
rspa.royalsocietypublishing.org

Research
Cite this article: Tian Y, Yuan Y. 2016 Effect of
time delays in an HIV virotherapy model with
nonlinear incidence. Proc. R. Soc. A 472:
20150626.
http://dx.doi.org/10.1098/rspa.2015.0626

Received: 4 September 2015
Accepted: 14 January 2016

Subject Areas:
applied mathematics

Keywords:
global stability, HIV-1 model, recombinant
virus, nonlinear incidence, Hopf bifurcation,
Lyapunov function

Author for correspondence:
Yuan Yuan
e-mail: yyuan@mun.ca

Effect of time delays in an HIV
virotherapy model with
nonlinear incidence
Yun Tian1 and Yuan Yuan2

1Department of Mathematics, Shanghai Normal University,
Shanghai 200234, People’s Republic of China
2Department of Mathematics and Statistics, Memorial University of
Newfoundland, St John’s, Newfoundland and Labrador,
Canada A1C 5S7

YY, 0000-0002-2292-7339

In this paper, we propose a mathematical model for
HIV infection with delays in cell infection and virus
production. The model examines a viral therapy for
controlling infections through recombining HIV with
a genetically modified virus. For this model, we derive
two biologically insightful quantities (reproduction
numbers) R0 and Rz, and their threshold properties
are discussed. When R0 < 1, the infection-free
equilibrium E0 is globally asymptotically stable. If
R0 > 1 and Rz < 1, the single-infection equilibrium Es

is globally asymptotically stable. When Rz > 1, there
occurs the double-infection equilibrium Ed, and there
exists a constant Rb such that Ed is asymptotically
stable if 1<Rz <Rb. Some simulations are performed
to support and complement the theoretical results.

1. Introduction
Acquired immune deficiency syndrome (AIDS) was first
recognized by the United States Centers for Disease
Control and Prevention in 1981 [1]. AIDS is caused by
infection with human immunodeficiency virus (HIV),
which is transmitted primarily via unprotected sexual
contact, contaminated blood transfusions, hypodermic
needles and from mother to child during pregnancy,
delivery or breastfeeding. With no cure or vaccine in
sight, HIV disease continues to be a serious health
issue for parts of the world. According to the report [2]
by UNAIDS, there were approximately 36.9 (34.3–41.4)
million people living with HIV around the world at the
end of 2014, and 1.2 (1.0–1.5) million people died from
HIV-related causes in 2014. For more information about
AIDS, we refer the reader to [1–3] and references therein.

2016 The Author(s) Published by the Royal Society. All rights reserved.
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As its name suggests, AIDS causes deficiency of the human immune system, making people
infected by HIV more susceptible to common infections that do not usually affect people with
a working immune system, because the number of CD4+ T cells declines below a centre critical
level owing to HIV infection. The entry of HIV into CD4+ T cells begins with the interaction
between gp120 on its surface with receptor CD4, and coreceptors CCR5 and CXCR4 on the
target membrane. Then, the tips of gp41 are inserted into the target membrane, and viral and
cellular membranes fuse together [4]. After HIV has bound to the target cell, the HIV RNA
and various enzymes are injected into the cell, including reverse transcriptase and integrase.
Reverse transcriptase copies the positive single-stranded RNA genome into a complementary
DNA molecule, which together with its complement forms a double-stranded viral DNA. The
viral DNA is then transported into the cell nucleus, and is integrated into the host cell’s genome
by another viral enzyme integrase [5]. To produce the virus, the integrated DNA provirus is
transcribed into mRNA, and viral proteins are produced by translation of mRNA. Viral genome
and proteins assemble together, bud out of the host cell, and a mature HIV virion is produced.
During viral replication, CD4+ T cells infected with HIV are killed. For the mechanism of CD4+
T cell death in HIV infection, see [6,7].

A general model system for HIV infection is described by the following differential equations

ẋ(t) = λ− dx(t) − f (x(t), v(t)),

ẏ(t) = e−a1τ1 f (x(t − τ1), v(t − τ1)) − a1y(t)

and v̇(t) = ke−a2τ2 y(t − τ2) − pv(t),

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

where x(t), y(t), v(t) is the density of virus-free host cells (mostly corresponding to CD4+ T cells),
infected cells and the free HIV at time t, respectively. In the model (1.1), the healthy host cells are
assumed to be produced at rate λ, and to die at rate d per cell. Host cells are contacted by the
virus at rate f (x, v). It is assumed that it takes an average time τ1 for the contacting virions to enter
cells, which means that the contacted cells become actively affected. Then, after an average time
τ2, the infected cells start to create and release new virions at rate k. The death rate for infected
cells and free virus is a1 and p, respectively. The death rate factor for the latent period and the
virus production period is e−a1τ1 and e−a2τ2 , respectively. Realistically, a2 may differ from a1.

The simplest and earliest form of system (1.1) was derived in [8,9], where f (x, v) = βxv,
τ1 = τ2 = 0. The corresponding basic reproduction number R0 was identified in [10,11], and it
was proved that when R0 < 1, the disease-free equilibrium is globally asymptotically stable, and
when R0 > 1, the disease-free equilibrium becomes unstable, and the infection equilibrium is
globally asymptotically stable. When delays are added into the modelling, e.g. [12–14], it has been
shown that ignoring delays leads to overestimation of the basic reproduction number. Besides
the bilinear incidence rate f (x, v) = βxv, nonlinear incidence rates were also studied, for instance
the saturated incidence rate f (x, v) = βxv/(1 + b1v) in [15–17], and the Beddington–DeAngelis
infection rate f (x, v) = βxv/(1 + b0x + b1v) in [18–21]. For the models mentioned above with these
specific nonlinear incidence rates, the corresponding basic reproduction number was identified
and its threshold property was discussed.

Based on model (1.1), various HIV models are developed to investigate drug resistance,
immune responses and effects of antiretroviral therapy. These researches have contributed to
the understanding of HIV biology [22]. We focus on an HIV virotherapy, which is offered by
generic engineering to control HIV infections via introducing recombinant virus [23–25]. One
application of genetically modified viruses is cell targeting. For instance, the so-called reverse
genetics systems can be used to recover rhabdoviruses from cDNA, which makes it possible to
genetically engineer rhabdoviruses [23]. In this case, the recombinant virus is targeted to cells
infected by HIV, because the recombinant virus is capable of infecting and killing CD4+ T cells
previously infected by HIV, and does no harm to healthy cells. For example, in [25], a recombinant
vesicular stomastitis virus lacking the glycoprotein gene and expressing CD4 and CXCR4 is
developed with the property that this virus is unable to infect normal cells, and the cells first
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infected with HIV-1 are rapidly superinfected with this virus, and killed before high levels of
HIV-1 are released.

To model the virotherapy, we add the recombinant virus w and double-infected cells z into
system (1.1), and propose the following model

ẋ(t) = λ− dx(t) − f (x(t), v(t)),

ẏ(t) = e−a1τ1 f (x(t − τ1), v(t − τ1)) − a1y(t) − αy(t)w(t),

v̇(t) = ke−a2τ2 y(t − τ2) − pv(t),

ż(t) = αy(t)w(t) − bz(t)

and ẇ(t) = cz(t) − qw(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

In the model (1.2), the cells previously infected by HIV (single-infected cells) are infected by
recombinant virus at a rate αwy, before turning into double-infected cells. Double-infected cells
die at a rate bz and release recombinant virus at rate c per cell. The death rate of recombinant virus
is q. We assume that the recombinant virus infection is much faster than HIV infection. So delays
are not considered for z or w in this model.

To the best of our knowledge, only the case f (x, v) = βxv has been considered in the literature,
such as [26,27]. In [26,27], the corresponding ordinary differential system of (1.2) was studied.
Only the structure of the equilibria was analysed in [27], and some numerical simulations were
presented. The authors in [26] gave a dynamical analysis on the stability of all three equilibria.
The effects of delay τ1 on the dynamical behaviour were investigated in [28].

In model (1.2), we suppose that the incidence rate depends on x and v, and is given by a
continuous function f (x, v) with continuous derivatives. To be biologically feasible, f (x, v) must
satisfy the conditions

f (x, 0) = f (0, v) = 0, (1.3)

fx(x, v) = ∂f (x, v)
∂x

> 0, fv(x, v) = ∂f (x, v)
∂v

> 0 (1.4)

and fvv(x, v) = ∂2f (x, v)
∂v2 ≤ 0, (1.5)

for all x, v > 0. For the biological meaning, the first two conditions (1.3) and (1.4) are obvious. The
third one (1.5) means that the incidence rate is a concave function with respect to the number of
free HIV. That could be realistic, because when the number of free HIV is so high that any host
cells in contact with HIV is virtually certain, the incidence rate will respond more slowly than
linearly to the increase in v.

Our main goal in this paper is to study the impact of two time delays on lowering the HIV load
and increasing the CD4+ T cell count. We obtain two reproduction numbers R0 and Rz for (1.2),
and discuss their threshold properties. As a corollary of the main results in this paper, we prove
the threshold property of the corresponding basic reproduction number for system (1.1) with the
general incidence rate f (x, v).

The rest of this paper is organized as follows. In §2, for system (1.2), we will discuss the
well-posedness of the solutions, and the existence of different equilibria. In addition, in order to
properly define biologically meaningful equilibria, two reproduction numbers R0 and Rz will
be defined. In §§3–5, we analyse the stability of the three equilibria: disease-free equilibrium
E0, single-infection equilibrium Es and double-infection equilibrium Ed. It will be shown that
E0 is globally asymptotically stable for R0 < 1, Es is globally asymptotically stable for R0 > 1
and Rz < 1, and Ed is asymptotically stable for 1<Rz <Rb, where Rb is a number larger than 1.
A numerical example is presented in §6 to demonstrate the theoretical predictions and to show
Hopf bifurcation at Ed. Finally, conclusion and discussion are drawn in §7.
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2. Well-posedness and existence of equilibrium points
We introduce the Banach space X = C([−τ , 0]; R5+) equipped with the sup-norm, where τ =
max{τ1, τ2}. We let xt ∈ X be defined by xt(θ ) = x(t + θ ) for θ ∈ [−τ , 0] for any t ∈ [0, A], when A ≥ 0
and x ∈ C([−τ , A]; R5+).

It is biologically reasonable to consider initial conditions φ ∈ X for system (1.2). Using the
fundamental theory of functional differential equations [29], we have that there is a unique
solution x(t,φ) = (x(t,φ), y(t,φ), v(t,φ), z(t,φ), w(t,φ)) to system (1.2) with x(0,φ) = φ. Theorem 2.1
establishes the non-negativity and boundedness of solutions to (1.2).

Theorem 2.1. Let x(t,φ) be a solution of system (1.2) satisfying x(0,φ) = φ ∈ X. Then, x(t,φ) is non-
negative and uniformly bounded for t ≥ 0. More precisely, we have

lim sup
t→+∞

(x(t), y(t), v(t), z(t), w(t)) ≤ λ

m
e−a1τ1

(
ea1τ1 , 1,

2k
a1

e−a2τ2 , 1,
2c
b

)
, (2.1)

where m = min {a1/2, b/2, d, p, q}. Furthermore, the solution semiflow Φ(t) = xt(·) : X → X has a compact
global attractor.

Proof. System (1.2) can be rewritten as ẋ(t) = F(xt), where

F(φ) =

⎛
⎜⎜⎜⎜⎜⎝

λ− dφ1(0) − f (φ1(0),φ3(0))
e−a1τ1 f (φ1(−τ1),φ3(−τ1)) − a1φ2(0) − αφ2(0)φ5(0)

ke−a2τ2φ2(−τ2) − pφ3(0)
αφ2(0)φ5(0) − bφ4(0)

cφ4(0) − qφ5(0)

⎞
⎟⎟⎟⎟⎟⎠

for φ = (φ1,φ2, . . . ,φ5) ∈ X. It is easy to see that for any φ ∈ X, φi(0) = 0 for some i, we have Fi(φ) ≥
0. Therefore, according to theorem 2.1 in [30, ch. 5], we know that x(t,φ) ≥ 0 for all t ≥ 0 in its
maximal interval of existence.

For the boundedness of the solution, we define

B(t) = e−a1τ1 x(t) + y(t + τ1) + a1

2k
ea2τ2v(t + τ1 + τ2) + z(t + τ1) + b

2c
w(t + τ1). (2.2)

Differentiating B(t) with respect to time along the solution of (1.2) yields

dB(t)
dt

∣∣∣∣
(1.2)

= e−a1τ1 [λ− dx(t) − f (x(t), v(t))] + e−a1τ1 f (x(t), v(t)) − a1y(t + τ1)

− αy(t + τ1)w(t + τ1) + a1

2
y(t + τ1) − a1

2k
ea2τ2 pv(t + τ1 + τ2)

+ αy(t + τ1)w(t + τ1) − bz(t + τ1) + b
2

z(t + τ1) − b
2c

qw(t + τ1)

= λe−a1τ1 − e−a1τ1 dx(t) − a1

2
y(t + τ1) − b

2
z(t + τ1)

− a1

2k
ea2τ2 pv(t + τ1 + τ2) − b

2c
qw(t + τ1)

≤ λe−a1τ1 − mB(t).

Then, we know

lim sup
t→+∞

B(t) = λe−a1τ1

m
.

On the other hand, it has been proved that x(t), y(t), v(t), z(t) and w(t) are non-negative. Then,
from (2.2) for any t ≥ −τ , we have e−a1τ1 x(t) ≤ B(t), which implies

lim sup
t→+∞

x(t) ≤ lim sup
t→+∞

ea1τ1 B(t) = λ

m
.

Using the similar argument for y(t), z(t), v(t) and w(t), we get their boundedness listed in (2.1).
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Because of the boundedness of the solution, the semiflow Φ(t) = xt(·) of system (1.2) is point
dissipative. By [31, theorem 3.6.1], Φ(t) is compact for any t> τ . On the basis of theorem 3.4.8
in [32], we obtain that Φ(t) has a compact global attractor in X. The proof of the theorem is
completed. �

Next, we address the basic reproduction number for the model system (1.2) by the next-
generation operator approach [33,34]. It is easy to see that system (1.2) has a disease-free
equilibrium E0 = (x0, 0, 0, 0, 0), where x0 = λ/d. Linearizing the system at E0, we obtain the
following two disease-related equations for variables y and v

ẏ(t) = −a1y(t) + e−a1τ1 fv(x0, 0)v(t − τ1),

v̇(t) = ke−a2τ2 y(t − τ2) − pv(t).

Denote u1 and u2 be the number of infected cells and HIV at time t = 0, respectively. Then, the
remaining numbers of infected cells and HIV at time t are given by

u1(t) = u1e−a1t and u2(t) = u2e−pt.

The total numbers of newly infected cells and produced HIV are

ū1 =
∫∞

τ1

e−a1τ1 fv(x0, 0)u2(t − τ1) dt = e−a1τ1

p
fv(x0, 0)u2

and

ū2 =
∫∞

τ2

ke−a2τ2 u1(t − τ2) dt = ke−a2τ2

a1
u1,

which can be rewritten as

(
ū1
ū2

)
= M0

(
u1
u2

)
, where M0 =

⎛
⎜⎜⎝

0
e−a1τ1

p
fv(x0, 0)

ke−a2τ2

a1
0

⎞
⎟⎟⎠ .

Then, the matrix M0 is the next infection operator. As usual, the spectral radius of M0 is called the
basic reproduction number R0, which is

R0 =
√

ke−a1τ1−a2τ2

a1p
fv(x0, 0).

Biologically, R2
0 = (k/p)e−a1τ1 · (e−a2τ2/a1)fv(x0, 0) gives the average number of virions caused by

one virion, where (k/p)e−a1τ1 is the mean number of host cells infected by each virion, and
(e−a2τ2/a1)fv(x0, 0) is the average number of HIV virions produced by one single-infected cell.

Now, we want to find the other equilibria of system (1.2), beside the disease-free equilibrium
point E0. From the last three equations in (1.2), we get

w(αcy − qb) = 0, z = q
c

w and y = p
ke−a2τ2

v. (2.3)

The first equation in (2.3) yields (i) w = 0 or (ii) y = (bq)/(cα).
(i) If w = 0, then z = 0, and the first two equations in (1.2) yields

e−a1τ1 (λ− dx) − a1p
ke−a2τ2

v= 0 (2.4)

and
F(x, v) = 0, where F(x, v) = e−a1τ1 f (x, v) − a1p

ke−a2τ2
v. (2.5)

First, we consider the case R0 < 1. If there exists a positive solution (x, v) in (2.4) and (2.5), then
0 ≤ x< x0 from (2.4). Further, we can show that F(x, v)< 0 for 0 ≤ x< x0 and v > 0. In fact, from

Fv(x, v) = e−a1τ1 fv(x, v) − a1p
ke−a2τ2

and Fvv(x, v) = e−a1τ1 fvv(x, v) ≤ 0 owing to (1.5),
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we have Fv(x0, 0) = (a1p)/(ke−a2τ2 )(R2
0 − 1)< 0 when R0 < 1, and Fv(x0, v)< Fv(x0, 0)< 0 for all

v > 0. Noting that F(x0, 0) = 0, together with Fv(x0, v)< 0, yields F(x0, v)< 0 for all v > 0. Finally,
we obtain F(x, v)< 0 for 0 ≤ x< x0 and v > 0 owing to Fx(x, v) = e−a1τ1 fx(x, v)> 0 from (1.4).
Therefore, when R0 < 1, equations (2.4) and (2.5) do not have positive solutions, which means
no equilibrium points.

For the case R0 > 1, we shall prove that there exists a function x = h(v) satisfying (2.5), and
h′(v) ≥ 0. Then that proving the existence of positive solutions (x, v) for (2.4) and (2.5) is converted
to showing that the curve x = h(v) intersects with the straight line L : x = x0 − (a1p)/(dke−a1τ1−a2τ2 )v
defined by (2.4), as shown in figure 1.

We first show h′(v) ≥ 0 when x = h(v) exists. Noting that, from the mean value theorem, for any
x and v > 0 there exists v∗ ∈ (0, v) such that

f (x, v) = f (x, v) − f (x, 0) = fv(x, v∗)v. (2.6)

Then, substituting (2.6) into (2.5) yields

fv(x, v∗) = a1p
ka−a1τ1−a2τ2

.

Hence, from (1.5), we have

fv(x, v) ≤ fv(x, v∗) = a1p
ka−a1τ1−a2τ2

, 0< v∗ < v, (2.7)

for any x and v satisfying x = h(v). On the other hand, from (2.5), we have

h′(v) = dx
dv

= (a1p)/(ke−a2τ2 ) − e−a1τ1 fv(x, v)
e−a1τ1 fx(x, v)

.

Therefore, h′(v) ≥ 0 is straightforward from (2.7).
To prove the existence of function x = h(v) satisfying F(h(v), v) = 0, we expand F(x, v) for x> 0

in the form

F(x, v) =
(

e−a1τ1 fv(x, 0) − a1p
ke−a2τ2

)
v + O(v2), 0< v	 1. (2.8)

When R0 > 1, i.e. e−a1τ1 fv(x0, 0) − (a1p)/(ke−a2τ2 )> 0, from (2.8) we have F(x0, v)> 0 for v ∈ (0, ε),
ε	 1. Note that F(0, v)< 0 for v > 0. Then given that F(x, v) is an increasing function in x from
(1.4), for any v ∈ (0, ε), there exists only one x ∈ (0, x0) satisfying F(x, v) = 0. Then, x = h(v) exists
for v ∈ (0, ε) and x ∈ (0, x0).

Because h′(v) ≥ 0, limv→0+ h(v) must exist. Let x∗ = limv→0+ h(v). Then, x∗ < x0, because x =
h(v)< x0 for v ∈ (0, ε). In order to make sure that the curve x = h(v) can intersect with the straight
line L, we still need to study the maximal interval of existence for the function x = h(v).

Let limv→ε− h(v) = xε . If xε is infinite, then (0, ε) is the largest interval we can find. Otherwise,
we have F(xε , ε) = 0 from the continuousness of F(x, v) in x and v. Because (∂F/∂x)(xε , ε) =
e−a1τ1 fx(xε , ε)> 0 from (1.4), by implicit function theorem, we have δ > 0 such that function x =
h̃(v) for v ∈ (ε − δ, ε + δ) exists and satisfies F(h̃(v), v) = 0, and h(v) = h̃(v) for v ∈ (max{ε − δ, 0}, ε].
Hence, the function x = h(v) can be extended to interval (0, ε + δ). Using this process repeatedly,
we can find the maximal interval (0, N) for x = h(v). Denote x∗ = limv→N− h(v). Then, from the
argument above, we can see at least one of x∗ or N is infinite.

Then, we claim that if R0 > 1, there must exist a unique intersection point (vs, xs) in figure 1
for the curves defined by (2.4) and (2.5). Therefore, if R0 > 1, then a single-infection equilibrium
Es = (xs, ys, vs, 0, 0) exists, where ys = (p)/(ke−a2τ2 )vs, xs and vs satisfy equations (2.4) and (2.5).

(ii) Next, we consider the case y = (bq)/(cα) � yd and w> 0. Let vd = (ke−a2τ2/p)yd. The first two
equations in (1.2) yield

e−a1τ1 (λ− dx) − a1yd − αydw = 0, λ− dx − f (x, vd) = 0. (2.9)
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0

x0

x*

x

u

L

(us, xs )

x = h(u )

Figure 1. The curves defined by equations (2.4) and (2.5). (Online version in colour.)

Let g1(x, w) = e−a1τ1 (λ− dx) − a1yd − αydw, g2(x) = λ− dx − f (x, vd). From the first equation in
(2.9), we see that w> 0 if and only if g1(x, 0)> 0, which yields

x<M, where M = λ

d
− a1yd

de−a1τ1
. (2.10)

Note that g2(x) is a decreasing function in x, and g2(0) = λ> 0. Then, equations in (2.9) have
positive solutions satisfying (2.10) if and only if M> 0 and g2(M)< 0, that is

f (M, vd)>
a1yd

e−a1τ1
. (2.11)

Before we simplify the condition (2.11), we shall first show that equilibrium Es exists when
(2.11) holds. From (1.3) and the mean value theorem in multiple variables, there exists θ ∈ (0, 1)
such that

f (M, vd) = f
(
λ

d
− a1yd

de−a1τ1
, vd

)
− f

(
λ

d
, 0
)

= −fx(xθ , vθ )
a1yd

de−a1τ1
+ fv(xθ , vθ )vd, (2.12)

where xθ = λ/d − (θa1yd)/(de−a1τ1 ), vθ = θvd. Because vd = (ke−a2τ2/p)yd and f (λ/d, 0) = 0, from
(2.11) and (2.12), we can obtain R0 >R1, where

R1 = fv(x0, 0)
fv(xθ , vθ )

(
1 + fx(xθ , vθ )

d

)
. (2.13)

From (1.3) and (1.4), we get fvx(x, 0) ≥ 0, and further with (1.5) we have fv(xθ , vθ ) ≤ fv(xθ , 0) ≤
fv(x0, 0) for xθ < x0 and vθ > 0. Then, R1 > 1 from (2.13). Hence, inequality (2.11) implies R0 >

R1 > 1, and then Es exists.
On the other hand, (2.11) could be rewritten as

e−a1τ1 (λ− dM) − a1p
ke−a2τ2

vd = 0 and e−a1τ1 f (M, vd) − a1p
ke−a2τ2

vd > 0. (2.14)

Comparing (2.14) with (2.4) and (2.5), from figure 1, we see that the point (vd, M) satisfying (2.14)
is on the straight line L and above the curve x = h(v), which means that (2.11) is equivalent to
vd < vs. Because yd = (p)/(ke−a2τ2 )vd and ys = (p)/(ke−a2τ2 )vs, we have yd < ys, i.e. Rz = ys/yd > 1.
Hence, Rz > 1 is equivalent to condition (2.11). We also can see that Rz > 1 implies M> 0, because

de−aτ1 M = λe−a1τ1 − a1pvd

ke−a2τ2
> e−a1τ1 (λ− dxs) − a1pvs

ke−a2τ2
= 0 from (2.4).

Therefore, if and only if Rz > 1, then (2.9) has only one positive solution (xd, wd) for (x, w), and
system (1.2) has a double-infection equilibrium Ed = (xd, yd, vd, zd, wd), where zd = (q/c)wd.
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For the biological meaning of Rz, we rewrite Rz = c/q · αys/b, because yd = (bq)/(cα). It is easy
to see that c/q is the average number of recombinant virus that a double-infected cell produces,
and αys/b gives the mean number of double-infected cells caused by each recombinant virus when
the number of single-infected cells stabilizes at ys. Then, Rz is the average number of recombinant
virus caused by one recombinant virus.

Obviously, as Rz → 1+, yd → y−
s and vd → v−

s . Because both (xd, vd) and (xs, vs) satisfy λ−
dx − f (x, v) = 0 from the first equation in system (1.2), we get xd → x+

s as vd → v−
s from condition

(1.4). Further, when xd → x+
s and yd → y−

s , we have wd → 0+, and then zd → 0+. Hence, we can
see that equilibrium point Ed bifurcates from Es at Rz = 1.

Summarizing the above discussion, we have the following theorem.

Theorem 2.2. System (1.2) has three possible biologically meaningful equilibria: disease-free
equilibrium E0 = (x0, 0, 0, 0, 0), with x0 = λ/d, single-infection equilibrium Es = (xs, ys, vs, 0, 0), with
ys = (p)/(ke−a2τ2 )vs, xs and vs satisfy (2.4) and (2.5), and double-infection equilibrium Ed =
(xd, yd, vd, zd, wd), with yd = (bq)/(cα), vd = (ke−a2τ2/p)yd, zd = (q/c)wd, xd and wd satisfy (2.9). More
specifically, (i) if R0 < 1, E0 is the only equilibrium; (ii) if R0 > 1, the single-infection equilibrium Es

exists and (iii) the double-infection equilibrium Ed exists if and only if Rz > 1.

3. Global stability of equilibrium E0
Here, we shall study the global stability of the disease-free equilibrium point E0. We have the
following theorem.

Theorem 3.1. If R0 < 1, the disease-free equilibrium E0 = (x0, 0, 0, 0, 0) is globally asymptotically
stable, implying that none of the two virus can invade, regardless of the initial load. If R0 > 1, then E0
becomes unstable.

Proof. First, we recall that E0 is the only equilibrium when R0 < 1. To prove the global stability
of E0, we construct the following Lyapunov function:

V0 = e−a1τ1

(
x − fv(x0, 0)

∫ x

x0

dx
fv(x, 0)

)
+ y + a1

ke−a2τ2
v + z + b

c
w

+ e−a1τ1

∫ t

t−τ1

f (x(η), v(η)) dη + a1

∫ t

t−τ2

y(η) dη.

Then, the derivative of V0 with respect to time t along the solution of system (1.2) can be
expressed as

dV0

dt

∣∣∣∣
(1.2)

= e−a1τ1

(
1 − fv(x0, 0)

fv(x, 0)

)
(λ− dx − f (x, v)) + e−a1τ1 f (x(t − τ1), v(t − τ1)) − a1y − αyw

+ a1

ke−a2τ2
(ke−a2τ2 y(t − τ2) − pv) + αyw − bz + b

c
(cz − qw)

+ e−a1τ1 (f (x, v) − f (x(t − τ1), v(t − τ1))) + a1(y − y(t − τ2))

= e−a1τ1 dx0

(
1 − x

x0

)(
1 − fv(x0, 0)

fv(x, 0)

)
+ a1p

ke−a2τ2

(
f (x, v)
fv(x, 0)

R2
0 − v

)
− bq

c
w.

Because fvx(x, 0) ≥ 0, we have fv(x, 0) ≥ fv(x0, 0) if x ≥ x0, and fv(x, 0) ≤ fv(x0, 0) if x ≤ x0. Then(
1 − x

x0

)(
1 − fv(x0, 0)

fv(x, 0)

)
≤ 0.

From (1.5) and (2.6), we see f (x, v) = fv(x, v∗)v ≤ fv(x, 0)v, 0 ≤ v∗ ≤ v. Then

f (x, v)
fv(x, 0)

R2
0 − v ≤ (R2

0 − 1)v ≤ 0, when R0 < 1.

Hence, dV0/dt|(1.2) ≤ 0 and the equality holds for x = x0, v = w = 0. Thus, by LaSalle’s invariance
principle [35], we conclude that E0 is globally asymptotically stable.

 on May 21, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


9

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150626

...................................................

For the unstability of E0, we have the linearized system of (1.2) at E0 given by

ẋ(t) = −dx(t) − fv(x0, 0)v(t),

ẏ(t) = −a1y(t) + e−a1τ1 fv(x0, 0)v(t − τ1),

v̇(t) = ke−a2τ2 y(t − τ2) − pv(t),

ż(t) = −bz(t),

ẇ(t) = cz(t) − qw(t),

for which the characteristic equation is

(ξ + d)(ξ + b)(ξ + q)[ξ2 + (a1 + p)ξ + a1p(1 − R2
0e−(τ1+τ2)ξ )] = 0.

Obviously, for the local stability of E0, it suffices to only consider the zeros of the following
function

D0(ξ ) = ξ2 + (a1 + p)ξ + a1p(1 − R2
0e−(τ1+τ2)ξ ). (3.1)

When R0 > 1, we have

D0(0) = a1p(1 − R2
0)< 0, lim

ξ→+∞
D0(ξ ) = +∞,

which means that there exists at least one positive real root for (3.1). Therefore, if R0 > 1, the
infection-free equilibrium E0 is unstable. �

4. Global stability of the single-infection equilibrium Es
From the analysis given in §2, we know the single-infection equilibrium Es = (xs, ys, vs, 0, 0) exists
when R0 > 1. Before we discuss the global stability of Es, we have the following persistence result.

Theorem 4.1. Let X0 = {φ = (φ1,φ2, . . . ,φ5) ∈ X : φ2(0)> 0 and φ3(0)> 0}, and denote ∂X0 = X \
X0 = {φ ∈ X : φ2(0) = 0 or φ3(0) = 0}. When R0 > 1, system (1.2) is uniformly persistent with respect
to (X0, ∂X0) in the sense that there exists some η > 0 such that lim inft→∞(y(t), v(t))>η.

Proof. By the form of system (1.2), it is easy to see that X0 is positively invariant. We set M∂ =
{φ ∈ X :Φ(t)φ ∈ ∂X0, ∀t ≥ 0}. Clearly, M∂ = {φ ∈ X : φ2(0) = 0,φ3(0) = 0}.

We claim that Ws(E0) ∩ X0 = ∅. Assume that, on the contrary, there exists ψ ∈ X0 such that
limt→∞Φ(t)ψ = E0. Then, for any sufficiently small ε > 0, there exists a positive constant T0 =
T0(ε), such that for x(t,ψ) we have x(t)> x0 − ε, v(t)< ε and w(t)< ε for all t ≥ T0. Here, because
R0 > 1, we can choose ε small enough such that

εαp + a1p
(

1 − fv(x0 − ε, ε)
fv(x0, 0)

R2
0

)
< 0. (4.1)

Furthermore, when t ≥ T0 + τ1, for x(t,ψ), we have

f (x(t − τ1), v(t − τ1)) ≥ f (x0 − ε, v(t − τ1)) from (1.4)

and f (x0 − ε, v(t − τ1)) ≥ fv(x0 − ε, ε)v(t − τ1) from (1.5) and (2.6).

}
(4.2)

Consequently, for t ≥ T0 + τ1, from (4.2), we have

ẏ(t) ≥ e−a1τ1 fv(x0 − ε, ε)v(t − τ1) − (a1 + εα)y(t),

v̇(t) = ke−a2τ2 y(t − τ2) − pv(t).

Suppose ξ0 is the principal eigenvalue of the following linear cooperative system

u̇1(t) = −(a1 + εα)u1(t) + e−a1τ1 fv(x0 − ε, ε)u2(t − τ1)

and u̇2(t) = ke−a2τ2 u1(t − τ2) − pu2(t).

}
(4.3)

Through computing the characteristics polynomial and using (4.1), we find that the origin is
a saddle point in the corresponding ordinary differential equations of system (4.3) simply by
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ignoring delays in (4.3). Thus, ξ0 > 0 from [30, corollary 5.5.2]. Let us = (uy, uv)T be the positive
right eigenvector associated with ξ0 for system (4.3). We choose l> 0 small enough such that
luyeξ0t ≤ y(t,ψ), luveξ0t ≤ v(t,ψ), for all t ∈ [T0 + τ , T0 + 2τ ]. Obviously, leξ0tus satisfies (4.3) for all
t ≥ T0 + τ . Then by the comparison principle, we get (y(t,ψ), v(t,ψ))T ≥ leξ0tus for all t ≥ T0 + τ .
Because lus > 0 and ξ0 > 0, letting t → ∞, we obtain

lim inf
t→∞

y(t,ψ) = ∞, lim inf
t→∞

v(t,ψ) = ∞,

a contradiction.
Define a continuous function p1 : X → R+ by p1(φ) = min{φ2(0),φ3(0)}, φ ∈ X. Then, p−1

1 (0, ∞) ⊂
X0 and p1(Φ(t)φ)> 0 if either p1(φ) = 0 and φ ∈ X0, or if p1(φ)> 0. Thus, p1 is a generalize distance
function for the solution semiflow Φ(t) [36]. We obtain that E0 is a compact and isolated invariant
sets in ∂X0, and

⋃
x∈M∂

ω(x) ⊂ E0. Furthermore, no subset of E0 forms a cycle in ∂X0. From the
claim above, E0 is isolated in X, and Ws(E0) ∩ X0 = ∅. By [36, theorem 3], it follows that there exists
η > 0 such that lim inft→∞ p1(Φ(t)φ) ≥ η for all φ ∈ X0, which implies Φ(t) is uniformly persistent
with respect to (X0, ∂X0). Thus, we have ω(φ) ⊂ X0 for any φ ∈ X0. �

Further, we have the following result of the global stability at Es.

Theorem 4.2. If R0 > 1 and Rz < 1, then the single-infection equilibrium Es is globally asymptotically
stable, implying that the recombinant virus cannot survive but the pathogen virus can. Es becomes unstable
when Rz > 1.

Proof. We construct the Lyapunov function Vs = V1 + e−a1τ1 f (xs, vs)V2, where

V1 = e−a1τ1

(
x − f (xs, vs)

∫ x

xs

dx
f (x, vs)

)
+ (y − ys ln y) + a1

ke−a2τ2
(v − vs ln v) + z + b

c
w,

V2 =
∫ t

t−τ1

(
f (x(η), v(η))

f (xs, vs)
− ln

f (x(η), v(η))
f (xs, vs)

)
dη +

∫ t

t−τ2

(
y(η)
ys

− ln
y(η)
ys

)
dη.

Note that Es satisfies the following relations

λ= dxs + f (xs, vs), a1ys = e−a1τ1 f (xs, vs) and
a1p

ke−a2τ2
vs = e−a1τ1 f (xs, vs).

Using the above equalities, we have

∂V1

∂x
ẋ = e−a1τ1

(
1 − f (xs, vs)

f (x, vs)

)
(λ− dx − f (x, v))

= e−a1τ1 dxs

(
1 − x

xs

)(
1 − f (xs, vs)

f (x, vs)

)

+ e−a1τ1 f (xs, vs)
(

1 − f (x, v)
f (xs, vs)

− f (xs, vs)
f (x, vs)

+ f (x, v)
f (x, vs)

)
,

∂V1

∂y
ẏ =

(
1 − ys

y

)
(e−a1τ1 f (x(t − τ1), v(t − τ1)) − a1y − αyw)

= e−a1τ1 f (xs, vs)
(

(y − ys)f (x(t − τ1), v(t − τ1))
yf (xs, vs)

− y
ys

+ 1
)

− α(y − ys)w,

∂V1

∂v
v̇ = a1

ke−a2τ2

(
1 − vs

v

)
(ke−a2τ2 y(t − τ2) − pv)

= e−a1τ1 f (xs, vs)
(

y(t − τ2)
ys

− v

vs
− vsy(t − τ2)

vys
+ 1

)
,

∂V1

∂z
ż = αyw − bz,

∂V1

∂w
ẇ = b

c
(cz − qw) = bz − bq

c
w
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and for V2,

dV2

dt
= f (x, v)

f (xs, vs)
− f (x(t − τ1), v(t − τ1))

f (xs, vs)
+ ln

f (x(t − τ1), v(t − τ1))
f (x, v)

+ y
ys

− y(t − τ2)
ys

+ ln
y(t − τ2)

y
,

which yields

dVs

dt

∣∣∣∣
(1.2)

= ∂V1

∂x
ẋ + ∂V1

∂y
ẏ + ∂V1

∂v
v̇ + ∂V1

∂z
ż + ∂V1

∂w
ẇ + e−a1τ1 f (xs, vs)

dV2

dt

= e−a1τ1 dxs

(
1 − x

xs

)(
1 − f (xs, vs)

f (x, vs)

)
+ bq

c
(Rz − 1)w

+ e−a1τ1 f (xs, vs)
(

3 − f (xs, vs)
f (x, vs)

+ f (x, v)
f (x, vs)

− ysf (x(t − τ1), v(t − τ1))
yf (xs, vs)

− v

vs
− vsy(t − τ2)

vys
+ ln

f (x(t − τ1), v(t − τ1))
f (x, v)

+ ln
y(t − τ2)

y

)

= e−a1τ1 dxs

(
1 − x

xs

)(
1 − f (xs, vs)

f (x, vs)

)
+ bq

c
(Rz − 1)w

+ e−a1τ1 f (xs, vs)
(

4 − f (xs, vs)
f (x, vs)

− f (x, vs)v
f (x, v)vs

− ysf (x(t − τ1), v(t − τ1))
yf (xs, vs)

−vsy(t − τ2)
vys

+ ln
f (x(t − τ1), v(t − τ1))

f (x, v)
+ ln

y(t − τ2)
y

)

+ e−a1τ1 f (xs, vs)
(

1 − f (x, vs)
f (x, v)

)(
f (x, v)
f (x, vs)

− v

vs

)
.

From (1.4), f (x, vs) ≥ f (xs, vs) when x ≥ xs, and f (x, vs) ≤ f (xs, vs) when x ≤ xs. Then(
1 − x

xs

)(
1 − f (xs, vs)

f (x, vs)

)
≤ 0.

Furthermore, we know that f (x, v) is a concave function in v from (1.5). Then for any v > 0 and
any s in (0, 1], f (x, (1 − s)0 + sv) ≥ (1 − s)f (x, 0) + sf (x, v), which implies

f (x, sv)
f (x, v)

≥ s and
f (x, v)
f (x, sv)

≤ 1
s

.

From the above inequalities and (1.4), f (x, v) should satisfy(
1 − f (x, vs)

f (x, v)

)(
f (x, v)
f (x, vs)

− v

vs

)
≤ 0 for all x, v > 0.

The following inequality

n∑
i=1

(
1 − bi

ai
+ ln

bi

ai

)
= n −

n∑
i=1

bi

ai
+ ln

n∏
i=1

bi

ai
≤ 0,

holds for any positive ai and bi, because the function gs(x) = x − 1 − ln x ≥ 0 for all x> 0, and
gs(x) = 0 if and only if x = 1. Thus, we have

4 − f (xs, vs)
f (x, vs)

− f (x, vs)v
f (x, v)vs

− ysf (x(t − τ1), v(t − τ1))
yf (xs, vs)

− vsy(t − τ2)
vys

+ ln
f (x(t − τ1), v(t − τ1))

f (x, v)
+ ln

y(t − τ2)
y

≤ 0,

because

ln
f (x(t − τ1), v(t − τ1))

f (x, v)
+ ln

y(t − τ2)
y

= ln
(

f (xs, vs)
f (x, vs)

· f (x, vs)v
f (x, v)vs

· ysf (x(t − τ1), v(t − τ1))
yf (xs, vs)

· vsy(t − τ2)
vys

)
.
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Therefore, dVs/dt|(1.2) ≤ 0 when Rz < 1, and the equality holds when x = xs, y = ys, v= vs and
w = 0. Then by LaSalle’s invariance principle [35], we conclude that Es is globally asymptotically
stable when R0 > 1 and Rz < 1.

When Rz > 1, for the local unstability of Es, we calculate the linearized system of (1.2) at Es,
and obtain

ẋ(t) = −(d + fx(xs, vs))x(t) − fv(xs, vs)v(t),

ẏ(t) = e−a1τ1 fx(xs, vs)x(t − τ1) − a1y(t) + e−a1τ1 fv(xs, vs)v(t − τ1) − αysw(t),

v̇(t) = ke−a2τ2 y(t − τ2) − pv(t),

ż(t) = −bz(t) + αysw(t) and

ẇ(t) = cz(t) − qw(t).

Then, the characteristic equation is given by D1(ξ )D2(ξ ) = 0, where

D1(ξ ) = (ξ + b)(ξ + q) − cαys,

D2(ξ ) = ξ3 + (a1 + p + d + fx(xs, vs))ξ2 + ((a1 + p)(d + fx(xs, vs)) + a1p)ξ

+ a1p(d + fx(xs, vs)) − kfv(xs, vs)(ξ + d)e−a1τ1−a2τ2 e−(τ1+τ2)ξ .

Because the quadratic polynomial D1(ξ ) in ξ can be expanded as

D1(ξ ) = ξ2 + (b + q)ξ + bq(1 − Rz),

it is easy to see that D1(ξ ) = 0 has two zeros with negative real part if and only if Rz < 1. When
Rz > 1, D1(ξ ) has two real roots with different signs. Therefore, Es is unstable if Rz > 1. �

From the proof of theorems 3.1 and 4.2, it is easy to get the following corollary.

Corollary 4.3. When R0 < 1, the infection-free equilibrium Ẽ0 = (x0, 0, 0) is asymptotically stable for
system (1.1); when R0 > 1, Ẽ0 becomes unstable, and the equilibrium Ẽs = (xs, ys, vs) is asymptotically
stable for system (1.1).

5. Stability of the double-infection equilibrium Ed
The double-infection equilibrium Ed comes into existence for Rz > 1. To discuss the local stability
of Ed, for any quantity A involving τ1 and τ2 in the paper, we denote by

◦
A the value of A when

τ1 = τ2 = 0. We have the following result for the local stability of Ed.

Theorem 5.1. For system (1.2), there exists an Rb > 1 such that the double-infection equilibrium Ed is
asymptotically stable for 1<Rz <Rb.

Proof. First, we recall that Ed exists if and only if Rz > 1. The linearized system of (1.2) at Ed =
(xd, yd, vd, zd, wd) is

ẋ(t) = −Fdx(t) − fv(xd, vd)v(t),

ẏ(t) = e−a1τ1 (fx(xd, vd)x(t − τ1) + fv(xd, vd)v(t − τ1)) − Awy(t) − αydw(t),

v̇(t) = ke−a2τ2 y(t − τ2) − pv(t),

ż(t) = αwdy(t) − bz(t) + αydw(t)

and ẇ(t) = cz(t) − qw(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where Fd = d + fx(xd, vd) and Aw = a1 + αwd.
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By straightforward but tedious algebraic manipulations, we obtain the characteristic equation
of (5.1), given by

D(ξ ) = (ξ + p)(ξ + Fd)[ξ (ξ + b + q)(ξ + Aw) + bqαwd] − AwpRdξ (ξ + d)(ξ + b + q)e−ξ (τ1+τ2)

= ξ5 +
4∑

i=0

Aiξ
i −

3∑
i=1

Biξ
ie−ξ (τ1+τ2) = 0, (5.2)

where Rd = (ke−a1τ1−a2τ2 )/(Awp)fv(xd, vd) and

A4 = Aw + Fd + p + b + q,

A3 = AwFd + (p + b + q)(Aw + Fd) + p(b + q),

A2 = (p + b + q)AwFd + p(b + q)(Aw + Fd) + bqαwd,

A1 = p(b + q)AwFd + (Fd + p)bqαwd,

A0 = Fdpbqαwd and

B3 = AwpRd, B2 = (d + b + q)B3, B1 = d(b + q)B3.

When τ1 = τ2 = 0, (5.2) becomes

ξ5 + C4ξ
4 + C3ξ

3 + C2ξ
2 + C1ξ + C0 = 0, (5.3)

where

C4 = ◦
Aw + ◦

Fd + p + b + q,

C3 = (
◦

Aw + p)
◦
Fd + (b + q)(

◦
Aw + ◦

Fd + p) + ◦
Awp(1 − ◦Rd),

C2 = (b + q)(
◦

Aw + p)
◦
Fd + (

◦
Fd − d)

◦
Awp + ◦

Awp(d + b + q)(1 − ◦Rd) + bqα ◦wd,

C1 = ◦
Awp(b + q)(

◦
Fd − d) + ◦

Awpd(b + q)(1 − ◦Rd) + bq(
◦

Fd + p)α ◦wd,

C0 = ◦
Fdpbqα ◦wd.

The necessary and sufficient conditions for all zeros of (5.3) to have negative real part are given by

�1 = C4 > 0,

�2 = C3C4 − C2 > 0,

�3 = C2�2 − C4(C1C4 − C0)> 0,

�4 = C1�3 − C0
[
C3�2 − (C1C4 − C0)

]
> 0 and

�5 = C0�4 > 0.

Then, we need only to check the signs of�i, i = 2, 3, 4, because C0 > 0 and C4 > 0. But it is not easy
to determine them for general ◦wd when Rz > 1. Hence, we use a continuity argument here. When
Rz = 1 or ◦wd = 0, we have

�2|Rz=1 = (a1 + ◦
Fs + p)(

◦
Fsp + (b + q)(a1 + ◦

Fs + p + b + q))

+ (a1 + ◦
Fs)a1

◦
Fs + a1dp + a1p(

◦
Fs − d + a1 + p)(1 − ◦Rs),

�3|Rz=1 = [
◦
Fs(a2

1 + (a1 + p)(
◦
Fs + p)) + a1dp + a1p(

◦
Fs − d + a1 + p)(1 − ◦Rs)]

× [(b + q)(
◦
Fs + b + q)(a1 + p + b + q) + a1p(

◦
Fs − d)

+ a1p(b + d + q)(1 − ◦Rs)],

�4|Rz=1 = (a1p(b + q)(
◦
Fs − d) + a1pd(b + q)(1 − ◦Rs))�3|Rz=1,
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where

Fs = d + fx(xs, vs) and Rs = ke−a1τ1−a2τ2

a1p
fv(xs, vs). (5.4)

Because ys = (p)/(ke−a2τ2 )vs, from the second equation in (1.2) we have (a1p)/(ke−a1τ1−a2τ2 )vs −
f (xs, vs) = 0. Then, Rs ≤ 1 when we take into account f (xs, vs) ≥ fv(xs, vs)vs from (1.5) and (2.6).
Thus, from (5.4) and (1.4) �i|Rz=1 > 0, i = 2, 3, 4. Because Ci, i = 0, . . . , 4, are meaningful only
for Rz > 1, because of the continuity there exists a neighbourhood (1, Rε) around Rz = 1 such
that �i > 0 when Rz ∈ (1, Rε), i = 2, 3, 4. Therefore, all roots of (5.3) have negative real part when
1<Rz <Rε .

If at least one of τi �= 0 for i = 1, 2, it is easy to see ξ = 0 is not a zero of (5.2) because A0 > 0.
Moreover, there are no roots for (5.2) existing as ξ → ∞, because lim sup{|Q3(ξ )/P4(ξ )| : |ξ | →
∞, Re ξ ≥ 0}< 1 (see [37]), where

Q3(ξ ) = −AwpRdξ (ξ + d)(ξ + b + q) and

P4(ξ ) = (ξ + p)(ξ + Fd)[ξ (ξ + b + q)(ξ + Aw) + bqαwd].

Because all roots of (5.2) continuously depend on τ1 and τ2, the only possibility that the roots of
(5.2) enter into the right half plane is to cross the imaginary axis as τ1 and τ2 increase. Suppose a
purely imaginary number ξ = i� , (� > 0), is a root of (5.2). Then substituting ξ = i� , � > 0 into
D(ξ ) = 0 yields

i� 5 + A4�
4 − iA3�

3 − A2�
2 + iA1� + A0 = (−iB3�

3 − B2�
2 + iB1� ) e−i(τ1+τ2)� .

Computing the modulus on the both sides gives H(� 2) =� 10 + h1�
8 + h2�

6 + h3�
4 + h4�

2 +
h5 = 0, with

h1 = A2
4 − 2A3 = F2

d + A2
w + p2 + (b + q)2,

h2 = 2A1 − 2A2A4 + A2
3 − B2

3 = (b + q)2(A2
w + F2

d + p2) + (A2
w + p2)F2

d

+ A2
wp2(1 − R2

d) − 2(Aw + b + q)bqαwd,

h3 = 2A0A4 − 2A1A3 + A2
2 + 2B1B3 − B2

2

= (b + q)2(A2
w + p2)F2

d + (F2
d − d2)A2

wp2 + A2
wp2((b + q)2 + d2)(1 − R2

d)

+ b2q2α2w2
d − 2(F2

d + p2)(Aw + b + q)bqαwd,

h4 = A2
1 − 2A0A2 − B2

1 = (b + q)2(F2
d − d2)A2

wp2 + A2
wp2d2(b + q)2(1 − R2

d)

+ (F2
d + p2)b2q2α2w2

d − 2F2
dp2(Aw + b + q)bqαwd

h5 = A2
0 = F2

dp2b2q2α2w2
d.

Clearly, h1 > 0 and h5 > 0. For hi, i = 2, 3, 4, we use the continuity argument again, and have
hi|Rz=1 > 0. Similarly, there exits Rb̂ > 1 such that for 1<Rz <Rb̂ all hi > 0, i = 1, . . . , 5, which
implies that H(� 2) does not have any positive real roots. Therefore, combining with the condition
1<Rz <Rε , let Rb = min{Rε , Rb̂}, then for any Rz ∈ (1, Rb), the roots of (5.2) stay in the left half
complex plane and Ed is locally asymptotically stable. �

Besides the local stability of Ed, we have the following uniform persistence result with respect
to the recombinant virus and double-infected cells.

Theorem 5.2. If Rz > 1, then there is an η > 0 such that any solution x(t,φ) of the system (1.2) with
φ ∈ X, φ4(0)> 0 and φ5(0)> 0 satisfies

lim inf
t→+∞

(z(t,φ), w(t,φ)) ≥ (η, η).

Proof. Define Y0 = {φ ∈ X : φ4(0)> 0 and φ5(0)> 0}. Then, we have ∂Y0 = X \ Y0 = {φ ∈ X :
φ4(0) = 0 or φ5(0) = 0}. Define N∂ = {φ ∈ X :Φ(t)φ ∈ ∂Y0, ∀t ≥ 0}.
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By a similar argument as that in the proof of theorem 4.1, we can show that when
R0 > 1, we have Ws(E0) ∩ Y0 = ∅. We also claim that there exists a δ > 0, such that any φ ∈ Y0,
lim supt→∞ ‖Φ(t)φ − Es‖ ≥ δ.

Again, assume that on the contrary, there exists ψ ∈ Y0 such that limt→∞Φ(t)ψ = Es. Then for
any sufficiently small ε > 0, there exists a positive constant T1 = T1(ε), such that y(t)> ys − ε for
all t ≥ T1. Here, because Rz > 1, we can choose ε small enough such that

εcα + bq(1 − Rz)< 0. (5.5)

Then for t ≥ T1, in (1.2) we have ż = αyw − bz ≥ α(ys − ε)w − bz and ẇ = cz − qw. It is easy to see
that the following linear system

u̇1 = −bu1 + α(ys − ε)u2 and u̇2 = cu1 − qu2, (5.6)

has a saddle point at the origin when (5.5) holds. Suppose that ξ1 > 0 is the positive eigenvalue,
and ud = (uz, uw)T be the corresponding positive right eigenvector. We choose l> 0 small enough
such that luzeξ1t ≤ z(t), luweξ1t ≤ w(t), for all t ∈ [T1, T1 + τ ]. Obviously, leξ1tud satisfies (5.6) for all
t ≥ T1. Then by the comparison principle, we get (z(t), w(t))T ≥ leξ1tud for all t ≥ T1 + τ . Because
lud > 0 and ξ1 > 0, letting t → ∞, we obtain lim inft→∞ z(t) = ∞, lim inft→∞ w(t) = ∞, which is a
contradiction. Therefore, we have Ws(Es) ∩ Y0 = ∅, when Rz > 1.

Next, we claim
⋃
φ∈N∂

ω(φ) = E0 ∪ Es. For any φ ∈ N∂ , i.e. Φ(t)φ ∈ ∂Y0, we have z(t,φ) ≡ 0,
or w(t,φ) ≡ 0. From the w equation in system (1.2), we have limt→∞ w(t) = 0 if z(t) ≡ 0, or
limt→∞ z(t) = 0 if w(t) ≡ 0. Hence, we have ω(φ) =ω1 × {(0, 0)} for some ω1 ∈ C([−τ , 0]; R3+), and

Φ(t)|ω(φ1,φ2,φ3, 0, 0) = (Φ1(t)(φ1,φ2,φ3), 0, 0),

where Φ1(t) is the solution semiflow associated with system (1.1). From corollary 4.3, we have
that ω1 is either Ẽ0 or Ẽs. Hence,

⋃
φ∈N∂

ω(φ) = E0 ∪ Es.

Define a continuous function p2 : X → R+ by p2(φ) = min{φ4(0),φ5(0)}, φ ∈ X. Then, p−1
2 (0, ∞) ⊂

Y0, and p2 is also a generalize distance function for the solution semiflow Φ(t). From the proof
above, we conclude that any forward orbit of Φ(t) in N∂ converges to E0 or Es, that E0 and Es are
two isolated invariant sets in X, and (Ws(E0) ∩ Ws(E1)) ∪ Y0 = ∅. Moreover, it is easy to see that no
subset of {E0, Es} forms a cycle in ∂Y0. By [36, theorem 3], it follows that there exist η > 0 such that
lim inft→∞ p2(Φ(t)φ) ≥ η for all φ ∈ Y0, which implies Φ(t) is uniformly persistent with respect to
(Y0, ∂Y0). �

6. Numerical simulations
In the above discussions, owing to the general form of f (x, v), we cannot obtain the explicit form of
Rz. Consequently, we are not able to either prove the global stability of the third equilibrium point
Ed or determine whether there are other dynamic phenomena around Ed for Rz > 1. So in this
section, using numerical simulation we show some dynamical behaviour around Ed, including
the convergence of orbits to Ed and the existence of Hopf bifurcation for system (1.2).

Because there are more parameters involved in the model if a nonlinear incidence function is
used, we cannot find the proper value range for the new parameter in the literature. A non-reliable
parameter value could damage the biological interpretation of the numerical simulations. So we
chose a bilinear incidence function f (x, v) = βxv, where β is the constant rate at which a T cell is
contacted by the virus, which is widely used in other papers. Then R2

0 = (kβλ)/(a1dp)e−a1τ1−a2τ2

and Rz = (αcdp)/(βbkq)(R2
0 − 1).

For computer simulation, we set the parameter values as the following: λ= 1 cell mm−3, d =
1

180 day−1, α= β = 1
260 vir mm−3 day−1, τ2 = 9

20 day, a1 = 0.5 day−1, b = 2 day−1, p = q = 3 day−1,
k = 80 vir cell−1, c = 1800 vir cell−1, see [27,38]. Let τ1 be the bifurcation parameter.

The disease-free equilibrium E0 is now given by E0 = (180, 0, 0, 0, 0), which is globally
asymptotically stable from theorem 3.1 for τ1 > τs ≈ 6.76767349288, i.e. R0 < 1. When τ1 <

τs, E0 becomes unstable, and the single-infection equilibrium Es exists, given by Es =
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Figure 2. Simulation of (1.2) for τ1 = 0.5, 0.9, 1.2, taken from the interval τ1 ∈ (τh, τd), showing convergence to the
equilibrium Ed. (Online version in colour.)

( 39
8 eτ1/2+9/40, 2e−τ1/2 − 13

240 e9/40, 160
3 e−τ1/2−9/40 − 13

9 , 0, 0), which is globally asymptotically stable
from theorem 4.2 for τs > τ1 > τd ≈ 1.5217799236.

Further decreasing τ1 to pass through the critical value τd will cause Es to lose its stability, and
give rise to the double-infection equilibrium,

Ed =
(

180
16e−9/40 + 1

,
13
15

,
208
9

e−9/40,
480e−τ1/2−9/40 − 208e−9/40 + 13

60(16e−9/40 + 1)
,

10(480e−τ1/2−9/40 − 208e−9/40 + 13)
16e−9/40 + 1

)
.

Then, we can obtain the characteristic equation D(ξ , τ1) at Ed. Solving D(iη, τ1) = R(η, τ1) +
iS(η, τ1) = 0 yields (ηh, τh) ≈ (±0.58060139097, 0.17431498237). It follows from theorem 5.1 that
Ed is asymptotically stable when τd > τ1 > τh, where τh ≈ 0.17431498237. The simulations for
τ1 = 0.5, 0.9, 1.2 are shown in figure 2.

Next, we consider possible Hopf bifurcation. The following condition is held

Re
(

dξ
dτ1

)∣∣∣∣
ξ=iηh,τ1=τh

≈ −0.031189097952< 0.

Thus, D(ξ , τ1) = 0 has a pair of purely imaginary roots at τ1 = τh, whose real parts become positive
when τ1 < τh, implying existence of a Hopf bifurcation. At the critical point, τ1 = τh, Ed loses its
stability through a Hopf bifurcation, giving rise to limit cycles (figure 3). When τ1 = τh, we obtain
Rb =Rz|τ1=τh ≈ 2.0368053805.

To sum up, the bifurcation diagram projected on y − τ1 plane is given in figure 4, which shows
what impacts the delay τ1 could have on the dynamics around the equilibria of model (1.2).
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Figure 3. Simulation of (1.2) for τ1 = 0.15< τh, showing bifurcation to a limit cycle. (Online version in colour.)
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7. Discussion
In this paper, we propose an HIV model with a general nonlinear incidence rate and two time
delays. Two production numbers R0 and Rz are obtained to determine the threshold properties.
When R0 < 1, the disease-free equilibrium E0 = (x0, 0, 0, 0, 0) is globally asymptotically stable.
When R0 > 1, E0 becomes unstable, and the single-infection equilibrium Es = (xs, ys, vs, 0, 0)
occurs. When R0 > 1 and Rz < 1, Es is globally asymptotically stable. At Rz = 1, Es bifurcates
into double-infection equilibrium Ed = (xd, yd, vd, zd, wd), and Es loses its stability for Rz > 1. It is
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shown that there exits an η > 0 such that lim inft→∞(z(t,φ), w(t,φ))> (η, η) for φ ∈ X with φ4(0)> 0
and φ5(0)> 0 when Rz > 1. From theorem 5.1 and numerical simulations, we can see that Ed is
asymptotically stable for Rz ∈ (1, Rb), and there may exist a Hopf bifurcation at Rz = Rb.

From the expression of R0, it is easy to see that ignoring either of two delays τ1 and τ2 leads
to overestimation of the basic reproduction number R0. For the effects of delays on Rz, we first
need to study the derivatives of ys and vs with respect to τ1 and τ2, respectively. From (2.4) and
(2.5), we get the following equation

f
(
λ

d
− a1pvs

dke−a1τ1−a2τ2
, vs

)
− a1pvs

ke−a1τ1−a2τ2
≡ 0,

which yields (dvs)/(dτj) = (ajvs(fx(xs, vs) + d))/(d(Rs − 1) − fx(xs, vs))< 0, j = 1, 2, where Rs is
given in (5.4). Then, from ys = p/a1e−a2τ2vs, we have

dys

dτ1
= p

a1e−a2τ2

dvs

dτ1
< 0

and
dys

dτ2
= p

a1e−a2τ2

(
a2vs + dvs

dτ2

)
= p

a1e−a2τ2

a2vsdRs

d(Rs − 1) − fx(xs, vs)
< 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.1)

Therefore, Rz = (cα)/(bq)ys will become larger if either τ1 or τ2 is not included in system (1.2).
Similarly, we can easily get dvd/dτj < 0 and dyd/dτj < 0 for j = 1, 2.

From the simulations and figure 4, it is easy to see that choosing different values for delays
could change the dynamic behaviours, not only quantitatively, but also sometimes qualitatively.
So intracellular delays should be included in the modelling of HIV infection. We should mention
that some results (theorems 3.1 and 4.2) in this manuscript still hold if the system has no time
delay or if function f is bilinear. The new dynamics is mainly derived with the introduction of
the new variables z and w, see corollary 4.3. However, when we release some conditions, e.g. (1.5)
for the nonlinear incidence function f , the system will become much more complicated, multiple
steady-state solutions and multistabilities may exist. This is beyond the scope of this manuscript.

Note that systems (1.1) and (1.2) share the same basic reproduction number R0. When R0 <R1,
where R1 is given in (2.13), Es is globally asymptotically stable in (1.2), just as Ẽs in system (1.1),
which means introducing the recombinant virus into the host cannot help to control the number
of HIV in this case. When R0 >R1, which is equivalent to Rz > 1, the third equilibrium point Ed
comes into existence. From §2, we see xd > xs, yd < ys and vd < vs, implying that the virotherapy
cannot only decrease HIV load and the number of infected cells by HIV, but also increase the
healthy CD4+ T cell count. So when the recombinant virus can survive, i.e. Rz > 1, it can help to
control HIV infection.

Because Rz can also be expressed in the form Rz = ys/yd, the value of Rz can be used
to measure the performance of the virotherapy. Larger Rz means more cells infected by HIV
are killed and more health host cells are produced at Ed. From numerical simulations we can
see that there are some phenomena we should pay attention to when Rz becomes larger. In
figure 3, as τ1 becomes smaller, Rz gets larger, and it takes more time for orbits to converge to
Ed, and the amplitude of oscillations also becomes larger. Furthermore, relative large Rz may
cause Hopf bifurcation. These two dynamics behaviours imply using this virotherapy may cause
unsteadiness of the situation of patient using, if we do not choose the value range for Rz carefully.

On the other hand, we have Rz = (cαys)/(bq), which is the mean number of recombinant
virus caused by one recombinant virus when the number of single-infected cells stabilizes at ys.
Obviously, Rz is closely related to the parameters c, α, b and q in z and w equations. Although
the explicit expression of ys cannot obtained from system (1.2) with general nonlinear incidence
function f (x, v), we can see that ys is totally determined by system (1.1). In other words, ys is
not affected with the varies of the recombinant virus w and double-infected cells z. Therefore,
increasing c and α, or decreasing b and q can make Rz larger. This would be very helpful to
develop the virotherapy to meet our expectation.

Data accessibility. This work does not have any experimental data.
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