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In this paper we study the maximal number of limit cycles in Hopf
bifurcations for two types of Liénard systems and obtain an upper
bound of the number. In some cases the upper bound is the least,
called the Hopf cyclicity.
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1. Introduction and main results

The problem of limit cycle bifurcations of Liénard equation of the form

ẍ + f (x)ẋ + g(x) = 0

or its equivalent form

ẋ = y − F (x), ẏ = −g(x),

where F (x) = ∫ x
0 f (x)dx, has been extensively considered, see [1–23] for instance. In [2,3,17,23,22]

the number of local limit cycles were obtained in Hopf bifurcation when f and g are polynomials of
certain degrees. In [16], the authors considered a system of the form

ẋ = y, ẏ = −x − εgm(x) − ε fn(x)y,
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where fn and gm are polynomials of degrees n and m respectively, and ε is a small parameter. A num-
ber H̃n,m was introduced in [16] for the above system which is the maximal number of limit cycles
bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x. By using the averaging theory
of order 3, the authors [16] obtained

H̃n,m �
[

n + m − 1

2

]
.

Consider a more general system of the form

ẋ = p(y) − F (x,a), ẏ = −g(x), (1.1)

where F , g and p are C∞ functions near the origin with

g(0) = 0, g′(0) > 0, p(0) = 0, p′(0) > 0, F (0,a) = 0, a ∈ R
n. (1.2)

Let

G(x) =
x∫

0

g(x)dx, F
(
α(x),a

)− F (x,a) =
∑
i�1

Bi(a)xi, a = (a1, . . . ,an)

where α(x) = −x + O(x2) satisfies G(α(x)) ≡ G(x) for |x| � 1.
From [7] we have the following result.

Theorem 1. (See [7].) Let (1.2) hold. If there exists k � 1 such that

F
(
α(x),a

)≡ F (x,a) when B2 j+1 = 0, j = 0, . . . ,k (1.3)

for all a ∈ R
n, then

(1) the origin is a focus of order at most k of Eq. (1.1) unless it is a center,
(2) if B2 j+1 = O(|B1, B3, . . . , B2k+1|) for j � k + 1, then for any N > 0 there exists a neighborhood U N of

the origin such that Eq. (1.1) has at most k limit cycles in U N for all |B1| + |B3| + · · · + |B2k+1| � N,
(3) suppose (1.3) holds for some 1 � k � n − 1. If further

B2 j+1(a0) = 0, j = 0, . . . ,k, rank
∂(B1, . . . , B2k+1)

∂(a1, . . . ,an)

∣∣∣∣
a=a0

= k + 1,

then Eq. (1.1) has at most k limit cycles near the origin for all a near a0 , and has k limit cycles near the
origin for some a near a0 small. In other words, Eq. (1.1) has Hopf cyclicity k at the origin.

The above theorem has many applications to various Liénard systems and certain models from
biomathematics, see [7,9,10,20] and [21]. For example, Jiang et al. [10] considered the system

ẋ = y −
n∑

i=0

aix
2i+1, ẏ = −x

(
x2 − 1

)
and proved that it has Hopf cyclicity n at the points A(1, y0) and B(−1,−y0) each, where y0 =∑n

i=0 ai . Hence, the maximal number of its small-amplitude limit cycles is 2n.
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In recent years non-smooth systems were studied widely, see Coll et al. [4], Küpper and
Moritz [12], Leine [13], Zou et al. [24]. Liu and Han [15] considered the following non-smooth Liénard
system

ẋ = p(y) − F (x,a), ẏ = −g(x), (1.4)

where a ∈ Rn ,

F (x,a) =
{

F +(x,a), x > 0,

F −(x,a), x � 0,
g(x) =

{
g+(x), x > 0,

g−(x), x � 0.

F ± and g± are all C∞ functions and satisfy

F ±(0,a) = 0, g±(0) = 0, p(0) = 0,
(

g±)′(0) = g±
1 > 0, (1.5)

p′(0) = p0 > 0,
(

F ±
x (0,a0)

)2 − 4p0 g±
1 < 0, a0 ∈ Rn. (1.6)

Let

G(x) =
x∫

0

g(u)du, α(x) = −(√
g+

1 /

√
g−

1

)
x + O

(
x2),

where α(x) satisfies G(α(x)) ≡ G(x) for |x| � 1. Suppose formally for 0 < x � 1

F
(
α(x),a

)− F (x,a) = F −(α(x),a
)− F +(x,a) =

∑
i�1

Bi(a)xi .

Theorem 2. (See [15].) Let (1.5) and (1.6) hold. Then for the displacement function of (1.4), we have formally

d(r,a) =
∑
i�1

di(a)ri for |a − a0| small,

where

d1(a) = B1N∗
1(a), di(a) = Bi N

∗
i (a) + O

(|B1, . . . , Bi−1|
)
,

with N∗
i ∈ C∞ and N∗

i (a0) > 0 for i � 1.

A polynomial system of the form

ẋ = ypm(x) − qn(x), ẏ = −g(x)pm(x) (1.7)

was introduced in Jiang and Han [9], where

pm(x) = 1 +
m∑

i=1

bix
i, qn(x) =

n∑
i=0

aix
i (1.8)

with ai and bi being parameters. Obviously, on the region pm(x) > 0 the system (1.7) is equivalent to
the Liénard system
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ẋ = y − qn(x)

pm(x)
, ẏ = −g(x). (1.9)

It is clear that the system (1.4) has a singular point with index +1 at (0,a0). By applying Theorem 1
it was proved in [9] that the system (1.7) or (1.9) has Hopf cyclicity [m+n−1

2 ] at the point (0,a0) if
(1.8) holds and g(0) = 0, g′(0) > 0, and g(−x) = −g(x) for |x| small.

Based on a result of Petrov [1], Han [7] and Christopher and Lynch [3] separately proved the
following theorem.

Theorem 3. The Liénard system

ẋ = y − qn(x), ẏ = −x(x + 1) (1.10)

has Hopf cyclicity [ 2n−1
3 ] at the point (0,a0).

In this paper we give a new proof to the above theorem by using Theorem 1 without using the
result of Petrov [1]. Then based on the idea in the new proof we obtained the following theorem
which is one of the main results of the paper.

Theorem 4. Let (1.8) hold. If g(x) = x(x + 1) in (1.7) or (1.9), then for Eq. (1.7) or (1.9) an upper bound of
the maximum number of limit cycles in a neighborhood of the point C(0,a0) is [ 4n+2m−4

3 ] − [n−m
3 ] as n � m

or [ 4m+2n−4
3 ] − [m−n

3 ] as m > n.

From the following theorem one can see that the upper bound obtained in the above theorem is
the Hopf cyclicity at the point C(0,a0) in the case of m = n.

Theorem 5. Let (1.8) hold with m = n. If g(x) = x(x + 1) in (1.7) or (1.9), then Eq. (1.7) or (1.9) has Hopf
cyclicity 2n − 2 (= [ 6n−4

3 ]) at the point C(0,a0) for n = 1,2,3,4.

The conclusion in Theorem 5 is an improvement to Theorem 4 in the case of m = n � 4.
As another interesting application of Theorem 2, we study the Hopf bifurcation of the following

non-smooth Liénard system

ẋ = y − F (x), ẏ = −g(x), (1.11)

where

F (x) =
{∑n

i=1 a+
i xi, x > 0,∑m

i=1 a−
i xi, x � 0,

g(x) = x(x + 1). (1.12)

We consider a+
i and a−

i as parameters. It is clear that (1.11) has a singular point at the origin.
Another main result is the following theorem.

Theorem 6. Let (1.12) hold. Then the Hopf cyclicity of Eq. (1.11) at the origin is [ 3m+2n−1
3 ] as m � n or

[ 3n+2m−1
3 ] as n > m.
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2. Preliminary lemmas

For g(x) = x(x + 1), we suppose

G(x) =
x∫

0

g(x)dx = x2

2
+ x3

3
. (2.1)

From (2.1) we have

G(α(x)) − G(x)

α − x
= 1

2
(α + x) + 1

3

(
α2 + αx + x2),

which gives

α(x) = −2x − 3 + √−12x2 − 12x + 9

4
= −x − 2

3
x2 −

(
2

3

)2

x3 − 2

(
2

3

)3

x4 + O
(
x5) (2.2)

since G(α(x)) = G(x) for |x| � 1. Let

Ii, j(x) = αi(x)x j − α j(x)xi,

and let Ii(x) denote Ii,0(x) for short, i.e. Ii(x) = αi(x) − xi . We have the following lemma.

Lemma 1. For any integer n > 0, we have

I3n(x) = −
n∑

i=1

C i
n

(
3

2

)i

I3n−i(x).

Proof. When n = 1, since G(α) = G(x) we get from (2.1) that

I3(x) = α3 − x3 = −3

2

(
α2 − x2)= −3

2
I2(x). (2.3)

Thus, the conclusion is true for n = 1.
Assume that the conclusion is true for n = k. That is,

I3k(x) = −
k∑

i=1

C i
k

(
3

2

)i

I3k−i(x). (2.4)

Let us prove that the conclusion is also true for n = k + 1.
Multiplication of (2.4) by α j + x j gives

I3k(x)
(
α j + x j)= −

k∑
i=1

C i
k

(
3

2

)i

I3k−i(x)
(
α j + x j), j = 2,3,

or
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I3k+ j(x) + I3k, j(x) = −
k∑

i=1

C i
k

(
3

2

)i(
I3k−i+ j(x) + I3k−i, j(x)

)
, j = 2,3. (2.5)

Multiplying both sides of (2.3) by αm + xm , we get

I3(x)
(
αm + xm)= −3

2
I2(x)

(
αm + xm),

which yields

Im+3(x) + 3

2
Im+2(x) = Im,3(x) + 3

2
Im,2(x), (2.6)

where m is a positive integer. Then (2.5) and (2.6) together imply

I3k+3(x) + 3

2
I3k+2(x)

= 1

2

[
I3k+3(x) + I3k,3(x) + 3

2

(
I3k+2(x) + I3k,2(x)

)]

= −1

2

k∑
i=1

C i
k

(
3

2

)i[(
I3k−i+3(x) + I3k−i,3(x)

)+ 3

2

(
I3k−i+2(x) + I3k−i,2(x)

)]

= −1

2

k∑
i=1

C i
k

(
3

2

)i[(
I3k−i+3(x) + 3

2
I3k−i+2(x)

)
+
(

I3k−i,3(x) + 3

2
I3k−i,2(x)

)]

= −
k∑

i=1

C i
k

(
3

2

)i(
I3k−i+3(x) + 3

2
I3k−i+2(x)

)
.

Hence

I3k+3(x) = −(
1 + C1

k

)3

2
I3k+2(x) −

k∑
i=2

(
C i−1

k + C i
k

)(3

2

)i

I3k+3−i(x) −
(

3

2

)k+1

I2k+2(x),

which can be written as

I3k+3(x) = −
k+1∑
i=1

C i
k+1

(
3

2

)i

I3k+3−i(x).

Therefore the conclusion is true for n = k + 1, and the proof is completed. �
We introduce a new variable θ by

x = (−1 − √
3 sin θ + cos θ)/2 ≡ ξ(θ) for |θ | � 1.

Then it follows that
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−12x2 − 12x + 9 = −3
[
(2x + 1)2 − 4

]= −3
(
3 sin2 θ + cos2 θ − 2

√
3 sin θ cos θ − 4

)
= −3

(− sin2 θ − 3 cos2 θ − 2
√

3 sin θ cos θ
)

= 3(sin θ + √
3 cos θ)2.

Substituting the above into (2.2) yields that

α(x) = (−1 + √
3 sin θ + cos θ)/2 = ξ(−θ).

Suppose that In(x) = In(ξ(θ)) ≡ Ĩn(θ). Then we have Ĩn(θ) = [ξ(−θ)]n − [ξ(θ)]n . Thus the periodic
function Ĩn is odd in θ . Further, for its Fourier expansion we have the following lemma.

Lemma 2. For any positive integer n, the function Ĩn(θ) has the following Fourier expansion

Ĩn(θ) =
∑

i∈S(n)

bn,i sin iθ,

where S(n) = {k | k 	= 0 (mod 3), 1 � k � n} and bn,i are coefficients independent of θ with bn,n =
2−n+2 sin nπ

3 .

Proof. For any integer n � 1, by the definition of Ĩn we have

Ĩn(θ) = (−1 + √
3 sin θ + cos θ)n/2n − (−1 − √

3 sin θ + cos θ)n/2n

= 2−n
n∑

j=0

C j
n
[
1 − (−1) j](√3 sin θ) j(−1 + cos θ)n− j

= 2−n+1
n∑

j=1, j odd

C j
n(

√
3) j sin θ

(
1 − cos2 θ

) j−1
2 (−1 + cos θ)n− j .

Then using the expansions of (1 − cos2 θ)
j−1

2 in cos2 θ and (−1 + cos θ)n− j in cos θ for j odd we
further have

Ĩn(θ) = 2−n+1
n∑

j=1, j odd

C j
n(

√
3) j sin θ

n−1∑
i=0

b̃ j,i cosi θ

= 2−n+1
n−1∑
i=0

n∑
j=1, j odd

b̃ j,iC
j

n(
√

3) j sin θ cosi θ

= 2−n+1
n−1∑
i=0

bi sin θ cosi θ,

where

b̃ j,i =
2l+k=i∑

0�k�n− j
0�2l� j−1

Ck
n− jC

l
j−1

2
(−1)l+n− j−k, bi =

n∑
j=1, j odd

b̃ j,iC
j

n(
√

3) j, 0 � i � n − 1.
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It can be seen that

b̃ j,n−1 = (−1)
j−1

2 , bn−1 =
n∑

j=1, j odd

(−1)
j−1

2 C j
n(

√
3) j . (2.7)

Using the formula 2 sin mθ cos θ = sin(m + 1)θ + sin(m − 1)θ , one can get

sin θ cosi θ =
i+1∑
j=1

bi, j sin jθ, where bi,i+1 = 2−i, for i � 0. (2.8)

Hence, it follows that

Ĩn(θ) = 2−n+1
n−1∑
i=0

bi

i+1∑
j=1

bi, j sin jθ = 2−n+1
n∑

j=1

n−1∑
i= j−1

bibi, j sin jθ =
n∑

j=1

bn, j sin jθ,

where

bn, j = 2−n+1
n−1∑

i= j−1

bibi, j, 1 � j � n.

In particular, (2.7) and (2.8) together give

bn,n = 2−n+1bn−1bn−1,n = 2−2n+2
n∑

j=1, j odd

C j
n(

√
3) j(−1)

j−1
2 .

Noting that

2n+1i sin
nπ

3
= 2n(e nπ

3 i − e− nπ
3 i)= 2n

(
cos

π

3
+ i sin

π

3

)n

− 2n
(

cos
π

3
− i sin

π

3

)n

= (1 + i
√

3)n − (1 − i
√

3)n =
n∑

j=0

C j
n(

√
3) j i j −

n∑
j=0

C j
n(−

√
3) j i j

= 2
n∑

j=1, j odd

C j
n(

√
3) j(−1)

j−1
2 i, where i = √−1,

we have

n∑
j=1, j odd

C j
n(

√
3) j(−1)

j−1
2 = 2n sin

nπ

3
.

Therefore, bn,n = 2−n+2 sin nπ
3 .

Obviously, in order to complete the proof we just need to show bn,3m = 0 for any positive inte-
ger m.
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In fact we have

π∫
−π

(−1 + √
3 sin θ + cos θ)n sin(3mθ)dθ

=
π∫

−π

(
−1 + 2 sin

(
θ + π

6

))n

sin(3mθ)dθ

(
let u = θ − 5

6
π

)

=
π
6∫

− 11
6 π

(−1 − 2 sin u)n sin

[
3m

(
u + 5

6
π

)]
du

=
π
6∫

− 11
6 π

(−1 − 2 sin u)n sin

[
3m

(
u + π

6

)]
du

=
π
6∫

− 7
6 π

(−1 − 2 sin u)n sin

[
3m

(
u + π

6

)]
du +

− 7
6 π∫

− 11
6 π

(−1 − 2 sin u)n sin

[
3m

(
u + π

6

)]
du

=
π
6∫

− 7
6 π

(−1 − 2 sin u)n sin

[
3m

(
u + π

6

)]
du +

5
6 π∫

π
6

(−1 − 2 sin u)n sin

[
3m

(
u + π

6

)]
du

=
5
6 π∫

− 7
6 π

(−1 − 2 sin u)n sin

[
3m

(
u + π

6

)]
du

(
let θ = u + 1

6
π

)

=
π∫

−π

(
−1 − 2 sin

(
θ − π

6

))n

sin(3mθ)dθ

=
π∫

−π

(−1 − √
3 sin θ + cos θ)n sin(3mθ)dθ,

which implies

π∫
−π

Ĩn(θ) sin(3mθ)dθ =
π∫

−π

[(
ξ(−θ)

)n − (
ξ(θ)

)n]
sin(3mθ)dθ = 0.

Then by Fourier’s formula, we have bn,3m = 1
π

∫ π
−π Ĩn(θ) sin(3mθ)dθ = 0. The proof is completed. �

By Lemma 2 we have bk,k 	= 0 for k 	= 0 (mod 3). Hence, noting that different functions sin(kθ)

for k 	= 0 (mod 3) are linearly independent, Lemma 2 implies that the functions Ĩ i(θ), i ∈ S(n), are
linearly independent for any positive integer n � 1. In other words, we have the following lemma.
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Lemma 3. For any integer n � 1, the [ 2n−1
3 ] + 1 functions Ii(x), i ∈ S(n), are linearly independent.

Then by Lemmas 1 and 3 we see the fact that the n functions Ii(x), i = 1, . . . ,n, can span a linear
space of dimension [ 2n−1

3 ] + 1.
Let In,m(x) = In,m(ξ(θ)) = Ĩn,m(θ). For the Fourier expansion of Ĩn,m(θ) we have the following

lemma.

Lemma 4. For any positive integers n, m and n > m, the function Ĩn,m(θ) has the following Fourier expansion

Ĩn,m(θ) =
n+m∑
k=1

bn,m,k sin kθ,

where bn,m,k are coefficients independent of θ with bn,m,n+m = 2−n−m+2 sin n−m
3 π .

Proof. Suppose that J (θ) = α(x)x|x=ξ(θ); it is easy to get that

J (θ) = (−1 + √
3 sin θ + cos θ)(−1 − √

3 sin θ + cos θ)

4
= cos2 θ − cos θ

2
− 1

2
.

Further, we suppose that for positive integer m,

(
cos2 θ − cos θ

2
− 1

2

)m

=
2m∑
i=0

ẽmi cosi θ,

where

ẽmi =
2 j�i∑

j=max{0,i−m}

(
−1

2

)m− j

C j
mC i−2 j

m− j . (2.9)

From Lemma 2, for n > m,

Ĩn,m(θ) = Jm(θ )̃In−m(θ) =
(

cos2 θ − cos θ

2
− 1

2

)m ∑
k∈S(n−m)

bn−m,k sin kθ

=
(

2m∑
i=0

ẽmi cosi θ

)( ∑
k∈S(n−m)

bn−m,k sinkθ

)

=
∑

k∈S(n−m)

bn−m,k

(
sin kθ

2m∑
i=0

ẽmi cosi θ

)
.

By using the formula 2 sin mθ cos θ = sin(m + 1)θ + sin(m − 1)θ , one can get

sin kθ

2m∑
i=0

ẽmi cosi θ =
k+2m∑

j=1

ek,m, j sin jθ,

with
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ek,m,k+2m = 2−2mẽm,2m = 2−2m, (2.10)

since ẽm,2m = 1 by (2.9). And then

Ĩnm(θ) =
∑

k∈S(n−m)

bn−m,k

k+2m∑
j=1

ek,m, j sin jθ

=
n+m∑
j=1

n−m∑
k=max{1, j−2m}

bn−m,kek,m, j sin jθ

=
n+m∑
j=1

bn,m, j sin jθ

where

bn,m, j =
n−m∑

k=max{1, j−2m}
bn−m,kek,m, j.

In particular, by Lemma 2 and (2.10)

bn,m,n+m = bn−m,n−men−m,m,n+m = 2−n−m+2 sin
n − m

3
π.

The proof is completed. �
Suppose that Jn(x) = αn + xn and Jn(x) = Jn(ξ(θ)) = J̃n(θ). Let us prove the following lemma.

Lemma 5. For any positive integer n, we have

J̃n(θ) =
n∑

i=0

cn,i cos iθ,

where cn,n = 2−n+2 cos nπ
3 , and J̃n(0) =∑n

i=0 cn,i = 0 since Jn(0) = 0.

Proof. For any integer n � 1, we get

J̃n(θ) = (−1 + √
3 sin θ + cos θ)n/2n + (−1 − √

3 sin θ + cos θ)n/2n

= 2−n
n∑

j=0

C j
n
[
1 + (−1) j](√3 sin θ) j(−1 + cos θ)n− j

= 2−n+1
n∑

j=0, j even

C j
n(

√
3) j(1 − cos2 θ

) j
2 (−1 + cos θ)n− j.

After expanding (1 − cos2 θ)
j
2 (−1 + cos θ)n− j in the term of cos θ , we obtain
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J̃n(θ) = 2−n+1
n∑

j=0, j even

C j
n(

√
3) j

n∑
i=0

b̃ j,i cosi θ

= 2−n+1
n∑

i=0

n∑
j=0, j even

b̃ j,iC
j

n(
√

3) j cosi θ

= 2−n+1
n∑

i=0

bi cosi θ,

where

b̃ j,i =
2l+k=i∑

0�k�n− j
0�2l� j

Ck
n− jC

l
j
2
(−1)l+n− j−k, bi =

n∑
j=0, j even

b̃ j,iC
j

n(
√

3) j, 0 � i � n.

It can be seen that

b̃ j,n = (−1)
j
2 , bn =

n∑
j=0, j even

(−1)
j
2 C j

n(
√

3) j . (2.11)

Noting that for any integer m, we have 2 cos mθ cos θ = cos(m + 1)θ + cos(m − 1)θ , and hence

cosi θ =
i∑

j=0

bi, j cos jθ, where bi,i = 2−i+1, for i � 1. (2.12)

Further, let b00 = 1 and then we get

J̃n(θ) = 2−n+1
n∑

i=0

bi

i∑
j=0

bi, j cos jθ = 2−n+1
n∑

j=0

n∑
i= j

bibi, j cos jθ =
n∑

j=0

cn, j cos jθ,

where

cn, j = 2−n+1
n∑

i= j

bibi, j, 0 � j � n.

Particularly, from (2.11) and (2.12), we get

cn,n = 2−n+1bnbn,n = 2−2n+2
n∑

j=0, j even

C j
n(

√
3) j(−1)

j
2 .

Noting that
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2n+1 cos
nπ

3
= 2n(e nπ

3 i + e− nπ
3 i)= 2n

(
cos

π

3
+ i sin

π

3

)n

+ 2n
(

cos
π

3
− i sin

π

3

)n

= (1 + √
3i)n + (1 − √

3i)n =
n∑

j=0

C j
n(

√
3) j i j +

n∑
j=0

C j
n(−

√
3) j i j

= 2
n∑

j=0, j even

C j
n(

√
3) j(−1)

j
2 , where i = √−1,

we have that

n∑
j=0, j even

C j
n(

√
3) j(−1)

j
2 = 2n cos

nπ

3

and hence cn,n = 2−n+2 cos nπ
3 . The proof is completed. �

From Lemmas 2 and 5, we get the following lemma.

Lemma 6. For any integer n � 1, I i(x), i ∈ S(n), and J i(x), 1 � i � n, are linearly independent.

3. Proof of the main results

In this section we will give a proof of Theorems 3, 4, 5 and 6 respectively.

Proof of Theorem 3. Firstly, we prove that Eq. (1.10) has at most [ 2n−1
3 ] limit cycles near the origin

by Theorem 1.
From (1.8) we have

qn
(
α(x)

)− qn(x) =
n∑

i=1

ai Ii(x) =
∑
i�1

Bix
i ≡ Q n(x). (3.1)

Then by Lemma 2 we have

Q n(x) =
n∑

i=1

aĩ Ii(θ) =
n∑

i=1

ai

∑
j∈S(i)

bi, j sin jθ ≡ Q̃ n(θ).

Noting that S( j) =⋃ j
i=1 S̃ i , where S̃ i = {i} for i 	= 0 (mod 3) and S̃ i = ∅ for i = 0 (mod 3), one has

Q̃ n(θ) =
∑

j∈S(n)

n∑
i= j

aibi, j sin jθ =
∑

j∈S(n)

c j sin jθ,

where c j =∑n
i= j aibi, j . Then

Q̃ n(θ) =
∑

j∈S(n)

c j

∑
i�0

(−1)i

(2i + 1)! j2i+1θ2i+1 =
∑
i�0

(−1)i

(2i + 1)! c̃2i+1θ
2i+1 (3.2)

where
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c̃2i+1 =
∑

j∈S(n)

j2i+1c j, i � 0, (3.3)

since

sin jθ =
∑
i�0

(−1)i

(2i + 1)! j2i+1θ2i+1.

From (3.3) we get that C̃l+1 = Al+1Cl+1, where l = [ 2n−1
3 ] and

C̃l+1 =

⎛⎜⎜⎝
c̃1
c̃3
...

c̃2l+1

⎞⎟⎟⎠ , Cl+1 =

⎛⎜⎜⎝
ck0

ck1

...

ckl

⎞⎟⎟⎠ , Al+1 =

⎛⎜⎜⎜⎝
k0 k1 · · · kl

k3
0 k3

1 · · · k3
l

...
...

. . .
...

k2l+1
0 k2l+1

1 · · · k2l+1
l

⎞⎟⎟⎟⎠ ,

where ki ∈ S(n), 0 � i � l and ki < k j if i < j. Because of

det Al+1 =
l∏

i=0

ki

∏
0�i< j�l

(
k2

j − k2
i

) 	= 0,

we have Cl+1 = A−1
l+1C̃l+1. Hence by (3.3) we can obtain

c̃2 j+1 = O
(|c̃1, c̃3, . . . , c̃2l+1|

)
for j � l + 1. (3.4)

Further, noting that θ = − 2
√

3
3 x + O(x2), from (3.1) and (3.2) we have

B2 j+1 = (2
√

3)2 j+1(−1) j+1

32 j+1(2 j + 1)! c̃2 j+1 + O
(|c̃1, c̃3, . . . , c̃2 j−1|

)
, for j � 0, (3.5)

which gives

c̃2 j+1 = 32 j+1(2 j + 1)!
(2

√
3)2 j+1(−1) j+1

B2 j+1 + O
(|B1, B3, . . . , B2 j−1|

)
, for 0 � j � l. (3.6)

By (3.4), (3.5) and (3.6)

B2 j+1 = O
(|B1, B3, . . . , B2l+1|

)
for j � l + 1.

In particular, Q n(x) = 0 when B2 j+1 = 0, 0 � j � l. It follows by Theorem 1 that Eq. (1.10) has at most
l limit cycles near the origin.

Finally, we prove that l limit cycles can appear near the origin. For simplicity, take a3 j = 0, 1 � j �
[ n

3 ]. In this case, from (3.1), we have

(B1, B3, . . . , B2l+1)
T = Sl(ak0 ,ak1 , . . . ,akl )

T ,

where Sl is a constant matrix of order l + 1. On the one hand, from Lemma 3, the functions
Ik0 (x), Ik1 (x), . . . , Ikl (x) are linearly independent, and hence from (3.1) it is easy to see that ak j = 0,
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0 � j � l, if and only if qn(α(x)) − qn(x) ≡ 0. On the other hand, from the above proof, we see that
B2 j+1 = 0, 0 � j � l, if and only if qn(α(x))− qn(x) ≡ 0. Therefore, we have det Sl 	= 0, and the conclu-
sion follows by Theorem 1. The proof is completed. �
Proof of Theorem 4. Suppose n � m. It is obvious that the conclusion is true for Eq. (1.9) if and only
if it is true for the following system

ẋ = v −
(

qn(x)

pm(x)
− a0

)
, v̇ = −g(x) (3.7)

at the origin, where v = y − a0.
Suppose that b0 = 1 and

F (x) = qn(x)

pm(x)
− a0.

Then

F
(
α(x)

)− F (x) = qn(α(x))

pm(α(x))
− qn(x)

pm(x)
= Q nm(x)

pm(α(x))pm(x)
, (3.8)

where by (1.8)

Q nm(x) = qn
(
α(x)

)
pm(x) − qn(x)pm

(
α(x)

)
=
(

n∑
i=0

aiα
i

)(
m∑

i=0

bix
i

)
−
(

n∑
i=0

ai x
i

)(
m∑

i=0

biα
i

)

=
n∑

i=0

m∑
j=0

aib j
(
αi x j − xiα j)

=
m∑

i=0

m∑
j=0

aib j
(
αi x j − xiα j)+

n∑
i=m+1

m∑
j=0

aib j
(
αi x j − xiα j)

=
m∑

j=0

m∑
i= j+1

(aib j − a jbi)
(
αi x j − xiα j)+

n∑
i=m+1

m∑
j=0

aib j
(
αi x j − xiα j),

which can be written as

Q nm(x) =
m∑

j=0

n∑
i= j+1

ci j I i j(x) =
∑
i�1

Bix
i, (3.9)

where

ci j =
{

aib j − a jbi, 1 � i � m,

aib j, m + 1 � i � n.

From Lemma 4, for i > j we have
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Ĩ i, j(θ) =
i+ j∑
k=1

bi, j,k sin kθ, (3.10)

where bi, j,i+ j = 2−i− j+2 sin i− j
3 π . Then from (3.9) and (3.10) we get

Q nm(x) =
m∑

j=0

n∑
i= j+1

ci j̃ I i j(θ) =
m∑

j=0

n∑
i= j+1

ci j

i+ j∑
k=1

bi, j,k sin kθ

=
m+n∑
k=1

i> j∑
i+ j�k

ci jbi, j,k sin kθ =
m+n∑
k=1

ck sin kθ ≡ Q̃ nm(θ),

where ck = ∑i> j
i+ j�k ci jbi, j,k , 1 � k � n + m. Noting that if n − m = 0 (mod 3), then cn+m =

cnmbn,m,m+n = 0 since bn,m,m+n = 0, Q̃ nm(θ) can be rewritten as

Q̃ nm(θ) =
h+1∑
k=1

ck sin kθ,

where

h =
[

4n + 2m − 4

3

]
−
[

n − m

3

]
=
{

m + n − 1, m − n 	= 0 (mod 3),

m + n − 2, m − n = 0 (mod 3).

Since

sin kθ =
∑
i�0

(−1)i

(2i + 1)!k2i+1θ2i+1,

we then obtain

Q̃ nm(θ) =
h+1∑
k=1

ck

∑
i�0

(−1)i

(2i + 1)!k2i+1θ2i+1 =
∑
i�0

(−1)i

(2i + 1)! c̃2i+1θ
2i+1, (3.11)

where

c̃2i+1 =
h+1∑
k=1

k2i+1ck, i � 0. (3.12)

From (3.12) it follows that C̃nm = AnmCnm , where

C̃nm =

⎛⎜⎜⎝
c̃1
c̃3
...

c̃2h+1

⎞⎟⎟⎠ , Cnm =

⎛⎜⎜⎝
c1
c2
...

ch+1

⎞⎟⎟⎠ , Anm =

⎛⎜⎜⎝
1 2 · · · h + 1
1 23 · · · (h + 1)3

...
...

. . .
...

1 22h+1 · · · (h + 1)2h+1

⎞⎟⎟⎠ .

Since
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det Anm = (h + 1)!
∏

1�i< j�h+1

(
j2 − i2) 	= 0,

we have Cnm = A−1
nm C̃nm and hence by (3.12)

c̃2 j+1 = O
(|c̃1, c̃3, . . . , c̃2h+1|

)
for j � h + 1. (3.13)

Further, noting that θ = − 2
√

3
3 x + O(x2), from (3.9) and (3.11) we obtain

B2k+1 = (2
√

3)2k+1(−1)k+1

32k+1(2k + 1)! c̃2k+1 + O
(|c̃1, c̃3, . . . , c̃2k−1|

)
, for k � 0, (3.14)

from which it follows that

c̃2k+1 = 32k+1(2k + 1)!
(2

√
3)2k+1(−1)k+1

B2k+1 + O
(|B1, B3, . . . , B2k−1|

)
, for 0 � k � h. (3.15)

So by (3.13), (3.14) and (3.15)

B2 j+1 = O
(|B1, B3, . . . , B2h+1|

)
, for j � h + 1.

In particular, C̃nm = 0 and Q nm(x) = 0 when B2k+1 = 0, 0 � k � h. Thus, from (3.8) we can write

F
(
α(x)

)− F (x) = Q nm(x)

pm(α(x))pm(x)
=

h∑
k=0

B2k+1x2k+1(1 + Pk(x)
)
,

where Pk(x) = O(x) ∈ Cω for |x| small. It follows by Theorem 1 that Eq. (3.7) has at most h limit
cycles near the origin for n � m.

If m > n, then

Q nm(x) = qn
(
α(x)

)
pm(x) − qn(x)pm

(
α(x)

)
= −[

pm
(
α(x)

)
qn(x) − pm(x)qn

(
α(x)

)]
= −

n∑
j=0

m∑
i= j+1

ci j I i j(x) =
∑
i�1

Bix
i,

where

ci j =
{

bia j − b jai, 1 � i � n,

bia j, n + 1 � i � m.

Therefore, from the proof above, it is obvious that the conclusion is also true for m > n. The proof is
completed. �
Proof of Theorem 5. As before, we only need to show that the theorem is true for Eq. (3.7) at the
origin. There are four cases to consider below.
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Case 1. n = m = 1. In this case, from (2.2), (3.8) and (3.9) we have Q 11(x) = (a1 − a0b1)(α − x) and

F
(
α(x)

)− F (x) = Q 11(x)

p1(α(x))p1(x)
= −2(a1 − a0b1)x

(
1 + P10(x)

)
,

where P10(0) = 0. So it is obvious that the conclusion is true.

Case 2. n = m = 2. In this case, from (3.9) we have

Q 22(x) = e21(α − x) + e22
(
α2 − x2)+ e23

(
α2x − αx2)=

∑
i�1

Bix
i, (3.16)

where

e21 = a1 − a0b1, e22 = a2 − a0b2, e23 = a2b1 − a1b2. (3.17)

Substituting (2.2) into (3.16) yields B̃1 = R1C1, where

B̃1 =
( B1

B3
B5

)
, C1 =

( e21
e22
e23

)
, R1 =

⎛⎝ −2 0 0
−( 2

3 )2 4
3 2

−4( 2
3 )4 6( 2

3 )3 4( 2
3 )2

⎞⎠ . (3.18)

Because of rank R1 = 3, we have that C1 = 0 if and only if B̃1 = 0. Hence from (3.8)

F
(
α(x)

)− F (x) = Q 22(x)

p2(α(x))p2(x)
=

2∑
j=0

B2 j+1x2 j+1(1 + P2 j(x)
)
,

where P2 j(0) = 0. It follows by Theorem 1 that Eq. (3.7) has at most two limit cycles near the origin.
Next we prove that two limit cycles can appear near the origin. From (3.17) we have

∂(e21, e22, e23)

∂(a0,a1,a2,b1,b2)
=
(−b1 1 0 −a0 0

−b2 0 1 0 −a0
0 −b2 b1 a2 −a1

)
. (3.19)

Further from (3.17), (3.18) and (3.19) we have B1 = B3 = 0, B5 = −2( 2
3 )2, and e21 = 0, e22 = − 3

2 ,

e23 = 1 when a0 = a1 = b2 = 0, a2 = − 3
2 , b1 = − 2

3 , and

det
∂(B1, B3)

∂(a1,a2)
= det

∂(B1, B3)

∂(e21, e22)
det

∂(e21, e22)

∂(a1,a2)
=
∣∣∣∣ −2 0
−( 2

3 )2 4
3

∣∣∣∣ · ∣∣∣∣1 0
0 1

∣∣∣∣ 	= 0,

which ensures that two limit cycles appear near the origin.

Case 3. n = m = 3. In this case, noting that α2 − x2 = − 2
3 (α3 − x3), from (3.9) we have

Q 33(x) = e31(α − x) + e32
(
α2x − αx2)+ e33

(
α3 − x3)+ e34

(
α3x − αx3)+ e35

(
α3x2 − α2x3),

where



852 Y. Tian, M. Han / J. Differential Equations 251 (2011) 834–859
e31 = a1 − a0b1, e33 = (a3 − a0b3) − 2

3
(a2 − a0b2), (3.20)

e32 = a2b1 − a1b2, e34 = a3b1 − a1b3, e35 = a3b2 − a2b3. (3.21)

As before, we can obtain B̃2 = R2C2, where

B̃2 =

⎛⎜⎜⎜⎝
B1
B3
B5
B7
B9

⎞⎟⎟⎟⎠ , C2 =

⎛⎜⎜⎜⎝
e31
e32
e33
e34
e35

⎞⎟⎟⎟⎠ ,

R2 =

⎛⎜⎜⎜⎜⎝
−2 0 0 0 0

−( 2
3 )2 2 −2 0 0

−4( 2
3 )4 4( 2

3 )2 −6( 2
3 )2 − 4

3 −2
−21( 2

3 )6 17( 2
3 )4 −30( 2

3 )4 −11( 2
3 )3 −9( 2

3 )2

−127( 2
3 )8 93( 2

3 )6 −178( 2
3 )6 −63( 2

3 )5 −43( 2
3 )4

⎞⎟⎟⎟⎟⎠ . (3.22)

In the same way as in Case 2, because of rank R2 = 5, we have that C2 = 0 if and only if B̃2 = 0, and
that (3.8) can be rewritten as

F
(
α(x)

)− F (x) = Q 33(x)

p3(α(x))p3(x)
=

4∑
j=0

B2 j+1x2 j+1(1 + P3 j(x)
)
,

where P3 j(0) = 0, which ensures that Eq. (3.7) has at most four limit cycles near the origin by Theo-
rem 1.

Next we prove that four limit cycles can appear near the origin. By (3.20) and (3.21) we have

∂(e31, e32, e33, e34, e35)

∂(a0,a1,a2,a3,b1,b2,b3)
=

⎛⎜⎜⎜⎝
−b1 1 0 0 −a0 0 0

0 −b2 b1 0 a2 −a1 0
−b3 + 2

3 b2 0 − 2
3 1 0 2

3 a0 −a0
0 −b3 0 b1 a3 0 −a1
0 0 −b3 b2 0 a3 −a2

⎞⎟⎟⎟⎠ . (3.23)

When a0 = a1 = 0, a2 = 1
2 , a3 = − 2

3 , b1 = −2, b2 = 2
3 , b3 = 0, by (3.22) and (3.23) we have

det
∂(B1, B3, B5, B7)

∂(a1,a2,a3,b1)
= det

∂(B1, B3, B5, B7)

∂(e31, e32, e33, e34)
det

∂(e31, e32, e33, e34)

∂(a1,a2,a3,b1)
	= 0,

and B1 = B3 = B5 = B7 = 0, B9 = 2( 2
3 )6, e31 = 0, e32 = −1, e33 = −1, e34 = 4

3 , e35 = − 4
9 . It implies

the existence of four limit cycles near the origin.

Case 4. n = m = 4. Multiplying the equation α2 − x2 = − 2
3 (α3 − x3) by αx and α + x, respectively, we

get

α3x − αx3 = −2

3

(
α4x − αx4),

(
α3 − x3)+ (

α2x − αx2)= −2

3

[(
α4 − x4)+ (

α3x − αx3)],
and then by (3.9) we have
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Q 44(x) = e41(α − x) + e42
(
α2x − αx2)+ e43

(
α3 − x3)+ e44

(
α3x2 − α2x3)

+ e45
(
α4 − x4)+ e46

(
α4x2 − α2x4)+ e47

(
α4x3 − α3x4),

where

e41 = a1 − a0b1, e42 = (a2b1 − a1b2) + 9

4
(a4b1 − a1b4) − 3

2
(a3b1 − a1b3), (3.24)

e43 = (a3 − a0b3) − 2

3
(a2 − a0b2) + 9

4
(a4b1 − a1b4) − 3

2
(a3b1 − a1b3), (3.25)

e44 = a3b2 − a2b3, e45 = (a4 − a0b4) + 3

2
(a4b1 − a1b4) − (a3b1 − a1b3), (3.26)

e46 = a4b2 − a2b4, e47 = a4b3 − a3b4. (3.27)

Also as before, we have that B̃3 = R3C3, where

B̃3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B1
B3
B5
B7
B9
B11
B13

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, C3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e41
e42
e43
e44
e45
e46
e47

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

R3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0 0 0
−( 2

3 )2 2 −2 0 0 0 0

−4( 2
3 )4 4( 2

3 )2 −6( 2
3 )2 −2 8

3 0 0

−21( 2
3 )6 17( 2

3 )4 −30( 2
3 )4 −9( 2

3 )2 24( 2
3 )3 4

3 2

−127( 2
3 )8 93( 2

3 )6 −178( 2
3 )6 −43( 2

3 )4 148( 2
3 )5 18( 2

3 )3 16( 2
3 )2

−835( 2
3 )10 577( 2

3 )8 −1158( 2
3 )8 −250( 2

3 )6 980( 2
3 )7 118( 2

3 )5 89( 2
3 )4

−5798( 2
3 )12 3858( 2

3 )10 −7986( 2
3 )10 −1608( 2

3 )8 6828( 2
3 )9 802( 2

3 )7 556( 2
3 )6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Because of rank R3 = 7, we get that C3 = 0 if and only if B̃3 = 0. Therefore,

F
(
α(x)

)− F (x) = Q 44(x)

p4(α(x))p4(x)
=

6∑
j=0

B2 j+1x2 j+1(1 + P4 j(x)
)
,

where P4 j(0) = 0. It follows by Theorem 1 that Eq. (3.7) has at most six limit cycles near the origin.
Next we prove that six limit cycles can appear near the origin. From (3.24)–(3.27) we have

∂(e41, e42, e43, e44, e45, e46)

∂(a0,a1,a2,a4,b1,b2)

=

⎛⎜⎜⎜⎜⎜⎝
−b1 1 0 0 −a0 0

0 −b2 − 9
4 b4 + 3

2 b3 b1
9
4 b1 a2 + 9

4 a4 − 3
2 a3 −a1

−b3 + 2
3 b2 − 9

4 b4 + 3
2 b3 − 2

3
9
4 b1

9
4 a4 − 3

2 a3
2
3 a0

0 0 −b3 0 0 a3
−b4 − 3

2 b4 + b3 0 1 + 3
2 b1

3
2 a4 − a3 0

⎞⎟⎟⎟⎟⎟⎠ .
0 0 −b4 b2 0 a4
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When a0 = a1 = 0, a2 = 81
52 , a3 = − 54

13 , a4 = 33
13 , b1 = − 10

3 , b2 = 104
33 , b3 = − 208

297 , b4 = 0, we have

det
∂(B1, B3, B5, B7, B9, B11)

∂(a0,a1,a2,a4,b1,b2)

= det
∂(B1, B3, B5, B7, B9, B11)

∂(e41, e42, e43, e44, e45, e46)
det

∂(e41, e42, e43, e44, e45, e46)

∂(a0,a1,a2,a4,b1,b2)
	= 0,

and B1 = B3 = B5 = B7 = B9 = B11 = 0, B13 = 18( 2
3 )10, and e41 = 0, e42 = e43 = −45, e44 = −12,

e45 = −24, e46 = 8, e47 = − 16
9 . Thus, as before, six limit cycles can appear near the origin.

The proof is completed. �
Proof of Theorem 6. Suppose m � n. Firstly, we prove that Eq. (1.11) has at most [ 3m+2n−1

3 ] limit
cycles near the origin.

For 0 < x � 1, from (1.12) we have

F
(
α(x)

)− F (x) =
m∑

i=1

a−
i αi(x) −

n∑
i=1

a+
i xi =

m∑
i=1

(
ãi I i(x) + ai J i(x)

)=
∑
i�1

Bix
i ≡ Q (x), (3.28)

where

ãi =
⎧⎨⎩

a−
i +a+

i
2 , 1 � i � n,

a−
i
2 , n + 1 < i � m,

ai =
⎧⎨⎩

a−
i −a+

i
2 , 1 � i � n,

a−
i
2 , n + 1 < i � m,

(3.29)

and further from Lemmas 2 and 6 we have

Q (x) =
m∑

i=1

(
ãĩ I i(θ) + ai J̃ i(θ)

)=
m∑

i=1

(
ãi

∑
j∈S(i)

bi, j sin jθ + ai

i∑
j=0

ci, j cos jθ

)
≡ Q̃ (θ).

Noting that S( j) =⋃ j
i=1 S̃ i , where S̃ i = {i} for i 	= 0 (mod 3) and S̃ i = ∅ for i = 0 (mod 3), one has

Q̃ (θ) =
∑

j∈S(m)

m∑
i= j

ãibi, j sin jθ +
m∑

j=0

m∑
i= j

aici, j cos jθ

=
∑

j∈S(m)

c̃ j sin jθ +
m∑

j=0

c j cos jθ, (3.30)

where

c̃ j =
m∑

i= j

ãibi, j, j ∈ S(m); c j =
m∑

i= j

aici, j, 0 � j � m, (3.31)

since S(i) ⊂ S(n) if i � n.
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Since
∑m

j=0 c j = 0 we have

Q̃ (θ) =
∑

j∈S(m)

c̃ j

∑
i�0

(−1)i

(2i + 1)! j2i+1θ2i+1 +
m∑

j=0

c j

(
1 +

∑
i�1

(−1)i

(2i)! j2iθ2i
)

=
∑
i�0

(−1)i

(2i + 1)! c2i+1θ
2i+1 +

∑
i�1

(−1)i

(2i)! c2iθ
2i ≡ Q̃ 1(θ) + Q̃ 2(θ),

by using the fact that

sin jθ =
∑
i�0

(−1)i

(2i + 1)! j2i+1θ2i+1, cos jθ =
∑
i�0

(−1)i

(2i)! j2iθ2i,

where

c2i+1 =
∑

j∈S(m)

j2i+1c̃ j, i � 0; c2i =
m∑

j=1

j2ic j, i � 1. (3.32)

Write S(m) as S(m) = {ki | 0 � i � h, and ki < k j for i < j}, where h = [ 2m−1
3 ]. From (3.32) we get

C1 = R1C̃ and C2 = R2C , where

C1 =

⎛⎜⎜⎝
c1
c3
...

c2h+1

⎞⎟⎟⎠ , C̃ =

⎛⎜⎜⎝
c̃k0

c̃k1

...

c̃kh

⎞⎟⎟⎠ , R1 =

⎛⎜⎜⎜⎝
k0 k1 · · · kh

k3
0 k3

1 · · · k3
h

...
...

. . .
...

k2h+1
0 k2h+1

1 · · · k2h+1
h

⎞⎟⎟⎟⎠ , (3.33)

C2 =

⎛⎜⎜⎝
c2
c4
...

c2m

⎞⎟⎟⎠ , C =

⎛⎜⎜⎝
c1
c2
...

cm

⎞⎟⎟⎠ , R2 =

⎛⎜⎜⎝
1 22 · · · m2

1 24 · · · m4

...
...

. . .
...

1 22m · · · m2m

⎞⎟⎟⎠ . (3.34)

Because of

det R1 =
h∏

s=0

ks

∏
0�i< j�h

(
k2

j − k2
i

) 	= 0,

C1 = 0 if and only if C̃ = 0, and hence C1 = 0 if and only if Q̃ 1(θ) = 0. In other words,

c2 j+1 = O
(|c1, c3, . . . , c2h+1|

)
for j � h + 1. (3.35)

In the same way, we obtain that

c2 j = O
(|c2, c4, . . . , c2m|) for j � m + 1. (3.36)
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From (3.29) and (3.31), there exist matrices R̃ and R such that C̃∗ = R̃ A and C∗ = R A, where

C̃∗ =

⎛⎜⎜⎝
c̃kl+1

c̃kl+2

...

c̃kh

⎞⎟⎟⎠ , C∗ =

⎛⎜⎜⎝
cn+1
cn+2

...

cm

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
an+1
an+2

...

am

⎞⎟⎟⎠ , (3.37)

where l = [ 2n−1
3 ].

From (3.33), (3.34) and (3.37) we know that there exits an (m + h + 1) × (m + l + 1) matrix S such

that
(

C1
C2

)
= SC∗ , where C∗ = (c̃k0 , . . . , c̃kl , c1, . . . , cn, AT )T . Write S in the form

S = (
S T

1 , S T
3 , . . . , S T

2h+1, S T
2 , S T

4 , . . . , S T
2m

)T
,

then Si is the row vector of S and ci = Si C∗ . Suppose s = rank S . There exists a subset {Sri | 1 � i � s,
and ri < r j for i < j} of {S1, S3, . . . , S2h+1, S2, S4, . . . , S2m} such that the vectors in the subset are

linearly independent and for any other vector S j we have S j = ∑β( j)
ri=r1

α j,i Sri , where β( j) = max{ri |
ri < j, 1 � i � s} and α j,i are real numbers and not all zero. Then

c j = S jC
∗ =

β( j)∑
ri=r1

α j,i Sri C
∗ =

β( j)∑
ri=r1

α j,i
(

Sri C
∗)=

β( j)∑
ri=r1

α j,icri ,

in other words,

c j = O
(|cr1 , cr2 , . . . , cβ( j)|

)
.

From (3.35) and (3.36) we obtain that

c j = O
(|cr1 , cr2 , . . . , cβ( j)|

)
for j 	= ri, 1 � i � s. (3.38)

Therefore, cri = 0, 1 � i � s, if and only if Q̃ (θ) = 0.

Noting θ = − 2
√

3
3 x + O(x2) = − 2

√
3

3 x(1 + O(x)), Q (x) can be rewritten in the following form

Q (x) =
∑
i�1

(−1)[ i
2 ]

i! ci

(
−2

√
3

3
x
(
1 + O(x)

))i

=
∑
i�1

(−2
√

3)i(−1)[ i
2 ]

3i i! ci x
i(1 + Pi(x)

)
where Pi(x) ∈ C∞ , Pi(x) = O(x). Comparing the like powers of x between the above equation and
(3.28), we get

Bi = (−2
√

3)i(−1)[ i
2 ]

3i i! ci + O
(|c1, c2, . . . , ci−1|

)
, for i � 1.

Then from (3.38) we have

B j = O
(|cr1 , cr2 , . . . , cβ( j)|

)
, for j 	= ri, 1 � i � s, (3.39)

and
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Bri = (−2
√

3)ri (−1)[
ri
2 ]

3ri ri ! cri + O
(|cr1 , cr2 , . . . , cri−1 |

)
, 1 � i � s,

and then

cri = 3ri ri !
(−2

√
3)ri (−1)[ i

2 ] Bri + O
(|Br1 , Br2 , . . . , Bri−1 |

)
. (3.40)

Formulas (3.39) and (3.40) give

B j = O
(|Br1 , Br2 , . . . , Bβ( j)|

)
, for j 	= ri, 1 � i � s. (3.41)

The displacement function d(r,a) of Eq. (1.11) has the form d(r,a) =∑
i�1 di(a)ri for small r. From

Theorem 2, in the same way as above, we get

d j = O
(|dr1 ,dr2 , . . . ,dβ( j)|

)
, for j 	= ri, 1 � i � s.

Therefore, d(r,a) = 0 when dri = 0, 1 � i � s. Thus d(r,a) can be rewritten in the following form

d(r,a) =
s∑

i=1

dri r
ri P̃ ri (r,a,dr1 ,dr2 , . . . ,drs ),

where P̃ i ∈ C∞ , P̃ i(r,a,dr1 ,dr2 , . . . ,drs ) = 1 + O(r). Then following the proof idea of Theorem 1.3 of
Han [8], we can prove that the function d(r,a) has at most s − 1 positive zeros in r near r = 0.

Next we prove s = m + l + 1. Obviously, s � m + l + 1. It is easy to get (cr1 , cr2 , . . . , crs )
T = S∗C∗,

where S∗ is an s × (m + l +1) matrix and S∗ = (S T
r1

, S T
r2

, . . . , S T
rs
)T . Let S−

i = S(i)− S(n) for i > n. From
(3.30), Q̃ (θ) can be rewritten in the form

Q̃ (θ) =
∑

j∈S(m)

m∑
i= j

ãibi, j sin jθ +
m∑

j=0

m∑
i= j

aici, j cos jθ

=
∑

j∈S(n)

c̃ j sin jθ +
n∑

j=0

c j cos jθ +
∑
j∈S−

m

m∑
i= j

a−
i

2
bi, j sin jθ +

m∑
j=n+1

m∑
i= j

a−
i

2
ci, j cos jθ

=
∑

j∈S(n)

c̃ j sin jθ +
n∑

j=0

c j cos jθ +
m∑

i=n+1

a−
i

( ∑
j∈S−

i

bi, j

2
sin jθ +

i∑
j=n+1

ci, j

2
cos jθ

)

=
∑

j∈S(n)

c̃ j sin jθ +
n∑

j=0

c j cos jθ +
m∑

i=n+1

a−
i Hi(θ),

where

Hi(θ) =
∑
j∈S−

i

bi, j

2
sin jθ +

i∑
j=n+1

ci, j

2
cos jθ.

From Lemmas 2 and 5, we get |bi,i | + |ci,i| = 2−i+2(| sin iπ
3 | + | cos iπ

3 |) 	= 0, and then sin jθ , j ∈ S(n),
cos jθ , 1 � j � n, and Hi(θ), n + 1 � i � m, are linearly independent. Therefore, C∗ = 0 if and only if
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Q̃ (θ) = 0. Besides, we also know that cri = 0, 1 � i � s, if and only if Q̃ (θ) = 0. Therefore, C∗ = 0 if
and only if cri = 0, 1 � i � s, implying s = m + l + 1.

Finally, we prove that l +m limit cycles can appear near the origin. For simplicity, take a−
3 j = −a+

3 j ,
1 � j � [ n

3 ], which gives ã3 j = 0 by (3.29). From (3.28), we get

Q (x) =
∑

i∈S(n)

ãi I i(x) +
n∑

i=1

ai J i(x) +
m∑

i=n+1

ai
(

Ii(x) + J i(x)
)=

∑
i�1

Bix
i,

from which we get

(Br1 , Br2 , . . . , Brl+m )T = R(ãk0 , ãk1 , . . . , ãkl ,a1,a2, . . . ,am)T ,

where R is a constant matrix of order l + m + 1. On the one hand, from Lemma 6, we know that
Iki (x), ki ∈ S(n), J i(x), 1 � i � n, and Ii(x) + J i(x), n + 1 � i � m, are linearly independent, and hence
ãki = 0, 0 � i � l, and ai = 0, 1 � i � m, if and only if Q (x) = 0. On the other hand, from (3.41) we get
that Bri = 0, 1 � i � l + m + 1, if and only if Q (x) = 0. Therefore, we have det R 	= 0. From (3.29), it is
easy to see

(ãk0 , ãk1 , . . . , ãkl ,a1,a2, . . . ,am)T = D
(
a+

k0
,a+

k1
, . . . ,a+

kl
,a−

1 ,a−
2 , . . . ,a−

m

)T
,

and det D 	= 0. Then following the proof idea of Theorem 1.3 of Han [8], we obtain that (1.11) has l+m
limit cycles near the origin. Then the conclusion follows by Theorem 1. The proof is completed. �
References

[1] T.R. Blows, N.G. Lloyd, The number of small-amplitude limit cycles of Liénard equations, Math. Proc. Cambridge Philos.
Soc. 95 (1984) 359–366.

[2] C.J. Christopher, N.G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems, NoDEA Nonlinear Differential
Equations Appl. 3 (1996) 183–190.

[3] C. Christopher, S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or
restoring forces, Nonlinearity 12 (1999) 1099–1112.

[4] B. Coll, A. Gasull, R. Prohens, Degenerate Hopf bifurcation in discontinuous planar systems, J. Math. Anal. Appl. 253 (2001)
671–690.

[5] A. Gasull, J. Torregrosa, Small-amplitude limit cycles in Liénard systems via multiplicity, J. Differential Equations 159 (1999)
186–211.

[6] A. Gasull, J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Internat. J. Bifur. Chaos Appl.
Sci. Engrg. 13 (2003) 1755–1765.

[7] M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equations 15 (1999) 113–126.
[8] M. Han, On Hopf cyclicity of planar systems, J. Math. Anal. Appl. 245 (2000) 404–422.
[9] J. Jiang, M. Han, Small-amplitude limit cycles of some Liénard-type systems, Nonlinear Anal. 71 (12) (2009) 6373–6377.

[10] J. Jiang, M. Han, P. Yu, S. Lynch, Limit cycles in two types of symmetric Liénard’s systems, Internat. J. Bifur. Chaos Appl. Sci.
Engrg. 17 (2007) 2169–2174.

[11] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.
[12] T. Küpper, S. Moritz, Generalized Hopf bifurcation for non-smooth planar systems, Philos. Trans. R. Soc. Lond. Ser. A Math.

Phys. Eng. Sci. 359 (2001) 2483–2496.
[13] R.I. Leine, Bifurcations of equilibria in non-smooth continuous systems, Phys. D 223 (2006) 121–137.
[14] A. Lins, W. deMelo, C. Pugh, On Liénard’s equation, in: Geometry and Topology, in: Lecture Notes in Math., vol. 597,

Springer-Verlag, Berlin, 1977, pp. 335–357.
[15] X. Liu, M. Han, Hopf bifurcation for nonsmooth Liénard systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (7) (2009)

2401–2415.
[16] J. Llibre, A.C. Mereu, M.A. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc.

Cambridge Philos. Soc. 148 (2010) 363–383.
[17] N. Lloyd, S. Lynch, Small-amplitude limit cycles of certain Liénard systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.

Sci. 418 (1988) 199–208.
[18] D. Luo, X. Wang, D. Zhu, M. Han, Bifurcation Theory and Methods of Dynamical Systems, Adv. Ser. Dyn. Syst., vol. 15, World

Scientific, Singapore, 1997.
[19] G. Petrov, The Chebyshev property of elliptic integrals, Funct. Anal. Appl. 22 (1988) 72–73.



Y. Tian, M. Han / J. Differential Equations 251 (2011) 834–859 859
[20] D. Xiao, Bifurcations on a five-parameter family of planar vector field, J. Dynam. Differential Equations 209 (4) (2008)
961–980.

[21] D. Xiao, H. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response,
SIAM J. Appl. Math. 66 (3) (2006) 802–819.

[22] P. Yu, M. Han, Limit cycles in generalized Liénard systems, Chaos Solitons Fractals 30 (5) (2006) 1048–1068.
[23] P. Yu, M. Han, On limit cycles of the Liénard equations with Z2 symmetry, Chaos Solitons Fractals 31 (3) (2007) 617–630.
[24] Y. Zou, T. Küpper, W.J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear

Sci. 16 (2006) 159–177.


	Hopf bifurcation for two types of Liénard systems
	1 Introduction and main results
	2 Preliminary lemmas
	3 Proof of the main results
	References


