 n+42

C*= .= . A= . | (3.37)
E'kh Em am

where | = [2-1],
From (3.33), (3.34) and (3.37) we know that there exits an (m+h+ 1) x (m+1+ 1) matrix S such
that (E;) = SC*, where C* = (&, .- -, Cy» C1, - - &n, AT)T. Write S in the form

T T T T T T \T
S=(51.53.---:5311:52:S4+ -+ Som)

then S; is the row vector of S and ¢; = S;C*. Suppose s =rank S. There exists a subset {S;, |1 <i<s,

and r; <r;j for i < j} of {S1,S3,...,S2n41,S2, S4, ..., Sam} such that the vectors in the subset are
linearly independent and for any other vector S; we have S; = fogl o iSy;, where f(j) = max({r; |

ri < j, 1<i<s}and «j; are real numbers and not all zero. Then

B() B() B
cj= S]'C* = Z Olj’isric* = Z ozj,i(Sr,.C*) = Z ojiCr;,
ri=rp ri=rp ri=ri

in other words,
¢j=0(lcry Crp. - i)
From (3.35) and (3.36) we obtain that
cj=0(lcr, Cry, .. cpl) forj#ri, 1<i<s. (3.38)

Therefore, ¢;;, =0, 1 <i<s, if and only if (5(0) =0.
Noting 6 = —%x +0(x%) = —Z*T@x(l + 0(x)), Q (x) can be rewritten in the following form

PN i _ iy
Q(X)=Z( ]) 2 Cl<—2—ﬁx(1+o(x))> =ZMC1XI(1+P,(X))

i! 3 3ij)
i>1 i>1

where Pj(x) € C*°, P;j(x) = O(x). Comparing the like powers of x between the above equation and
(3.28), we get

_ (2V3)inl!

B; —
3!

ci+0(lc1,c2,...,ci1]), fori>1.
Then from (3.38) we have

Bj =0(lcry. Cry, .. Cppl), forj#ri, 1<i<s, (3.39)

and
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(—2/3)i(—D17] .
= Tcri + O(|Cr17 Crysev vy Criyg |)» 1<i<s,
!
and then

3!
= m&i +O(IBry, Bry, ..., B, ). (3.40)

Formulas (3.39) and (3.40) give

=O0(|Br,, Bry,.... Bgpl), forj#ri, 1<i<s. (341)

The displacement function d(r, a) of Eq. (1.11) has the form d(r,a) = Z,->1 di(a)r' for small r. From
Theorem 2, in the same way as above, we get

dj:O(|dr1,dr2,...,dﬂ(]‘)|), for j#£r;, 1<i<s.

Therefore, d(r,a) =0 when d,, =0, 1 <i <s. Thus d(r,a) can be rewritten in the following form

N
d(rv a) = Zdn‘rnr)ri (rv a, dﬁ ) drzv ey dr5)5

i=1

where Fi € C™, ﬁi(r, a,dr,,dr,,...,dr;) =14 O(r). Then following the proof idea of Theorem 1.3 of
Han [8], we can prove that the function d(r,a) has at most s — 1 positive zeros in r near r = 0.

Next we prove s =m + [+ 1. Obviously, s <m + 1+ 1. It is easy to get (crl,crz,...,crs)T = §*C*,
where $* is an s x (m +1+ 1) matrix and $* = (Srrl,SrTz, .. SIOT. Let S = S(i) — S(n) for i > n. From
(3.30), (5(9) can be rewritten in the form

m m m
6(9) = Z Za,-b,-,j sin j6O -‘rZZdiCi,]‘COSje

jesm) i=j j=0 i=j
= Z 61511‘1]0+ZC]COS]9+ Z Z b,]sm]6+ Z Z—c,]cosw
jesm) j€Sm j=n+1i=j
= chsm]@+2c]c0519+z <Z—sm]6+ Z —cosﬁ)
jesSn) i=n+1 jes; j=n+1
= Z c]sm]9+Zc]c0519+ Z a; Hi(9),
jesm) i=n+1
where
Hi®) = Z ﬁsir1jt9—i— Xl: mcosj@
e 2 , 2 '
jes; Jj=n+1
From Lemmas 2 and 5, we get |b; ;| + |cii| = 27*2(|sin %”l + | cos %”l) #0, and then sin jo, j € S(n),

cos jO, 1 < j<n, and H;(0), n+ 1 <i < m, are linearly independent. Therefore, C* = 0 if and only if
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6(9) = 0. Besides, we also know that ¢, =0, 1 <i <s, if and only if (5(9) = 0. Therefore, C* =0 if
and only if ¢, =0, 1 <i<s, implying s=m+1+1.

Finally, we prove that [ 4+m limit cycles can appear near the origin. For simplicity, take a;j = —a;j,
1< j <[§], which gives d3; =0 by (3.29). From (3.28), we get

QW= Y ahi+y @i+ Y @i+ Jix)=) B,
ieS(n) i=1 i=n+1 i>1

from which we get

T P S N
(Brys Bryy -y Bryy)” = R(Akg, Qi s -+ -5 Ak, @15, 02, - -, Am) "

where R is a constant matrix of order [ +m + 1. On the one hand, from Lemma 6, we know that
I, ®), ki € S(n), Ji(x), 1 <i<n, and I;(x) + Ji(x), n+ 1 <i<m, are linearly independent, and hence
ar, =0,0<i<l and a; =0, 1<i<m,if and only if Q (x) =0. On the other hand, from (3.41) we get
that By, =0, 1 <i<I4+m+1, if and only if Q (x) = 0. Therefore, we have detR # 0. From (3.29), it is
easy to see

PR PR = \T — (gt at + 4= a= —\T
(kg Aky s - - -, Oy A1, 02, - .., Am) _D(ako,akl,...,akl,a],az,...,am) ,

and det D # 0. Then following the proof idea of Theorem 1.3 of Han [8], we obtain that (1.11) has [+m
limit cycles near the origin. Then the conclusion follows by Theorem 1. The proof is completed. O
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