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In this paper, we propose a mathematical model for
HIV infection with delays in cell infection and virus
production. The model examines a viral therapy for
controlling infections through recombining HIV with
a genetically modified virus. For this model, we derive
two biologically insightful quantities (reproduction
numbers) Ry and R, and their threshold properties
are discussed. When Rg<1, the infection-free
equilibrium Eg is globally asymptotically stable. If
Ro > 1and R, <1, the single-infection equilibrium Eg
is globally asymptotically stable. When R, > 1, there
occurs the double-infection equilibrium Eg4, and there
exists a constant R, such that Eq is asymptotically
stable if 1 < R, < Rp. Some simulations are performed
to support and complement the theoretical results.

1. Introduction

Acquired immune deficiency syndrome (AIDS) was first
recognized by the United States Centers for Disease
Control and Prevention in 1981 [1]. AIDS is caused by
infection with human immunodeficiency virus (HIV),
which is transmitted primarily via unprotected sexual
contact, contaminated blood transfusions, hypodermic
needles and from mother to child during pregnancy,
delivery or breastfeeding. With no cure or vaccine in
sight, HIV disease continues to be a serious health
issue for parts of the world. According to the report [2]
by UNAIDS, there were approximately 36.9 (34.3-41.4)
million people living with HIV around the world at the
end of 2014, and 1.2 (1.0-1.5) million people died from
HIV-related causes in 2014. For more information about
AIDS, we refer the reader to [1-3] and references therein.

© 2016 The Author(s) Published by the Royal Society. All rights reserved.
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As its name suggests, AIDS causes deficiency of the human immune system, making people
infected by HIV more susceptible to common infections that do not usually affect people with
a working immune system, because the number of CD4™ T cells declines below a centre critical
level owing to HIV infection. The entry of HIV into CD4" T cells begins with the interaction
between gp120 on its surface with receptor CD4, and coreceptors CCR5 and CXCR4 on the
target membrane. Then, the tips of gp41 are inserted into the target membrane, and viral and
cellular membranes fuse together [4]. After HIV has bound to the target cell, the HIV RNA
and various enzymes are injected into the cell, including reverse transcriptase and integrase.
Reverse transcriptase copies the positive single-stranded RNA genome into a complementary
DNA molecule, which together with its complement forms a double-stranded viral DNA. The
viral DNA is then transported into the cell nucleus, and is integrated into the host cell’s genome
by another viral enzyme integrase [5]. To produce the virus, the integrated DNA provirus is
transcribed into mRNA, and viral proteins are produced by translation of mRNA. Viral genome
and proteins assemble together, bud out of the host cell, and a mature HIV virion is produced.
During viral replication, CD4* T cells infected with HIV are killed. For the mechanism of CD4*
T cell death in HIV infection, see [6,7].

A general model system for HIV infection is described by the following differential equations

x(t) =& — dx(t) — f(x(£), v(t)),
() =e M (x(t — 1), v(t — 11)) — ary(t) (1.1)
and v(t) = ke 2y (t — 1) — pu(t),

where x(t), y(t), v(t) is the density of virus-free host cells (mostly corresponding to CD4™ T cells),
infected cells and the free HIV at time ¢, respectively. In the model (1.1), the healthy host cells are
assumed to be produced at rate A, and to die at rate d per cell. Host cells are contacted by the
virus at rate f(x, v). It is assumed that it takes an average time 1 for the contacting virions to enter
cells, which means that the contacted cells become actively affected. Then, after an average time
1, the infected cells start to create and release new virions at rate k. The death rate for infected
cells and free virus is a1 and p, respectively. The death rate factor for the latent period and the
virus production period is e™*™ and e™"%, respectively. Realistically, 2, may differ from a;.

The simplest and earliest form of system (1.1) was derived in [8,9], where f(x,v) = Bxv,
71 =1 =0. The corresponding basic reproduction number 9y was identified in [10,11], and it
was proved that when Ry < 1, the disease-free equilibrium is globally asymptotically stable, and
when Rg > 1, the disease-free equilibrium becomes unstable, and the infection equilibrium is
globally asymptotically stable. When delays are added into the modelling, e.g. [12-14], it has been
shown that ignoring delays leads to overestimation of the basic reproduction number. Besides
the bilinear incidence rate f(x, v) = Bxv, nonlinear incidence rates were also studied, for instance
the saturated incidence rate f(x,v) = Bxv/(1 + biv) in [15-17], and the Beddington-DeAngelis
infection rate f(x, v) = Bxv/(1 + box + byv) in [18-21]. For the models mentioned above with these
specific nonlinear incidence rates, the corresponding basic reproduction number was identified
and its threshold property was discussed.

Based on model (1.1), various HIV models are developed to investigate drug resistance,
immune responses and effects of antiretroviral therapy. These researches have contributed to
the understanding of HIV biology [22]. We focus on an HIV virotherapy, which is offered by
generic engineering to control HIV infections via introducing recombinant virus [23-25]. One
application of genetically modified viruses is cell targeting. For instance, the so-called reverse
genetics systems can be used to recover rhabdoviruses from cDNA, which makes it possible to
genetically engineer rhabdoviruses [23]. In this case, the recombinant virus is targeted to cells
infected by HIV, because the recombinant virus is capable of infecting and killing CD4* T cells
previously infected by HIV, and does no harm to healthy cells. For example, in [25], a recombinant
vesicular stomastitis virus lacking the glycoprotein gene and expressing CD4 and CXCR4 is
developed with the property that this virus is unable to infect normal cells, and the cells first
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infected with HIV-1 are rapidly superinfected with this virus, and killed before high levels of
HIV-1 are released.

To model the virotherapy, we add the recombinant virus w and double-infected cells z into
system (1.1), and propose the following model

x(t) = A — dx(t) — f(x(D), v(1)),
yB)=e " f(x(t — r1), vt — 1)) — my(t) — ayBw(t),

8(0) = ke 2y (t — ) — pu(t), (1.2)
z(t) = ay(t)w(t) — bz(t)
and w(t) = cz(t) — qu(t).

In the model (1.2), the cells previously infected by HIV (single-infected cells) are infected by
recombinant virus at a rate awy, before turning into double-infected cells. Double-infected cells
die at a rate bz and release recombinant virus at rate ¢ per cell. The death rate of recombinant virus
is 4. We assume that the recombinant virus infection is much faster than HIV infection. So delays
are not considered for z or w in this model.

To the best of our knowledge, only the case f(x, v) = fxv has been considered in the literature,
such as [26,27]. In [26,27], the corresponding ordinary differential system of (1.2) was studied.
Only the structure of the equilibria was analysed in [27], and some numerical simulations were
presented. The authors in [26] gave a dynamical analysis on the stability of all three equilibria.
The effects of delay 71 on the dynamical behaviour were investigated in [28].

In model (1.2), we suppose that the incidence rate depends on x and v, and is given by a
continuous function f(x, v) with continuous derivatives. To be biologically feasible, f(x, v) must
satisfy the conditions

f(x,0)=£(0,v)=0, (1.3)
felony= L0 o, =T (14)
2
and fou(x, v) = ’ ];(:2’ ) <0, (1.5)

for all x, v > 0. For the biological meaning, the first two conditions (1.3) and (1.4) are obvious. The
third one (1.5) means that the incidence rate is a concave function with respect to the number of
free HIV. That could be realistic, because when the number of free HIV is so high that any host
cells in contact with HIV is virtually certain, the incidence rate will respond more slowly than
linearly to the increase in v.

Our main goal in this paper is to study the impact of two time delays on lowering the HIV load
and increasing the CD4™" T cell count. We obtain two reproduction numbers Ry and R; for (1.2),
and discuss their threshold properties. As a corollary of the main results in this paper, we prove
the threshold property of the corresponding basic reproduction number for system (1.1) with the
general incidence rate f(x, v).

The rest of this paper is organized as follows. In §2, for system (1.2), we will discuss the
well-posedness of the solutions, and the existence of different equilibria. In addition, in order to
properly define biologically meaningful equilibria, two reproduction numbers Rg and R, will
be defined. In §§3-5, we analyse the stability of the three equilibria: disease-free equilibrium
Ey, single-infection equilibrium Es and double-infection equilibrium Eq4. It will be shown that
Ey is globally asymptotically stable for Ry <1, Es is globally asymptotically stable for Ry > 1
and R; <1, and Eq is asymptotically stable for 1 < R, < R}, where R} is a number larger than 1.
A numerical example is presented in §6 to demonstrate the theoretical predictions and to show
Hopf bifurcation at Eq. Finally, conclusion and discussion are drawn in §7.
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2. Well-posedness and existence of equilibrium points

We introduce the Banach space X=C([—I,O];R§_) equipped with the sup-norm, where 7 =
max({ty, 12}. We let x; € X be defined by x;(9) = x(t + 0) for 6 € [-7,0] for any ¢ € [0, A], when A > 0
and x € C([-7,AJ; R3).

It is biologically reasonable to consider initial conditions ¢ € X for system (1.2). Using the
fundamental theory of functional differential equations [29], we have that there is a unique
solution x(t, ) = (x(t, #), y(t, ¢), v(t, $), z(t, p), w(t, p)) to system (1.2) with x(0, ¢) = ¢. Theorem 2.1
establishes the non-negativity and boundedness of solutions to (1.2).

Theorem 2.1. Let x(t, ¢) be a solution of system (1.2) satisfying x(0, ¢) = ¢ € X. Then, x(t, ¢) is non-
negative and uniformly bounded for t > 0. More precisely, we have

A 2k 2

Lim sup(x(t), y(t), v(t), z(t), w(t)) < —e™ M7 (e”m, 1, —e 72,1, —C> , 2.1
t—+o0 m a b

where m =min{a1/2,b/2,d,p,q}. Furthermore, the solution semiflow @ (t) = x¢(-) : X — X has a compact

global attractor.

Proof. System (1.2) can be rewritten as x(t) = F(x;), where

L —de1(0) — f(¢1(0), ¢3(0))
e Muf(¢1(—11), $3(—711)) — a1¢2(0) — ad2(0)¢5(0)
F(¢) = ke="%2¢p(—12) — pg3(0)
a¢2(0)¢5(0) — bgp4(0)
c4(0) — q¢5(0)

for ¢ =(¢1,$2, ..., ¢5) € X. It is easy to see that for any ¢ € X, ¢;(0) = 0 for some 7, we have F;(¢) >
0. Therefore, according to theorem 2.1 in [30, ch. 5], we know that x(t,¢) >0 for all ¢ >0 in its
maximal interval of existence.

For the boundedness of the solution, we define

B(t)y=e ""x(t) + y(t+ 1) + ;—Il{eﬂm v(t+1 + 1) +z(t+ 1) + 2%w(t + 7). (2.2)

Differentiating B(t) with respect to time along the solution of (1.2) yields

dB(t)

ar L= e M [A —dx(t) — f(x(B), v(E)] + e T f(x(t), v(B) — my(t + 1)
(1.2)

a

2ke”mpv(t + 11+ 1)

—ay(t+ o)w(t+ 1) + %y(t +11) —

b b
+ay(t + r)w(t + 1) — bz(t + 1) + Ez(t +11)— Zqw(t +11)

=e M — e TMT(x(t) — %y(t +1)-— gz(t +1)

a b
— Ut T+ 1) — quit + T)
<Xxe M — mB(t).
Then, we know
e—/l11.'1

lim sup B(t) =

t—+00

On the other hand, it has been proved that x(f), y(t), v(f), z(t) and w(t) are non-negative. Then,
from (2.2) for any t > —z, we have e " x(t) < B(t), which implies

A
lim sup x(f) < limsup ™" B(t) = —.
t—+o00 t——+o00 m

Using the similar argument for y(t), z(t), v(t) and w(t), we get their boundedness listed in (2.1).
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Because of the boundedness of the solution, the semiflow @(f) = x;(-) of system (1.2) is point
dissipative. By [31, theorem 3.6.1], @(t) is compact for any t > 7. On the basis of theorem 3.4.8
in [32], we obtain that @(t) has a compact global attractor in X. The proof of the theorem is
completed. |

Next, we address the basic reproduction number for the model system (1.2) by the next-
generation operator approach [33,34]. It is easy to see that system (1.2) has a disease-free
equilibrium Eg =(x¢,0,0,0,0), where xo=21/d. Linearizing the system at Ej, we obtain the
following two disease-related equations for variables y and v

y(t) = —my(t) + e fy (x0, 0)v(t — 7),
v(t) =ke P2y (t — 1) — po(F).

Denote 11 and uy be the number of infected cells and HIV at time t =0, respectively. Then, the
remaining numbers of infected cells and HIV at time ¢ are given by

H]i’

ui(t)y=use” and up(t) = uze’pt.

The total numbers of newly infected cells and produced HIV are

oo e*ﬂﬂﬁ
1'41=J e M7 fy (xo, O)up(t — 71) dt = P -fo(x0, 0)uip

I3

and
oo kefllzfz
iy = J ke™™2uy(t — ) dt = u1,
T2 ﬂl
which can be rewritten as
e*ﬂ] Tl f ( )
- 0 (X0, 0
ui _ ui _ p
<ﬁ2) =M <u2) ,  where My = ke—02m2 .

a1

Then, the matrix M is the next infection operator. As usual, the spectral radius of My is called the
basic reproduction number R, which is

ke—al T1—02T2
Ro= \/fv(XOrO)-
alp

Biologically, R% = (k/p)e~™"™ . (e7"™ /aq)f,(x0,0) gives the average number of virions caused by
one virion, where (k/p)e™™™ is the mean number of host cells infected by each virion, and
(€772 /aq)fy(x0, 0) is the average number of HIV virions produced by one single-infected cell.

Now, we want to find the other equilibria of system (1.2), beside the disease-free equilibrium
point Eg. From the last three equations in (1.2), we get

w(acy —gb)=0, z= gw and y= keim v. (2.3)
The first equation in (2.3) yields (i) w =0 or (ii) y = (bg)/(cx).
(i) If w =0, then z=0, and the first two equations in (1.2) yields
e —d) - =0 (2.4)
and
F(x,v)=0, where F(x,v)=e "Tf(x,v) — —F 2.5)

ke—mw2

First, we consider the case R < 1. If there exists a positive solution (x, v) in (2.4) and (2.5), then
0 < x < xg from (2.4). Further, we can show that F(x, v) <0 for 0 < x < xg and v > 0. In fact, from

Fy(x,v)=e "7 (x,v) — k:—lgrz and Fyy(x,v) =e M7f,,(x,v) < 0 owing to (1.5),
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we have F,(xp,0) = (alp)/(ke_“zfz)(R% —1) <0 when Rg <1, and F,(xg, v) < Fy(xp,0) <0 for all
v > 0. Noting that F(xp, 0) =0, together with F,(xp, v) <0, yields F(xp, v) <0 for all v > 0. Finally,
we obtain F(x,v) <0 for 0 <x<xp and v >0 owing to Fy(x,v)=e "% fy(x,v) >0 from (1.4).
Therefore, when R < 1, equations (2.4) and (2.5) do not have positive solutions, which means
no equilibrium points.

For the case Rg > 1, we shall prove that there exists a function x = h(v) satisfying (2.5), and
I (v) > 0. Then that proving the existence of positive solutions (x, v) for (2.4) and (2.5) is converted
to showing that the curve x = hi(v) intersects with the straight line L : x = xg — (a1p)/(dke™ 71 ~%2%2)y
defined by (2.4), as shown in figure 1.

We first show h'(v) > 0 when x = i(v) exists. Noting that, from the mean value theorem, for any
x and v > 0 there exists v* € (0, v) such that

flx,v) =f(x,v) — f(x,0) =f,(x, v)o. (2.6)

Then, substituting (2.6) into (2.5) yields

ol v%) ap

T kgmn—an

Hence, from (1.5), we have

o) <for )= —2P gyt <y, 2.7)

ka—nmt—an’

for any x and v satisfying x = (v). On the other hand, from (2.5), we have

ooy dx (mp)/(ke=™7) — e M Tf(x, v)
W (v) = T e f(x, v)

Therefore, i/ (v) > 0 is straightforward from (2.7).
To prove the existence of function x = h(v) satisfying F(h(v), v) =0, we expand F(x, v) for x > 0
in the form

Flx,v) = (e—“m (%, 0) — ke“_l;;z) v+00Y), 0<v<l. 2.8)
When Ry > 1, i.e. e f,(x0,0) — (a1p)/(ke™™2) > 0, from (2.8) we have F(xg,v) > 0 for v € (0, &),
e < 1. Note that F(0,v) <0 for v > 0. Then given that F(x, v) is an increasing function in x from
(1.4), for any v € (0, &), there exists only one x € (0, xp) satisfying F(x, v) =0. Then, x = h(v) exists
for v € (0, ¢) and x € (0, xg).

Because 1'(v) >0, lim,_, g+ h(v) must exist. Let x, =1lim,_, ¢+ h(v). Then, x, < x(, because x =
h(v) < xg for v € (0, ). In order to make sure that the curve x = hi(v) can intersect with the straight
line L, we still need to study the maximal interval of existence for the function x = h(v).

Let lim,_, .- h(v) = x,. If x; is infinite, then (0, €) is the largest interval we can find. Otherwise,
we have F(x.,¢)=0 from the continuousness of F(x,v) in x and v. Because (3F/dx)(x, &)=
e MTf (xe,€) >0 from (1.4), by implicit function theorem, we have § > 0 such that function x =
fz(v) for v e (¢ — 8, & + §) exists and satisfies F(fl(v), v) =0, and h(v) = fl(v) for v € (max{e — §,0}, ¢].
Hence, the function x = /1(v) can be extended to interval (0, ¢ + §). Using this process repeatedly,
we can find the maximal interval (0, N) for x = h(v). Denote x* =lim,_, - /i(v). Then, from the
argument above, we can see at least one of x* or N is infinite.

Then, we claim that if Ro > 1, there must exist a unique intersection point (vs, xs) in figure 1
for the curves defined by (2.4) and (2.5). Therefore, if R > 1, then a single-infection equilibrium
Es = (xs,Ys, vs,0,0) exists, where ys = (p)/(ke™™%)vs, x5 and vs satisfy equations (2.4) and (2.5).

(ii) Next, we consider the case y = (bg)/(ca) £ y4 and w > 0. Let vq = (ke ™% /p)yq4. The first two
equations in (1.2) yield

e M (A —dx) —ayq —ayqw=0, *r—dx—f(x,vq)=0. (2.9)
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\ x=h(v)

(V%)

0 \v

Figure 1. The curves defined by equations (2.4) and (2.5). (Online version in colour.)

Let g1(x,w) =e M7 (1 — dx) — myq — ayqw, g2(x) =A — dx — f(x,vq). From the first equation in
(2.9), we see that w > 0 if and only if g1(x, 0) > 0, which yields

x<M, where M= A _ Myd .
d demn

Note that go(x) is a decreasing function in x, and ¢2(0) =X > 0. Then, equations in (2.9) have
positive solutions satisfying (2.10) if and only if M > 0 and g2(M) < 0, that is

(2.10)

F(M, vq) > ¥4 2.11)

e—mm’

Before we simplify the condition (2.11), we shall first show that equilibrium Es exists when
(2.11) holds. From (1.3) and the mean value theorem in multiple variables, there exists 6 € (0,1)
such that

o, 00) =1 (5 - 7 va) =1 (5:0) =t ) i o s, (212)

de~mn’ de—m™n

where xg =1/d — (Pa1yq)/(de™™™), vg =0vq. Because vq = (ke ™72 /p)yq and f(r/d,0)=0, from
(2.11) and (2.12), we can obtain Rg > R1, where

R = fo(x0,0) (1 +fx(x6/ ve)) .
fv (x0/ UG) d
From (1.3) and (1.4), we get fix(x,0) >0, and further with (1.5) we have f,(xg, vg) < fu(xg,0) <
fu(x0,0) for xg <xg and vg > 0. Then, Ry > 1 from (2.13). Hence, inequality (2.11) implies R >
R1 > 1, and then Ejg exists.
On the other hand, (2.11) could be rewritten as
ap
ke—®n ke—®n
Comparing (2.14) with (2.4) and (2.5), from figure 1, we see that the point (vq, M) satisfying (2.14)
is on the straight line L and above the curve x =h(v), which means that (2.11) is equivalent to
vq < vs. Because yq = (p)/(ke™™2™2)vg and ys = (p)/(ke™™2"2)vs, we have yq < Vs, i.e. Rz =ys/yq > 1.
Hence, R; > 1is equivalent to condition (2.11). We also can see that R, > 1 implies M > 0, because
a1pvq a1pvs
ke—m2m2 ke—212
Therefore, if and only if R, > 1, then (2.9) has only one positive solution (xq, wq) for (x, w), and
system (1.2) has a double-infection equilibrium Eq = (x4, ¥4, vd4, 24, Wq), where zg = (q/c)wgq.

(2.13)

e MU () — dM) —

vg=0 and e MUf(M,vq)—

vg > 0. (2.14)

de ™ ™M =re ™" — >e M1} —dxg) — =0 from (2.4).
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For the biological meaning of R, we rewrite R, =c/q - ays/b, because yq = (bq)/(cer). It is easy
to see that c/q is the average number of recombinant virus that a double-infected cell produces,
and ays/b gives the mean number of double-infected cells caused by each recombinant virus when
the number of single-infected cells stabilizes at ys. Then, R is the average number of recombinant
virus caused by one recombinant virus.

Obviously, as R; — 171, yg — y; and vgq — v . Because both (x4,v4) and (xs, vs) satisfy A —
dx — f(x, v) = 0 from the first equation in system (1.2), we get x4 — xJ" as vg — vg from condition
(1.4). Further, when x4 — xJ and yq — y5 , we have wq — 0%, and then z4 — 0T. Hence, we can
see that equilibrium point E4 bifurcates from Es at R, = 1.

Summarizing the above discussion, we have the following theorem.

Theorem 2.2. System (1.2) has three possible biologically meaningful equilibria: disease-free
equilibrium Eo = (x9,0,0,0,0), with xo =1/d, single-infection equilibrium Es= (xs,Ys,vs,0,0), with
ys =(p)/(ke™™2)vs, x5 and wvs satisfy (2.4) and (2.5), and double-infection equilibrium Eq=
(x4, Yd, v, zd, wq), with yq = (bg)/(ca), vg = (ke ™22 /p)yq, zq = (q/c)wq, x4 and wq satisfy (2.9). More
specifically, (i) if Ro <1, Eq is the only equilibrium; (ii) if Ro > 1, the single-infection equilibrium Eg
exists and (iii) the double-infection equilibrium Eq exists if and only if R, > 1.

3. Global stability of equilibrium £q

Here, we shall study the global stability of the disease-free equilibrium point Eg. We have the
following theorem.

Theorem 3.1. If Rg <1, the disease-free equilibrium Eq = (x9,0,0,0,0) is globally asymptotically
stable, implying that none of the two virus can invade, regardless of the initial load. If Ro > 1, then Eg
becomes unstable.

Proof. First, we recall that Ey is the only equilibrium when Ry < 1. To prove the global stability
of Eg, we construct the following Lyapunov function:

_ |t X b
Vo=e 11( f”(xO’O)LOfU(xO)>+y+ _gmv+z+7w

¢ t
4 e T J fx(m), v(n)dn + a1 J. y(n)dn.

t—1 t—1o

Then, the derivative of Vjj with respect to time t along the solution of system (1.2) can be
expressed as

Vo| _am (1  fulw,0)
dt (1.2) fv(x, 0)

) (A —dx — f(x,v)) + e " f (x(t — 71), v(t — 71)) — a1y — ayw

+

(ke™™%2y(t — 1p) — pv) + ayw — bz + é(cz — quw)

k —a3Ty

+e MU (f(x,v) = fx(t — 1), vt — ™)) + a1 (y — y(t — 12))

_ —am _x\ [, folx,0) mp (fv) o ) bg
e d%@ m)@ ﬁmm>+mwn @0 ”) v

Because f,x(x,0) > 0, we have f, (x,0) > f, (xo, 0) if x > xg, and f, (x, 0) < f,(xp, 0) if x < x¢. Then
x _fu(xo,0)> )
(1-3)0 0 ) =0
From (1.5) and (2.6), we see f(x, v) =f,(x, v*)v < f,(x,0)v, 0 < v* <v. Then
flx, v)

fo(x, 0)

Hence, dV/dt|(1.2) < 0 and the equality holds for x = xo, v =w = 0. Thus, by LaSalle’s invariance
principle [35], we conclude that Ej is globally asymptotically stable.

R —v<(R3-1w<0, whenRg<l.
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For the unstability of Epg, we have the linearized system of (1.2) at Eg given by
x(t) = —dx(t) — fu(xo, 0)v(h),
it = —ary(t) + e, (x, Ot — 1),
(t) =ke™™2y(t — 1) — pu(t),
z(t) = —bz(t),
w(t) = ca(t) — qut),
for which the characteristic equation is
(& +d)(E +b)E +IE* + (a1 +p)E +arp(l — Rie™ )] =0.

Obviously, for the local stability of Ey, it suffices to only consider the zeros of the following
function

Do(§) =& + (a1 + p)§ + ap(1 — REe~(n+m)E), (3.1)
When R > 1, we have

Do(0)=a1p(1 —R3) <0, lim Dy(§)=+oo,
E—4o00

which means that there exists at least one positive real root for (3.1). Therefore, if Rg > 1, the
infection-free equilibrium E is unstable. |

4. Global stability of the single-infection equilibrium £

From the analysis given in §2, we know the single-infection equilibrium Eg = (xs, ys, vs, 0, 0) exists
when Ry > 1. Before we discuss the global stability of Es, we have the following persistence result.

Theorem 4.1. Let Xo={¢p = (¢1,¢P2,...,¢5) € X:¢2(0) > 0 and ¢3(0) > 0}, and denote 90Xy =X\
Xo={¢p € X:¢2(0)=0 or ¢3(0)=0}. When Rg > 1, system (1.2) is uniformly persistent with respect
to (Xo, 8Xo) in the sense that there exists some 1 > 0 such that im inf;_, oo (y(t), v(t)) > n.

Proof. By the form of system (1.2), it is easy to see that Xy is positively invariant. We set M, =
{¢p € X: D(t)p € 0Xp, Vt > 0}. Clearly, My = {¢ € X : $2(0) =0, $3(0) = 0}.

We claim that W¥(Ep) N Xo =#. Assume that, on the contrary, there exists ¥ € Xy such that
lim;—, oo @(t)¢y = Eg. Then, for any sufficiently small ¢ > 0, there exists a positive constant Ty =
To(¢), such that for x(f,¥) we have x(t) > xg — ¢, v(t) < ¢ and w(t) < ¢ for all t > T. Here, because
Ro > 1, we can choose ¢ small enough such that

cap +a1p (1 - ";J:(()x;g’)g)R%) <0. (4.1)
Furthermore, when t > T + 11, for x(f,{), we have
flx(t — 1), v(t —11)) = f(xg — &, v(t — 71)) from (1.4) 42)
and flxog —e,v(t — 1)) > fu(xo — &,&)v(t — 71) from (1.5) and (2.6). .

Consequently, for t > Ty + 11, from (4.2), we have
y(t) = e™ 7y (xo — &, )u(t — 71) — (a1 + ea)y(t),
v(t) = ke 22y (t — 1) — pu(b).
Suppose & is the principal eigenvalue of the following linear cooperative system
u1(t) = —(a1 + ee)ur (t) + e fy (xo — &, &)ua(t — Tl)} @3)
and 1 (t) = ke ™% uq (t — ) — pua(f).

Through computing the characteristics polynomial and using (4.1), we find that the origin is
a saddle point in the corresponding ordinary differential equations of system (4.3) simply by
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ignoring delays in (4.3). Thus, & > 0 from [30, corollary 5.5.2]. Let us = (uy,uv)T be the positive
right eigenvector associated with & for system (4.3). We choose [ > 0 small enough such that
luye&‘t <y(t,V¥), Tuyebot < u(t, ), for all t € [Ty + 7, T + 27]. Obviously, lefoty satisfies (4.3) for all
t>To + 7. Then by the comparison principle, we get (y(t, V), v(t, )T > lefolyg for all t> To + .
Because lus > 0 and &y > 0, letting t — co, we obtain

liminfy(t, ) =00, liminfu(t,¥)=o00
t—00 t—00

a contradiction.

Define a continuous function p1 : X — R by p1(¢) = min{¢(0), $3(0)}, ¢ € X. Then, pl_l(O, 00) C
Xo and p1(@(t)¢) > 0 if either p1(¢) =0 and ¢ € Xy, or if p1(¢) > 0. Thus, p; is a generalize distance
function for the solution semiflow @ (t) [36]. We obtain that E is a compact and isolated invariant
sets in 3Xp, and ,cp, @(¥) C Eo. Furthermore, no subset of Eg forms a cycle in 9Xp. From the
claim above, Ej is isolated in X, and W*(Eg) N X = @. By [36, theorem 3], it follows that there exists
n > 0 such that liminf;_, o p1(®@(t)¢) > n for all ¢ € X, which implies @(t) is uniformly persistent
with respect to (Xo, 3Xp). Thus, we have w(¢) C Xy for any ¢ € Xp. |

Further, we have the following result of the global stability at Es.

Theorem 4.2. If Ro > 1and R, < 1, then the single-infection equilibrium Es is globally asymptotically
stable, implying that the recombinant virus cannot survive but the pathogen virus can. Es becomes unstable
when R, > 1.

Proof. We construct the Lyapunov function Vs = V1 4+ e ™% f(xs, v5) V3, where

—mT * dx b
Vi=e ™ ™ [ x—flxs,vs) | —— |+ — yslny)+ gm( —vslnv)—|—z+zw,

Xs f(x/ US)
b fem),vm) . fx(n), v(n))> f (y(n) y(n))
Vo = —1 d In
z Jt—fl < f(xS/ US) " f(xS/ US) 7 * Jt—fz ]/s ]/s

Note that E satisfies the following relations

amp

ke—hm

A =dxs +f(xs/ Vs), MYs= e ﬂf(xs/ vs) and Vs = eimﬁf(xs/ Vs).

Using the above equalities, we have

Vi, _an B flxs, vs) o
= (127 ) 6 st

- X _f(xs/ Vs)
me (1 x5> (l G, vs)>

—an B f(x,v) f Xs,vs)  f(x, v))
el v <l flmve) e | fu)

8—‘/19: (1 - %) (e T f(x(t — 1), v(t — 1)) — My — ayw)

ay
=yt =) vt —11)) Y
yf(xs, US) Ys
aVy . aq

- ) = = _E —a272 _ _
L= (1= ) (ke Ty (=) — pv)

—e ™M T]f(xS/ vs) (y(ty— TZ) o 1 _ Usy(t — TZ) + 1) ,

Us VYs

=e M1 f(xs, vs) ( + 1) —a(y —ys)w,

V.
—z=ayw — bz,
0z

vy .
—w
Jw

- é(cz —qw)=bz — bﬁw
c c
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and for V5,
dva _ flxv)  f(t =) vt — 1)) 1 fat—n)vt—n) v ylt—mn) 1 y(t — )
o fls v fosw) O fwmw wow Oy
which yields
dVs oVy. aVy. aVy. aVy. aVy. - %
T P e A N P R L de
_omm _x _ flxs, vs) bﬁ _
=e dxg (1 xs) (1 Fx, 00 ) + . (R; — Dw
[ flsvs) | fov)  ysf (et =), vt — 1))
T (R S o, o)
_v _wytmm)  fE—n)t—n) o - Tz))
Vg Vs flx,v) Y

_amn _r _ flxs, vs) bﬁ _
=e dxs (1 xs) (1 Fx,v0) > + - (R; — Dw

+ efmnf(xs, vs) (4 o flxs, vs) _ flx, vs)v _ Ysf (x(t — 1), v(t — 11))

f(x/ vs) f(x/ v)vs ]/f(xs/ Vs)
vsy(t — 1) flx(t =), v(t — 7)) y(t — )
D e )
-7 _ fx, vs) flx,v) _v
+ ¢ f(xS, US) (1 f(x/ U) > (f(xr vS) vS) .

From (1.4), f(x,vs) > f(xs, vs) when x > x5, and f(x, vs) < f(xs, vs) when x < xs. Then

(1 _ i) <1 _f(xs/vs)> <0
Xs flx,vs)
Furthermore, we know that f(x, v) is a concave function in v from (1.5). Then for any v > 0 and
any sin (0, 1], f(x, (1 — )0 + sv) > (1 — s)f (x, 0) + sf(x, v), which implies
faos) o )
flx,v) flx, sv)
From the above inequalities and (1.4), f(x, v) should satisfy

_f(x,vs)> f(x,v)_£>< oo
(1-fe) (- £) <0 orannano

The following inequality
n b b
Z(l— —’+1n—’>= Z +1n]_[—<0
i=1 i i im1 =1

holds for any positive a; and b;, because the function gs(x) =x —1 —1Inx >0 for all x>0, and
gs(x) =0if and only if x = 1. Thus, we have

flss)  flugy yef (et — ), vt — 1)

f(x/ Vs) f(x V)vs ]/f(xs/ Vs)
_wylt—m) 1 SO =), vt — 7)) N Gl ) R
VYs f(x,v) y -

because
Sl —m - |y o)
faw 0y
—In (f(xs/ Vs) f(x vs)U ysf(x(t 1), v(t — 11)) ) vsy(t — TZ))
f(x Vs) f(x V)vs yf(xs, Vs) VYs '
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Therefore, dVs/dt|(1.2) <0 when R; < 1, and the equality holds when x = x5, y =ys, v = vs and
w = 0. Then by LaSalle’s invariance principle [35], we conclude that Es is globally asymptotically
stable when Rg > 1 and R, < 1.

When R; > 1, for the local unstability of Es, we calculate the linearized system of (1.2) at Es,
and obtain

x(t) = —(d + fa(xs, vs))x(t) — fu(xs, vs)v(),

y(t) = e M fr(xs, vs)x(t — 7)) — ary(t) + e My (s, vs)u(t — 71) — aysw(t),
() =ke™™2y(t — 12) — pu(t),

z(t) = —bz(t) + aysw(t) and

w(t) = cz(t) — qu(t).

Then, the characteristic equation is given by D1(§)D2(§) =0, where

D1(§) = (§ + b)(& +q) — cays,
Dy(§) =& + (a1 + p +d + fu(xs, v5))E” + (a1 + p)(d + fx(xs, v5)) + a1p)§
+ a1p(d + fe(xs, v)) — Kfy (x5, vs)(§ + e TR,
Because the quadratic polynomial D1(£) in £ can be expanded as
Di(6) =€+ (b + Q)¢ +bq(1 — Ra),

it is easy to see that D1(¢) =0 has two zeros with negative real part if and only if R, < 1. When
Rz > 1, D1(§) has two real roots with different signs. Therefore, Eg is unstable if R, > 1. |

From the proof of theorems 3.1 and 4.2, it is easy to get the following corollary.

Corollary 4.3. When R < 1, the infection-free equilibrium Eq = (xg,0,0) is asymptotically stable for
system (1.1); when Ro > 1, Eq becomes unstable, and the equilibrium Es = (xs,Ys, vs) is asymptotically
stable for system (1.1).

5. Stability of the double-infection equilibrium £4

The double-infection equilibrium E4 comes into existence for R, > 1. To discuss the local stability

of Eq, for any quantity A involving 7; and 1, in the paper, we denote by A the value of A when
71 = 172 = 0. We have the following result for the local stability of Eq.

Theorem 5.1. For system (1.2), there exists an Ry, > 1 such that the double-infection equilibrium Egq is
asymptotically stable for 1 <R, <Ry,

Proof. First, we recall that Eq exists if and only if R, > 1. The linearized system of (1.2) at Eq =
(xd, ¥d, vd, zd, wq) is

X(t) = —Fqx(t) — fu(xd, va)v(t),
y(t) =e M7 (fr(xq, va)x(t — 1) + fu(xg, va)v(t — T1)) — Ay(t) — ayqw(t),

§(0) = ke 7y (t — ) — po(t), (5.1)
Z(t) = awqy(t) — bz(t) + ayqw(t)
and w(t) = cz(t) — qu(t),

where F; =d + fx(xq, vq) and Ay = a1 + awy.
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By straightforward but tedious algebraic manipulations, we obtain the characteristic equation
of (5.1), given by

D)= (€ +P)E +FIEE +b +9)(E + Aw) + bgewa] — AwpRe§(E +d)(E +b+ e 1)
=&+ iAisf - iBisfe—f(ﬁW) =0, (5.2)
i=0 i=1
where R = (ke ™™ ~%2%2) /(Aypp)fv (x4, vq) and
Ay=Ay+Fj+p+b+g,
As =AwFa + (p + b+ q)(Aw + Fa) + p(b +9),
Az =(p+b+QAuvFq +pb+ 9)(Aw + Fa) + bgawy,
A1 =p(b+ 9AwFq + (Fq + p)bgawg,
Ao =Fgpbqawyg and
B3 =AwpR4, Ba=(d+b+q)Bs, By=d(b+q)Bs.
When 171 = 10 =0, (5.2) becomes
§7 4 Cagt + C38° + Co8? + Cr1 + Co =0, (53)
where
Ca=Aw+Fi+p+b+g,
C3=(Aw+p)Fa+ (b +(Aw+ Fa +p) + Awp(l = Ra),
Co = (b +)(Aw + p)Fa + (Fa — d)Auwp + Awp(d + b+ (1 — Ra) + bgaiy,
C1 = Awp(b + q)(Fg — d) + Auwpd(b +q)(1 — Ry) + ba(Fg + placiby,
Co = Fapbgaibg.
The necessary and sulfficient conditions for all zeros of (5.3) to have negative real part are given by
A1 =Cy4 >0,
Ay =C3C4 —Cp >0,
Az =CrAy — C4(C1C4 — Cp) > 0,
Ag=C1A3 — Co[C3A, — (C1C4 — Cp)] >0 and
As =CoAy > 0.

Then, we need only to check the signs of A;, i =2,3,4, because Cp > 0 and C4 > 0. But it is not easy
to determine them for general w; when R, > 1. Hence, we use a continuity argument here. When
R;=1orw; =0, we have

Aglp.—1 = (a1 + Fs + p)Esp + (b + q)(a1 + Fs +p + b +q))
+ (a1 + If’s)alffs +aydp + a1p(F°s —d+a;+p)(1 - 7€s),

Aslr.—1 =[Fs(@ + @1 + p)(Fs + p) + ardp + arp(Fs — d + a1 + p)(1 — R)]
< [(b+ (s + b+ q)@r +p+b+q) +ap(Fs —d)
+arpb+d + )1 - Rs)],

AglR.=1 = (a1p(b + q)(Fs — d) +a1pd(b + 9)(1 — Rs))Aslr.=1,
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where
ke—ﬂl T1—a272

Fs=d +fx(xs/ vs) and Rs= 7](1)(3551 Vs). (5.4)

Because ys = (p)/(ke™"™)vg, from the second equation in (1.2) we have (a1p)/(ke™ "™ ~"2%2)ys —
f(xs,vs) =0. Then, Rs <1 when we take into account f(xs, vs) > f,(xs, vs)vs from (1.5) and (2.6).
Thus, from (5.4) and (1.4) Ajlg,=1 >0, i=2,3,4. Because C;, i=0,...,4, are meaningful only
for R, > 1, because of the continuity there exists a neighbourhood (1,R,) around R, =1 such
that A; > 0 when R; € (1, R;), i =2, 3,4. Therefore, all roots of (5.3) have negative real part when
1<R;<R;.

If at least one of 7; #0 for i=1,2, it is easy to see & =0 is not a zero of (5.2) because Ag > 0.
Moreover, there are no roots for (5.2) existing as £ — oo, because lim sup{|Q3(&)/P4(£)|: 1£] —
0o,Re& >0} < 1 (see [37]), where

Q3(5) = —AwpRaé(E +d)E +b+¢q) and
Py(§) = (& +p)¢ + F)lEE + b+ q)(E + Aw) + bgawg].

Because all roots of (5.2) continuously depend on 71 and 1, the only possibility that the roots of
(5.2) enter into the right half plane is to cross the imaginary axis as 71 and 1, increase. Suppose a
purely imaginary number £ =iw, (w > 0), is a root of (5.2). Then substituting § =iw, @ > 0 into
D(&) =0 yields

i + Ayt — iA3w°® — Ay ? + iAo + Ay = (—iBsw® — Byw? + iByow) e (M HR)7

Computing the modulus on the both sides gives H(w?) = @' + hy w8 + hyw® + hyoo* + hyow® +
hs =0, with

h=A2 —2A3=F5+ A2 + p* + (b +q)%,
hy =2A1 — 2A2A4 + A% — B3 = (b + 9 (A2 + F3 + p?) + (A2, + p)F3
A%,pz(l — Rﬁ) — 2(Aw + b+ q)bgawy,
hy =2A0As — 2A1A3 + A3 + 2B1B3 — B3
= (b + QHA2 + PP)F3 + (F2 — d®)A2p? + A2p*((b + q)* + d*)(1 — R2)

+ b P a?w? — 2(F3 + p*)(Aw + b + g)bgawy,

hy = A} = 2A0As — B} = (b + 9)X(Fj — d)A%p* + AZpd* (b + 9)*(1 — R))
+ (Fd + pz)b2q o wd F?lp (Aw + b+ q)bgawg

hs = A% = 1—"§pzbzqzoezwgl

Clearly, 1 >0 and h5 > 0. For h;, i=2,3,4, we use the continuity argument again, and have
hilr.=1 > 0. Similarly, there exits R;>1 such that for 1 <R; < R; all h; >0,i=1,...,5, which
implies that H (?) does not have any positive real roots. Therefore, combining with the condition
1<R; <R, let Ry = min{Re,RE}, then for any R; € (1, Rp), the roots of (5.2) stay in the left half
complex plane and Egq is locally asymptotically stable. |

Besides the local stability of E4, we have the following uniform persistence result with respect
to the recombinant virus and double-infected cells.

Theorem 5.2. If R, > 1, then there is an 1 > 0 such that any solution x(t, $) of the system (1.2) with
¢ € X, $4(0) > 0 and ¢5(0) > 0 satisfies

ltigljgof(z(f, ®), w(t, ¢)) = (n, ).

Proof. Define Yo ={¢p € X:¢4(0)>0 and ¢5(0) > 0}. Then, we have 3Yp=X\Yo={peX:
¢4(0) =0 or ¢5(0) = 0}. Define Ny = {¢p € X : @(t)¢p € 3Yy, Vt > 0}.
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By a similar argument as that in the proof of theorem 4.1, we can show that when
Ro > 1, we have W*(Eg) N Yo =/. We also claim that there exists a § > 0, such that any ¢ € Yy,
limsup,_,  1@(t)¢ — Es|| = 6.

Again, assume that on the contrary, there exists ¢ € Y( such that lim;_, o, @(f)} = Es. Then for
any sufficiently small ¢ > 0, there exists a positive constant T1 = Ty (¢), such that y(t) > ys — ¢ for
all £ > Tq. Here, because R, > 1, we can choose ¢ small enough such that

eca +bg(l —R;) <O0. (5.5)

Then for t > T1, in (1.2) we have z =ayw — bz > a(ys — &)w — bz and w = cz — quw. It is easy to see
that the following linear system

i =—buy + Ot(ys —&)up and ip =cuj — qua, (5.6)

has a saddle point at the origin when (5.5) holds. Suppose that £ > 0 is the positive eigenvalue,
and 14 = (i1, 1) " be the corresponding positive right eigenvector. We choose I > 0 small enough
such that lu,e51! < z(t), lupes! <w(t), for all t € [Ty, Ty + t]. Obviously, le51u, satisfies (5.6) for all
t > T7. Then by the comparison principle, we get (z(t), w(t))T > lef1ty, for all + > T; + t. Because
Iug >0 and & > 0, letting t — oo, we obtain liminf;_, o z(t) = 0o, lim inf;_, oo w(t) = co, which is a
contradiction. Therefore, we have W*(Es) N Yo =@, when R, > 1.

Next, we claim U¢eNd w(¢p) =Eg UEs. For any ¢ € Ny, i.e. @(t)p €Yy, we have z(t,¢) =0,
or w(t,$)=0. From the w equation in system (1.2), we have lim;_, o w(t)=0 if z(t)=0, or
limy—, o0 2(t) = 0 if w(t) = 0. Hence, we have w(¢) = w1 x {(0,0)} for some w; € C([—7, 0];R1), and

¢(t)|w(¢1r b2, P3, 0, 0) = ((pl(t)(d)l/ &2, ¢3)/ 0, O)/

where @1(t) is the solution semiflow associated with system (1.1). From corollary 4.3, we have
that wq is either Eo or Es. Hence, U¢EN3 w(¢p)=Eg UEs.

Define a continuous function p; : X — R4 by p2(¢) = min{¢4(0), ¢5(0)}, ¢ € X. Then, p; 1(0, 00) C
Yy, and p» is also a generalize distance function for the solution semiflow @(t). From the proof
above, we conclude that any forward orbit of @(t) in Ny converges to Eg or Es, that Eg and Es are
two isolated invariant sets in X, and (W*(Ep) N W*(E1)) U Yo = ¥. Moreover, it is easy to see that no
subset of {Eq, Es} forms a cycle in 8Y(. By [36, theorem 3], it follows that there exist n > 0 such that
liminfi_, oo p2(@(t)¢p) > 1 for all ¢ € Yy, which implies @(t) is uniformly persistent with respect to
(Yo, dY0). |

6. Numerical simulations

In the above discussions, owing to the general form of f(x, v), we cannot obtain the explicit form of
R;. Consequently, we are not able to either prove the global stability of the third equilibrium point
Eq or determine whether there are other dynamic phenomena around Eq4 for R, > 1. So in this
section, using numerical simulation we show some dynamical behaviour around Eq, including
the convergence of orbits to Eq and the existence of Hopf bifurcation for system (1.2).

Because there are more parameters involved in the model if a nonlinear incidence function is
used, we cannot find the proper value range for the new parameter in the literature. A non-reliable
parameter value could damage the biological interpretation of the numerical simulations. So we
chose a bilinear incidence function f(x, v) = xv, where f is the constant rate at which a T cell is
contacted by the virus, which is widely used in other papers. Then Rg = (kBxr)/(a1dp)e 1 —hn2
and R; = (acdp)/(Bbkq)(R3 — 1).

For computer simulation, we set the parameter values as the following: A =1 cell mm_3, d=
ﬁ day L, a=8= ﬁ virmm 3 day !, r = 29—0 day, a1 =0.5day !, b=2day !, p=g=3day },
k=80 vir cell_l, ¢ = 1800 vir cell_l, see [27,38]. Let 71 be the bifurcation parameter.

The disease-free equilibrium Ey is now given by Eg=(180,0,0,0,0), which is globally
asymptotically stable from theorem 3.1 for 11 > 75 ~ 6.76767349288, ie. Rg<1. When 1 <
75, Eg becomes unstable, and the single-infection equilibrium Es exists, given by Es=
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Figure 2. Simulation of (1.2) for 7y =0.5,0.9,1.2, taken from the interval 7; € (3, T4), showing convergence to the
equilibrium £g. (Online version in colour.)

(%efl/ 249/40 De-—m/2 _ %eg/ 40, 13@341/ 2-9/40 _ 19—3,0, 0), which is globally asymptotically stable
from theorem 4.2 for 75 > 71 > 77 ~ 1.5217799236.

Further decreasing 77 to pass through the critical value t; will cause Es to lose its stability, and
give rise to the double-infection equilibrium,

16e=9/40 + 115" 9 ’ 60(16e—9/40 4 1) ’

( 180 13 208 g4 480e~71/2-9/40 _ 208e~9/40 4 13
d:

10(480e~71/2-9/40 _ 208e—9/40 1 13)
16e=9/40 + 1 '

Then, we can obtain the characteristic equation D(§,t1) at Eq. Solving D(in, t1) =R(n, 71) +
iS(n, 71) =0 yields (ny, ;) ~ (£0.58060139097,0.17431498237). It follows from theorem 5.1 that
Eq is asymptotically stable when t; > 11 > 75, where 1;, ~0.17431498237. The simulations for
71 =0.5,0.9,1.2 are shown in figure 2.

Next, we consider possible Hopf bifurcation. The following condition is held

dé
Re( —=
€ (d‘L'1 )
Thus, D(&, t1) = 0 has a pair of purely imaginary roots at r; = 13, whose real parts become positive
when 11 < 17, implying existence of a Hopf bifurcation. At the critical point, 71 = 1, Eq loses its
stability through a Hopf bifurcation, giving rise to limit cycles (figure 3). When 71 = 15, we obtain
Rp =Rz|e =1, = 2.0368053805.

To sum up, the bifurcation diagram projected on y — 71 plane is given in figure 4, which shows
what impacts the delay 71 could have on the dynamics around the equilibria of model (1.2).

~ —0.031189097952 < 0.

E=iny,T1=1)
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Figure 3. Simulation of (1.2) for 7y = 0.15 < 73, showing bifurcation to a limit cycle. (Online version in colour.)

Figure 4. Bifurcation diagram projected ony — ; plane of model (1.2). The dotted and solid lines indicate unstable and stable
equilibria, respectively. (Online version in colour.)

7. Discussion

In this paper, we propose an HIV model with a general nonlinear incidence rate and two time
delays. Two production numbers Ry and R, are obtained to determine the threshold properties.
When Ry <1, the disease-free equilibrium Eg = (xp,0,0,0,0) is globally asymptotically stable.
When Ry >1, Ey becomes unstable, and the single-infection equilibrium Eg = (xs,ys, vs, 0, 0)
occurs. When Rp > 1 and R, <1, Es is globally asymptotically stable. At R, =1, Es bifurcates
into double-infection equilibrium Egq = (x4, ¥4, vd, 24, wq), and Es loses its stability for R, > 1. It is
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shown that there exits an > 0 such that lim inf;_, 5o (z(t, ¢), w(t, ¢)) > (n, n) for ¢ € X with ¢4(0) >0
and ¢5(0) > 0 when R, > 1. From theorem 5.1 and numerical simulations, we can see that Eg is
asymptotically stable for R € (1, Rp), and there may exist a Hopf bifurcation at R, = R;.

From the expression of Ry, it is easy to see that ignoring either of two delays 7; and 1, leads
to overestimation of the basic reproduction number Rg. For the effects of delays on R, we first
need to study the derivatives of ys and vs with respect to 71 and 1, respectively. From (2.4) and
(2.5), we get the following equation

A a1pus a1pvs _
f(a - F) ~ tema—am =0
which yields (dvs)/(d7}) = (ajvs(fx(xs, vs) + d))/(d(Rs — 1) — fu(xs,v5)) <0, j=1,2, where Rs is

given in (5.4). Then, from ys = p/a;e™""vs, we have

dys __p  dus

- 9 o
dry me 222 dn = 1)
dys P dus P Ay vsd R '
d L E— — | = 0.
an dr, ~ me e\ T dr, ) T qemm AR, — 1) — s, )

Therefore, R, = (ca)/(bq)ys will become larger if either 71 or 7 is not included in system (1.2).
Similarly, we can easily get dvq/dzj < 0and dyq/dzj <0 forj=1,2.

From the simulations and figure 4, it is easy to see that choosing different values for delays
could change the dynamic behaviours, not only quantitatively, but also sometimes qualitatively.
So intracellular delays should be included in the modelling of HIV infection. We should mention
that some results (theorems 3.1 and 4.2) in this manuscript still hold if the system has no time
delay or if function f is bilinear. The new dynamics is mainly derived with the introduction of
the new variables z and w, see corollary 4.3. However, when we release some conditions, e.g. (1.5)
for the nonlinear incidence function f, the system will become much more complicated, multiple
steady-state solutions and multistabilities may exist. This is beyond the scope of this manuscript.

Note that systems (1.1) and (1.2) share the same basic reproduction number Rg. When R < Ry,
where R is given in (2.13), Es is globally asymptotically stable in (1.2), just as Esin system (1.1),
which means introducing the recombinant virus into the host cannot help to control the number
of HIV in this case. When R > Ry, which is equivalent to R, > 1, the third equilibrium point Eq
comes into existence. From §2, we see xq > x5, ¥4 < Vs and vq < vs, implying that the virotherapy
cannot only decrease HIV load and the number of infected cells by HIV, but also increase the
healthy CD4™" T cell count. So when the recombinant virus can survive, i.e. R; > 1, it can help to
control HIV infection.

Because R; can also be expressed in the form R;=ys/yq, the value of R, can be used
to measure the performance of the virotherapy. Larger R, means more cells infected by HIV
are killed and more health host cells are produced at E4. From numerical simulations we can
see that there are some phenomena we should pay attention to when R, becomes larger. In
figure 3, as 71 becomes smaller, R, gets larger, and it takes more time for orbits to converge to
Eq, and the amplitude of oscillations also becomes larger. Furthermore, relative large R, may
cause Hopf bifurcation. These two dynamics behaviours imply using this virotherapy may cause
unsteadiness of the situation of patient using, if we do not choose the value range for R, carefully.

On the other hand, we have R, = (cays)/(bg), which is the mean number of recombinant
virus caused by one recombinant virus when the number of single-infected cells stabilizes at ys.
Obviously, R is closely related to the parameters ¢, «, b and g in z and w equations. Although
the explicit expression of ys cannot obtained from system (1.2) with general nonlinear incidence
function f(x, v), we can see that ys is totally determined by system (1.1). In other words, ys is
not affected with the varies of the recombinant virus w and double-infected cells z. Therefore,
increasing ¢ and «, or decreasing b and g can make R, larger. This would be very helpful to
develop the virotherapy to meet our expectation.
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