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1. Introduction

Normal form theory has been used for several decades as one of the important tools in simplifying the study of nonlinear
differential systems. Its basic idea is to introduce a near-identity transformation into a given differential system to eliminate
as many of the nonlinear terms as possible, which are usually called non-resonant terms. The terms retained in the resulting
system are normal form terms, called resonant terms. Since normal forms keep the fundamental dynamical characteristics of
the original system in the vicinity of a singular point, it can be used to study the local bifurcations and stability/instability
properties of the original system. There are various of books which have extensive discussions on normal form theory, for
example, see [1–3]. More recent progress can be found in the article [4].

For higher-dimensional dynamical systems, normal form theory is usually applied together with center manifold theory,
see [5–9]. If the Jacobian matrix of a differential system evaluated at a singular point contains eigenvalues with zero real part
and non-zero real part, then center manifold theory should be considered in the study of the local dynamics of the system,
and the dimension of the center manifold is equal to the number of eigenvalues with zero real part. Center manifold theory
plays an important role in simplifying the analysis of local dynamical behavior of nonlinear differential systems near a sin-
gular point, because it allows us to determine the behavior by study the flow on a lower dimensional manifold.

Several computer algebra systems such as Maple, Mathematica, Macsyma, etc., have been widely used for the computa-
tion of normal forms. Even with the help of these computer algebra systems, it is still not easy to obtain higher-order normal
forms since considerably more computer memory and computational time are demanded as the order of normal forms
increases. Therefore, in the past two decades, various methods have been developed to compute normal forms for general
n-dimensional differential systems. However, many methods are not computationally efficient because lots of unnecessary
computations are involved, for example, see [6,10,11]. To be precise, in order to get an expression for the kth-order normal
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form computation, (k� 1)th-order normal forms, center manifolds and near-identity transformation are substituted into the
original system. Thus, besides the kth-order terms, the obtained expression also contains lower-order (< k) and higher-order
(> k) terms, which are not desirable for efficient computation. To overcome this problem, Yu [7,12] developed a recursive
formula for computing the coefficients of normal forms and center manifolds, which avoid those lower-order (< k) and
higher-order (> k) terms in the kth-order computation. However, these formulas are not given in explicit recursive
expressions and may be not so efficient in computation. For general planar systems, [13] obtained an explicit recursive
formula for computing Poincaré–Lyapunov constants (focus values), and the computation based on this formula is efficient.

In this paper, we consider general n-dimensional differential systems associated with semisimple cases, i.e., the Jacobian
matrix of the linearized system evaluated at a singular point can be transformed into a diagonal Jordan canonical form.
Around semisimple singularities, a rich variety of bifurcations, such as Hopf, double-zero, Hopf-zero, double-Hopf, etc.
may occur. A detailed study for some types of these bifurcations can be found in [14, chap. 7] by applying normal form theory
to simplifying the systems. Particularly, for some special bifurcations like Hopf-zero, double-Hopf without resonance, the
normal forms are symmetric with respect to rotation in the direction associated with the imaginary eigenvalues. In this case,
the normal forms can be decoupled, and the systems are further simplified. Many methods have been developed and used to
compute the normal forms of systems with semisimple singularities, not only for the particular cases like Hopf [9,12,13],
Hopf-zero [15] and double-Hopf [16,17], but also for general semisimple cases involving center manifold [6,7]. In order to
provide a good algorithm to compute the normal forms of general cases, in this paper we will develop a computationally
efficient method and a Maple program without restriction on the dimension of the center manifold. This paper is an exten-
sion of our recent work [9], which focuses on general differential systems associated with Hopf bifurcation.

In the next section, an explicit, computationally efficient, recursive formula is derived for computing the normal forms
and center manifolds of dynamical systems associated with semisimple singularities. The explicit formula is given in terms
of the system coefficients of the original differential system, which is easily used for developing a Maple program. In Section
3, several examples are presented to demonstrate the computational efficiency of the method and the Maple program.
Finally, conclusion is drawn in Section 4.

2. Main result

Consider a system of differential equations in the general form,
_y ¼ Ay þ GðyÞ; y 2 Rn; GðyÞ : Rn ! Rn; ð1Þ
where the dot represents differentiation with respect to time, t, the matrix A is diagonalizable, Gð0Þ ¼ 0 and DyGð0Þ ¼ 0. De-
note by ki; i ¼ 1; . . . ;n, the eigenvalues of A. Without loss of generality, it is assumed that there are only k eigenvalues
kj; j ¼ 1; . . . ; k, having zero real part, implying that system (1) has a k-dimensional center manifold.

Then, through a proper linear transformation, system (1) can be transformed into
_x ¼ Jxþ fðxÞ; ð2Þ
where J is a diagonal matrix, and fðxÞ is expanded as
fðxÞ ¼
X
mP2

fmðxÞ; where fmðxÞ ¼
X
fmðnÞg

fmðnÞx
m1
1 xm2

2 . . . xmn
n

and mðnÞ denotes a vector ðm1;m2; . . . ;mnÞ of n nonnegative integers, which satisfies
Pn

j¼1mj ¼ m.
Suppose that the matrix J has the form J ¼ diagðJo; JrÞ, where
Jo ¼ diagðk1; k2; . . . ; kkÞ; Jr ¼ diagðkkþ1; kkþ2; . . . ; knÞ:
Let x ¼ ðxT
o ;x

T
r Þ

T , where xo ¼ ðx1; x2; . . . ; xkÞT and xr ¼ ðxkþ1; xkþ2; . . . ; xnÞT . Then, system (2) can be written as
_xo ¼ Joxo þ foðxo;xrÞ;
_xr ¼ Jrxr þ frðxo;xrÞ:

ð3Þ
The center manifold of (3) may be defined as xr ¼ HðxoÞ, which satisfies Hð0Þ ¼ 0, DHð0Þ ¼ 0. Then, the differential equa-
tion describing the dynamics on the center manifold is given by
_xo ¼ Joxo þ foðxo;HðxoÞÞ: ð4Þ
Next, introduce a near-identity nonlinear transformation, given by
xo ¼ uþ Q ðuÞ ¼ uþ
X
mP2

X
fmðkÞg

qmðkÞu
m1
1 um2

2 . . . umk
k � qðuÞ; ð5Þ
into (4) to obtain the normal form,
_u ¼ Jouþ CðuÞ; where CðuÞ ¼
X
mP2

X
fmðkÞg

cmðkÞu
m1
1 um2

2 . . . umk
k : ð6Þ
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Now the center manifold can be expressed in the new variable u, as follows:
xr ¼ HðqðuÞÞ ¼
X
mP2

X
fmðkÞg

hmðkÞu
m1
1 um2

2 . . . umk
k � hðuÞ: ð7Þ
Combining the above steps yields the following equations
Du
Q ðuÞ
hðuÞ

� �
Jou�

JoQ ðuÞ
JrhðuÞ

� �
¼

FoðuÞ
FrðuÞ

� �
� Du

Q ðuÞ
hðuÞ

� �
CðuÞ �

CðuÞ
0

� �
; ð8Þ
where FoðuÞ ¼ foðqðuÞ;hðuÞÞ, FrðuÞ ¼ frðqðuÞ;hðuÞÞ. Comparing the coefficients on both sides of (8), we obtain the recursive
formulas for the coefficients of the center manifold and the normal form as well as the associated nonlinear transformation.

For convenience, we first introduce some notations. Suppose the powers of qðuÞ and hðuÞ can be expressed, for j P 0, as
qjðuÞ ¼
X1
m¼j

X
fmðkÞg

qj
mðkÞu

m1
1 um2

2 . . . umk
k ;

hjðuÞ ¼
X1
m¼2j

X
fmðkÞg

hj
mðkÞu

m1
1 um2

2 . . . umk
k :

ð9Þ
We have the following main result.

Theorem 1. For any fixed sðkÞ; s P 2, let K ¼
Pk

i¼1kisi. Then the recursive formulas for the coefficients of the nonlinear
transformation (5), the normal form (6) and the center manifold (7) of system (3), i.e., qsðkÞ; csðkÞ and hsðkÞ, are given below.

(1) For qsðkÞ and csðkÞ, if K� kj ¼ 0; j ¼ 1; . . . ; k, then
qsðkÞ;j ¼ 0; csðkÞ;j ¼ asðkÞ;j � bsðkÞ;j;
otherwise,
qsðkÞ;j ¼ ðasðkÞ;j � bsðkÞ;jÞ=ðK� kjÞ; csðkÞ;j ¼ 0:

(2) For hsðkÞ, we have

hsðkÞ;j�k ¼ ðasðkÞ;j � bsðkÞ;jÞ=ðK� kjÞ; j ¼ kþ 1; . . . ;n;

where
asðkÞ ¼
Xs

m¼2

X
fmðnÞg

Xj¼s

fjðnÞg

X
fj1ðkÞg

X
fj2ðkÞg

� � �
X
fjnðkÞg

fmðnÞq
m1
j1ðkÞ;1

. . . qmk
jkðkÞ;k

hmkþ1
jkþ1ðkÞ;1

. . . hmn
jnðkÞ;n�k;

bsðkÞ ¼
Xk

i¼1

Xs�1

l¼2

X
flðkÞg
ðsi þ 1� liÞ

qsðkÞ�lðkÞþeiðkÞ

hsðkÞ�lðkÞþeiðkÞ

� �
clðkÞ;i;

qj
sðkÞ ¼

Xs�1

l¼j�1

X
lðkÞ6sðkÞ

qj�1
lðkÞqsðkÞ�lðkÞ;

hj
sðkÞ ¼

Xs�2

l¼2j�2

X
lðkÞ6sðkÞ

hj�1
lðkÞhsðkÞ�lðkÞ:
Proof. For any given integer s P 2, suppose that we have obtained qmðkÞ, hmðkÞ and cmðkÞ for m < s. Now, we want to derive
the formulas for qsðkÞ, hsðkÞ and csðkÞ. We divide the proof in three steps, which can also be served as the guidelines for devel-
oping programs using a computer algebra system.

Step 1. First of all, we need to compute all the coefficients of terms with degree s for xj
o ¼ qjðuÞ;2 6 j 6 s. Since

qjðuÞ ¼ qðuÞqj�1ðuÞ, we have
qjðuÞ ¼
X1
m¼1

X
fmðkÞg

qmðkÞu
m1
1 um2

2 . . . umk
k

0
@

1
A X1

m¼j�1

X
fmðkÞg

qj�1
mðkÞu

m1
1 um2

2 . . . umk
k

0
@

1
A

¼
Xs

m¼j

X
fmðkÞg

Xm�1

l¼j�1

X
lðkÞ6mðkÞ

qj�1
lðkÞqmðkÞ�lðkÞu

m1
1 um2

2 . . . umk
k þ oðjujsÞ;
where lðkÞ 6 mðkÞ means li 6 mi for i ¼ 1; . . . ; k. Then, we obtain
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qj
sðkÞ ¼

Xs�1

l¼j�1

X
lðkÞ6sðkÞ

qj�1
lðkÞqsðkÞ�lðkÞ; 2 6 j 6 s:
Similarly, for xj
r ¼ hjðuÞ, we have
hj
sðkÞ ¼

Xs�2

l¼2j�2

X
lðkÞ6sðkÞ

hj�1
lðkÞhsðkÞ�lðkÞ; 2 6 j 6 s:
Step 2. Denote
FoðuÞ
FrðuÞ

� �
¼
Xs

m¼2

X
mðkÞ

afmðkÞgu
m1
1 um2

2 . . . umk
k þ oðjujsÞ: ð10Þ
In this step, we derive the formula for asðkÞ. Let qm
lðkÞ ¼ ðqm

lðkÞ;1; q
m
lðkÞ;2; . . . ; qm

lðkÞ;kÞ
T and hm

lðkÞ ¼ ðh
m
lðkÞ;1;h

m
lðkÞ;2; . . . ;hm

lðkÞ;n�kÞ
T
. For

2 6 m 6 s, substituting qðuÞ and hðuÞ into fmðxÞ yields
fmðxÞ¼
X
fmðnÞg

fmðnÞx
m1
1 xm2

2 . . .xmn
n ¼

X
fmðnÞg

fmðnÞ
Yk

i¼1

qmi
i ðuÞ

Yn�k

i¼1

hmkþi
i ðuÞ

¼
X
fmðnÞg

fmðnÞ
Yk

i¼1

X1
l¼mi

X
flðkÞg

qmi
lðkÞ;iu

l1
1 ul2

2 . . .ulk
k

0
@

1
AYn�k

i¼1

X1
l¼2mkþi

X
flðkÞg

hmkþi
lðkÞ;i u

l1
1 ul2

2 . . .ulk
k

0
@

1
A

¼
X
fmðnÞg

fmðnÞ

 Xs

l¼m

X
flðkÞg

Xl

j1¼m1

� � �
Xl

jk¼mk

Xl

jkþ1¼2mkþ1

� � �
Xl

jn¼2mn

X
fj1ðkÞg

X
fj2ðkÞg

� � �
X
fjnðkÞg

:qm1
j1ðkÞ;1

qm2
j2ðkÞ;2

. . .qmk
jkðkÞ;k

hmkþ1
jkþ1ðkÞ;1

hmkþ2
jkþ2ðkÞ;2

. . .hmn
jnðkÞ;n�kul1

1 ul2
2 . . .ulk

k þoðjujsÞ
!

¼
Xs

l¼m

X
flðkÞg

X
fmðnÞg

Xj¼l

fjðnÞg

X
fj1ðkÞg

X
fj2ðkÞg

� � �
X
fjnðkÞg

fmðnÞq
m1
j1ðkÞ;1

. . .qmk
jkðkÞ;k

hmkþ1
jkþ1ðkÞ;1

. . .hmn
jnðkÞ;n�kul1

1 ul2
2 . . .ulk

k þoðjujsÞ;
where
Pn

i¼1jiðkÞ ¼ lðkÞ.
Since fðxÞ ¼

P
m�2fmðxÞ, we consequently obtain
asðkÞ ¼
Xs

m¼2

X
fmðnÞg

Xj¼s

fjðnÞg

X
fj1ðkÞg

X
fj2ðkÞg

� � �
X
fjnðkÞg

fmðnÞq
m1
j1ðkÞ;1

. . . qmk
jkðkÞ;k

hmkþ1
jkþ1ðkÞ;1

. . . hmn
jnðkÞ;n�k;
where the vector jðnÞ satisfies that
ji

¼ 0 if mi ¼ 0;
P mi for 1 6 i 6 k
P 2mi for kþ 1 6 i 6 n

�
if mi – 0:

8<
:

Step 3. Denote
Du
Q ðuÞ
hðuÞ

� �
CðuÞ ¼

Xs

m¼3

X
fmðkÞg

bmðkÞu
m1
1 um2

2 . . . umk
k þ oðjujsÞ: ð11Þ
In this step, we derive the formula for bsðkÞ. Note that
Du
Q ðuÞ
hðuÞ

� �
CðuÞ ¼

Xk

i¼1

Q ui
ðuÞ

hui
ðuÞ

� �
CiðuÞ ¼

Xk

i¼1

X
m¼2

X
fmðkÞg

mi
qmðkÞ

hmðkÞ

� �
um1

1 um2
2 . . . umk

k u�1
i

0
@

1
A X

m¼2

X
fmðkÞg

cmðkÞ;iu
m1
1 um2

2 . . . umk
k

0
@

1
A

¼
Xs

m¼3

X
fmðkÞg

Xk

i¼1

Xm�1

l¼2

X
l

ðmi þ 1� liÞ
qmðkÞ�lðkÞþeiðkÞ

hmðkÞ�lðkÞþeiðkÞ

� �
clðkÞ;iu

m1
1 um2

2 . . . umk
k ;
where eiðkÞ is a unit vector with a 1 in the ith place. Therefore, comparing the above equation with (11) we have
bsðkÞ ¼
Xk

i¼1

Xs�1

l¼2

X
flðkÞg
ðsi þ 1� liÞ

qsðkÞ�lðkÞþeiðkÞ

hsðkÞ�lðkÞþeiðkÞ

� �
clðkÞ;i:
Finally, from the left-hand side of (8), we obtain
DuQ ðuÞJou� JoQ ðuÞ ¼
Xk

i¼1

kiuiQ ui
� JoQ ðuÞ ¼

Xk

i¼1

X
m¼2

X
fmðkÞg

kimiqmðkÞu
m1
1 um2

2 . . . umk
k �

X
m¼2

X
fmðkÞg

JoqmðkÞu
m1
1 um2

2 . . . umk
k

¼
Xs

m¼2

X
fmðkÞg

Xk

i¼1

kimiIk � Jo

 !
qmðkÞu

m1
1 um2

2 . . . umk
k þ oðjujsÞ ð12Þ
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and similarly,
DuhðuÞJou� JrhðuÞ ¼
Xs

m¼2

X
fmðkÞg

Xk

i¼1

kimiIn�k � Jr

 !
hmðkÞu

m1
1 um2

2 . . . umk
k þ oðjujsÞ: ð13Þ
Substituting (6) and (10)–(13) into (8) and comparing the coefficients of the same order results in the formulas in Theorem 1,
and we thus complete the proof. h

The source code of the Maple program developed using the formulas in Theorem 1 is given in Appendix for the conve-
nience of readers.

3. Application

In this section, we present several examples to demonstrate the applicability and the computational efficiency of the Ma-
ple program (see the source code in Appendix) developed in this paper. We show three examples associated with Hopf,
Hopf-zero and double Hopf singularities, and compute their normal forms and center manifolds, as well as the corresponding
nonlinear transformations. We have tested a number of systems for comparing the algorithm developed in this paper with
that given in [6]. It is shown that for most cases the method developed in this paper is better than that given in [6]. Only in
some special cases, the situation is reversed. The program given in [6] can only deal with the cases where the dimension of
the center manifold is less than seven. All the Maple programs are executed on a desktop machine with CPU 3.4 GHZ and 32G
RAM memory to generate the normal forms as needed.

Example 1. We consider a 5-dimensional system:
_x1 ¼ x2 þ x2
1 � x1x3 þ x2

5;

_x2 ¼ �x1 þ x2
2 þ x1x4 þ x3

2;

_x3 ¼ �x3 þ x2
1;

_x4 ¼ �x4 þ x5 þ x2
1 þ x4x5;

_x5 ¼ �x4 � x5 þ x2
2 � 2x2

4:

ð14Þ
The Jacobian matrix of this system evaluated at the origin has eigenvalues �i;�1 and �1� i. So the origin is a Hopf sin-
gularity and system (14) has a 2-dimensional center manifold. The normal form given in polar coordinates up to 5th order is
given as follows:
_r ¼ 3
40

r3 � 25633
102000

r5 � 163441769
2663424000

r7 þ � � �

_h ¼ 1� 7
12

r2 þ 6692923
14688000

r4 � 47098141289
299635200000

r6 þ � � �
ð15Þ
The lengthy expressions for the center manifold and nonlinear transformation are omitted here for brevity.
Remark 1. The coefficients of the terms r3 and r5, etc., in the first equation of (15) are called the first, second, etc., focus val-
ues. In general, the normal form of system (3), given in polar coordinates, is in the form of
_r ¼ r ðv0 þ v1 r2 þ v2 r4 þ � � �vk r2k þ � � �Þ;
_h ¼ 1þ t0 þ t1 r2 þ t2 r4 þ � � � tk r2k þ � � � ;

ð16Þ
where vk is called the kth-order focus value, which is a function of the system parameters of (3). Small limit cycles bifurcat-
ing from the origin and their stability can be determined from the first equation of (16). The second equation of (16) can be
used to determine the frequency of the bifurcating periodic motion (limit cycle).
Example 2. The second example is a 6-dimensional differential system, described by
_x1 ¼ �x2
1 þ 2x1x2 þ 3x1x4 � x1x5 � x2

2 þ x2x4;

_x2 ¼ x3 � x2
1 þ 2x1x3 þ 8x1x4 þ x3x5;

_x3 ¼ �x2 � x2
3 þ 3x1x6 � x3x4 � 6x2

4 � x4x6 þ 2x2
5;

_x4 ¼ �x4 � x2
1 þ 2x1x2 þ 3x1x4 � x1x5 � x2

2;

_x5 ¼ �x5 þ x6 � 7x2
1 þ 2x1x3 þ 3x1x6 � x3x4 � x4x6;

_x6 ¼ �x5 � x6 þ x1x4 � 5x2
3 þ x3x5 � 4x2

4 þ x2
5:

ð17Þ
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This system has a singular point at the origin, with its Jacobian matrix evaluated at the origin having three eigenvalues, 0 and
�i, with zero real part, and three eigenvalues, �1 and �1� i, with negative real part, implying that system (17) contains a 3-
dimensional center manifold associated with a Hopf-zero singularity at the origin. Executing our Maple program gives the
normal form (in cylindrical coordinates) up to 5th order,
_y ¼ �y2 � 1
2

r2 þ 1
2

y3 � 5
4

yr2 þ 59
4

y4 � 259
40

y2r2 þ 1
36

r4 þ 84y5 þ 18509
400

y3r2 þ 11483
4800

yr4 þ � � �

_r ¼ 29
10

y2r þ 9
40

r3 � 1171
25

y3r � 1371
200

yr3 � 19331
80

y4r � 263299
2250

y2r3 � 576761
1224000

r5 þ � � �

_h ¼ 1þ y� 61
20

y2 � 163
240

r2 þ 4501
200

y3 � 1357
800

yr2 þ 4579
160

y4 þ 123833
2250

y2r2 � 102206489
58752000

r4 þ � � �
Example 3. The last example is a 7-dimensional differential system,
_x1 ¼ x2 þ x3
1 � x2

1x5 þ x2
1x7;

_x2 ¼ �x1 � 2x1x2
3;

_x3 ¼
ffiffiffi
2
p

x4 þ x2
1x3 � 4x3

5;

_x4 ¼ �
ffiffiffi
2
p

x3;

_x5 ¼ �x5 þ ðx1 � x5Þ2;
_x6 ¼ �x6 þ x7 þ ðx1 � x4Þ2;
_x7 ¼ �x6 � x7 þ ðx2 � x6Þ2;

ð18Þ
whose Jacobian matrix evaluated at the origin has eigenvalues �i, �
ffiffiffi
2
p

i;�1 and �1� i, and four of them have zero real part.
So the center manifold of system (7) is four dimensional. System (18) was studied by [6] and the normal form in polar
coordinates up to 5th order was also given. We executed the Maple programs developed in this paper as well as that given
in [6] on the desktop machine. We have found that the Maple program given in [6] failed when it was executing to find the
9th-order normal form, since the Maple was unable to allocate enough memory to complete the computation. While the pro-
gram developed in this paper only took 122 s and 13938 MB memory to finish the 9th-order normal form computation. The
normal form up to 7th order given in polar coordinates is listed below.
_r1 ¼
3
8

r3
1 þ

157
1360

r5
1 �

9
40

r3
1r2

2 �
428923841

3847168000
r7

1 �
433291
832320

r5
1r2

2 �
612973

8921600
r3

1r4
2 þ � � �

_h1 ¼ 1þ 1
2

r2
2 �

5543
21760

r4
1 �

3
80

r2
1r2

2 �
1

16
r4

2 �
888039

9617920
r6

1 þ
1744833
5178880

r4
1r2

2 �
1448249

93676800
r2

1r4
2 þ

3
32

r6
2 þ � � �

_r2 ¼
1
4

r2
1r2

2 �
1

16
r2

1r3
2 þ

10213
348160

r6
1r2 �

3457
446080

r4
1r3

2 þ
27

256
r2

1r5
2 þ � � �

_h2 ¼
ffiffiffi
2
p
� 1

32

ffiffiffi
2
p

r4
1 þ

125
89216

ffiffiffi
2
p

r4
1r2

2 þ � � �
4. Conclusion

In this paper, we have derived an explicit, recursive formula for computing the normal forms, center manifolds and non-
linear transformations for general n-dimensional systems, associated with semisimple singularities. A Maple program is also
developed on the basis of the formula, which is very convenient for practical applicants who may not be familiar with normal
form theory. It only needs a user to prepare an input file and the Maple program will be ‘‘automatically’’ executed to generate
the desired result. Three examples are presented to show the applicability of the new method and new program, and in par-
ticular, one of the examples demonstrates the advantage of the new method over the existing methods and programs.
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Appendix A

In this appendix, for the convenience of readers, we list the symbolic Maple program developed in this paper using the
recursive formulas in Theorem 1, which can be used for computing the normal forms of general n-dimensional systems asso-
ciated with semisimple cases. The input here takes the third example in the section of application.
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with (LinearAlgebra):

M1 :¼ 0: # No. of zero eigenvalues

M2 :¼ 2: # No. of pairs of purely imaginary eigenvalues

M3 :¼ 1: # No. of non-zero real eigenvalues

M4 :¼ 1: # No. of pairs of complex conjugate eigenvalues

N :¼ 3: # Highest order in the system

Ord :¼ 5:

Mc :¼ M1 + 2⁄M2:
M :¼ Mc + M3 + 2⁄M4:
L :¼ M1 + M2 + M3 + M4:

f[1] :¼ x[2] + x[1]
^
3 � x[1]

^
2⁄x[5] + x[1]^2⁄x[7]:

f[2] :¼ �x[1] � 2⁄x[1]⁄x[3]^2:
f[3] :¼ sqrt (2)⁄x[4] + x[1]^2⁄x[3] � 4⁄x[5]^3:
f[4] :¼ � sqrt (2)⁄x[3]:
f[5] :¼ � x[5] + (x[1] � x[5])

^
2:

f[6] :¼ � x[6] + x[7] + (x[1] � x[4])
^
2:

f[7] :¼ � x[6] � x[7] + (x[2] � x[6])
^
2:

L3seq :¼ proc ()

global l12,S3,p:

if l12 = 0 then

S3[p+1] :¼ S3[p+1]+1: l12 :¼ S3[p]�1:
S3[p] :¼ 0: p :¼ max (0,sign (�l12))⁄p+1:

else S3[1] :¼ S3[1]+1: l12 :¼ l12�1: fi:
end:

L3product :¼ proc (sl,sr,q2r,q2i)

local l3rmx,qpmx,qpr,qpi,ctpo,l12,l12r,p,pr,ctl,ctr,ctp,l3,l3r,sb,

sp,S3,S3r,i,temp:

l3rmx :¼ binomial (sr+Mc�2,Mc�2): ctpo :¼ 1:

qpmx :¼ binomial (sl+sr+Mc�1,Mc�1):
qpr :¼ Array (1..qpmx): qpi :¼ Array (1..qpmx):

S3 :¼ [seq (0,i=1..Mc�1)]:
p :¼ 1: ctl :¼ 1: l12 :¼ sl:

for l3 to binomial (sl+Mc�2,Mc�2) do

S3r :¼ [seq (0,i=1..Mc�1)]:
pr :¼ 1: ctr :¼ 1: l12r :¼ sr: ctp :¼ ctpo:

for l3r to l3rmx do

for i from ctp to ctp+l12+l12r do

sb :¼ max (0,i�ctp�l12): sp :¼ min (l12r,i�ctp):
qpr[i] :¼ qpr[i]+add (q2r[ctr+j]⁄q1r[ctl+i�ctp�j]

�q2i[j+ctr]⁄q1i[ctl+i�ctp�j],j=sb..sp):
qpi[i] :¼ qpi[i]+add (q2r[ctr+j]⁄q1i[ctl+i�ctp�j]

+q2i[j+ctr]⁄q1r[ctl+i�ctp�j],j=sb..sp):
od:

ctp :¼ i: ctr :¼ ctr+l12r+1:

if l12r =0 then

ctp :¼ ctp�binomial (S3r[pr]+1,2)�S3r[pr]⁄l12:
temp :¼ l12+S3[1]:

for i from 2 to pr do

ctp :¼ ctp+binomial (temp+i,i+1)

�binomial (temp+S3r[pr]+i�1,i+1):
temp :¼ temp+S3[i]:

od:

ctp :¼ ctp+binomial (temp+S3r[pr]+i�1,i):
S3r[pr+1] :¼ S3r[pr+1]+1: l12r :¼ S3r[pr]�1:
S3r[pr] :¼ 0: pr :¼ max (0,sign (�l12r))⁄pr+1:

else S3r[1] :¼ S3r[1]+1: l12r :¼ l12r�1: fi:
od:

ctl :¼ ctl+l12+1:

if l12 =0 then
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ctpo :¼ ctpo+binomial (sr+p+1,p+1):

S3[p+1] :¼ S3[p+1]+1: l12 :¼ S3[p]�1:
S3[p] :¼ 0: p :¼ max (0,sign (�l12))⁄p+1:

else ctpo :¼ ctpo+l12+sr+1: S3[1] :¼ S3[1]+1: l12 :¼ l12�1: fi:
od:

return [qpr,qpi]:

end:
for i to M1 do x[i] :¼ v[i]: od:

j :¼ M1+1: k :¼ L+1:

for i from M1+1 to M1+M2 do

x[j] :¼ (v[i]+v[k])/2:

x[j+1] :¼ I⁄(v[i]�v[k])/2:
f[i] :¼ simplify (f[j]�I⁄f[j+1]):
j :¼ j+2: k :¼ k+1:

od:

for i from M1+M2+1 to L�M4 do

x[j] :¼ v[i]:

f[i] :¼ simplify (f[j]):

j :¼ j+1:

od:

for i from L�M4+1 to L do

x[j] :¼ (v[i]+v[k])/2:

x[j+1] :¼ I⁄(v[i]�v[k])/2:
f[i] :¼ simplify (f[j]�I⁄f[j+1]):
j :¼ j+2: k :¼ k+1:

od:

for j to L do

f[j] :¼ simplify (f[j]):

IEf[j] :¼ diff (f[j],v[j]):

for k to M do IEf[j] :¼ subs (v[k]=0,IEf[j]): od:

REf[j] :¼ subs (I=0,IEf[j]):

IEf[j] :¼ subs (I=1,IEf[j]�REf[j]):
od:

Qd :¼ [seq (1,j=1..M1+M2),seq (2,j=1..M3+M4),seq (1,j=1..M2),seq (2,j=1..M4)]:

Qc :¼ [seq (j,j=1..M1),seq (L+j,j=1..M2),seq (M1+M2+j,j=1..M3),

seq (M�M4+j,j=1..M4),seq (M1+j,j=1..M2),seq (L�M4+j,j=1..M4)]:
Qb :¼ [seq (j,j=1..M1),seq (seq (M1+i⁄M2+j,i=0..1),j=1..M2)]:
SizeIndex :¼ Array (1..2⁄N): Mr. :¼ [seq (1,i=1..L)]:

vecf :¼ Vector ([seq (f[j],j=1..L)]):

for m from 2 to N do

Ml :¼ [m+1,�1,seq (0,i=1..M�2)]: i :¼ 1:

while Ml[M] <> m do

Ml[i+1] :¼ 1 +Ml[i+1]: Ml[1] :¼ Ml[i]�1:
if i <> 1 then Ml[i] :¼ 0: fi:

if Ml[1] = 0 then i :¼ i+1: else i :¼ 1: fi:

Mlc :¼ Ml: ji :¼ 0:

for l to 2 do

coef[l] :¼ vecf: cterm :¼ 1:

for k to M do

coef[l] :¼ coeff (coef[l],v[k],Mlc[k]):

cterm :¼ cterm⁄v[k]^Mlc[k]:
od:

if coef[l] = 0 then coef[l] :¼ Vector (L): fi:

vecf :¼ vecf-cterm⁄coef[l]:
if Norm (coef[l],2) <> 0 then

ji :¼ ji+1:

if ji =1 then

(continued on next page)
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Mlc :¼ [seq (Mlc[Qc[k]],k=1..M)]:

mlmx :¼ max (Mlc�Ml):
if mlmx =0 then l :¼ l+1: fi:

fi:

else l :¼ l+1: fi:

od:

if ji > 0 then

Mr. :¼ [seq (max (Mr[n],Ml[n]),n=1..L)]:

qdg :¼ m+add (Ml[n],n=M1+M2+1..L)+add (Ml[n],n = L+M2+1..M):

jr :¼ 0: jc :¼ 0:

for k from i to M do

if Ml[k] <> 0 then

if k < M1+1 or (k < L�M4 and k > M1+M2) then

jr :¼ jr+1: j :¼ �jr:
else jc :¼ jc+1: j :¼ jc: fi:

Kvt[j] :¼ Ml[k]: Ivt[j] :¼ k: Qvt[j] :¼ Qd[k]⁄Ml[k]:
fi:

od:

kV :¼ [seq (Kvt[j],j=1..jc),seq (Kvt[�j],j=1..jr)]:
Iv :¼ [seq (Ivt[j],j=1..jc),seq (Ivt[�j],j=1..jr)]:
Qv :¼ [seq (Qvt[j],j=1..jc),seq (Qvt[�j],j=1..jr)]:
SizeIndex[qdg] :¼ SizeIndex[qdg]+1:

N :¼ max (N,qdg): sqdg :¼ SizeIndex[qdg]:

Index[qdg,sqdg] :¼ [kV,Iv,Qv,jc,jr,ji]:

fi:

for l to ji do

eql :¼ []:

for k to L do

if coef[l][k] <> 0 then eql :¼ [op (eql),k]: fi:

od:

coefi :¼ [seq (coef[l][eql[k]],k=1..nops (eql))]:

coefr :¼ subs (I=0,coefi):

coefi :¼ subs (I=1,coefi-coefr):

sqdgn :¼ (�1)^(l�1)⁄sqdg:
Coef[qdg,sqdgn] :¼ [eql,coefr,coefi]:

od:

od:

od:
for j to M do

Ih[j,1,1] :¼ Array (1..Mc): Rh[j,1,1] :¼ Array (1..Mc):

od:

for j to M1 do Rh[j,1,1][j] :¼ 1: od:

for j to M2 do

Rh[M1+j,1,1][M1+2⁄j�1] :¼ 1:

Rh[L+j,1,1][M1+2⁄j] :¼ 1:

od:

for s from 2 to Ord do

print (‘order=‘,s):

smx :¼ binomial (s+Mc�1,Mc�1):
Ku :¼ [seq (min (Mr[j],s),j=1..L)]:

for j to L do

for k from 2 to Ku[j] do

Rh[j,k,s] :¼ Array (1..smx): Ih[j,k,s] :¼ Array (1..smx):

od:

od:

for sl to s�1 do

l12 :¼ sl: sr :¼ s�sl: l3rmx :¼ binomial (sr+Mc�2,Mc�2):
S3 :¼ [seq (0,i=1..Mc�1)]: p :¼ 1: ctl :¼ 1: ctpo :¼ 1:
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for l3 to binomial (sl+Mc�2,Mc�2) do

for j to L do

Lslr[j] :¼ [seq (Rh[j,1,sl][i],i=ctl..ctl+l12)]:

Lsli[j] :¼ [seq (Ih[j,1,sl][i],i=ctl..ctl+l12)]:

od:

S3r :¼ [seq (0,i=1..Mc�1)]:
pr :¼ 1: ctr :¼ 1: l12r :¼ sr: ctp :¼ ctpo:

for l3r to l3rmx do

for l to L do

for k to min (Ku[l]�1,sr) do

Lsrr :¼ [seq (Rh[l,k,sr][i],i=ctr..ctr+l12r)]:

Lsri :¼ [seq (Ih[l,k,sr][i],i=ctr..ctr+l12r)]:

for i from ctp to ctp+l12+l12r do

sb :¼ max (0,i�ctp�l12): sp :¼ min (l12r,i�ctp):
Rh[l,k+1,s][i] :¼ Rh[l,k+1,s][i]

+add (Lsrr[j+1]⁄Lslr[l][i�ctp+1�j]
�Lsri[j+1]⁄Lsli[l][i�ctp+1�j], j=sb..sp):

Ih[l,k+1,s][i] :¼ Ih[l,k+1,s][i]

+add (Lsri[j+1]⁄Lslr[l][i�ctp+1�j]
+Lsrr[j+1]⁄Lsli[l][i�ctp+1�j], j=sb..sp):

od:

od:

od:

ctp :¼ i: ctr :¼ ctr+l12r+1:

if l12r =0 then

ctp :¼ ctp-binomial (S3r[pr]+1,2)�S3r[pr]⁄l12:
temp :¼ l12+S3[1]:

for i from 2 to pr do

ctp :¼ ctp+binomial (temp+i,1+i)

�binomial (temp+S3r[pr]+i�1,1+i):
temp :¼ temp+S3[i]:

od:

ctp :¼ ctp+binomial (temp+S3r[pr]+i�1,i):
S3r[pr+1] :¼ S3r[pr+1]+1: l12r :¼ S3r[pr]�1:
S3r[pr] :¼ 0: pr :¼ max (0,sign (�l12r))⁄pr+1:

else S3r[1] :¼ S3r[1]+1: l12r :¼ l12r�1: fi:
od:

ctpo :¼ ctpo+binomial (sr+l12+p+max (0,sign (�l12)),sr+l12):
ctl :¼ ctl+l12+1: L3seq ():

od:

od:
Tt :¼ Array ([seq (j,j=1..smx)]):

Lm :¼ M1:

for L5t from 2⁄M2�2 by �2 to 0 do

S5 :¼ [seq (0,j=1..L5t+1)]:

ct :¼ 1: l14 :¼ s: p :¼ 1:

for l5 to binomial (s+L5t,L5t) do

for lm2 from 0 to iquo (l14�1,2) do

ct :¼ ct+binomial (l14+Lm,Lm)�binomial (l14�lm2�1+Lm,Lm):
dml :¼ binomial (l14+Lm,Lm+1):

for lm1 from l14�lm2�1 by �1 to 0 do

lmmx :¼ binomial (lm1+Lm�1,Lm�1):
dmcm :¼ dml�binomial (lm1+lm2+Lm,Lm+1):

for j from ct to ct+lmmx�1 do

temp :¼ Tt[j]: Tt[j] :¼ Tt[j+dmcm]:

Tt[j+dmcm] :¼ temp:

od: ct :¼ ct+lmmx:

(continued on next page)
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od: l14 :¼ l14�1:
od:

ct :¼ ct+binomial (l14+Lm+1,Lm+1):

l14 :¼ l14+lm2�1:
if l14 =0 then

l5 :¼ l5+p: ct :¼ ct+p: S5[p+1] :¼ S5[p+1]+1: l14 :¼ S5[p]:

S5[p] :¼ 0: p :¼ max (0,sign (1�l14)⁄p)+1:
else S5[1] :¼ S5[1]+1: fi:

od: Lm :¼ Lm+2:

od:

for j from 1 to M2 do

for k from 2 to Ku[M1+j] do

Rh[L+j,k,s] :¼ Array ([seq (Rh[M1+j,k,s][Tt[i]],i=1..smx)]):

Ih[L+j,k,s] :¼ Array ([seq (�Ih[M1+j,k,s][Tt[i]],i=1..smx)]):
od:

od:

for j from 1 to M4 do

for k from 2 to Ku[L�M4+j] do

Rh[M�M4+j,k,s] :¼ Array ([seq (Rh[L�M4+j,k,s][Tt[i]],i=1..smx)]):
Ih[M�M4+j,k,s] :¼ Array ([seq (�Ih[L�M4+j,k,s][Tt[i]],i=1..smx)]):

od:

od:

T[s] :¼ copy (Tt):

if s =Ord then L :¼ M1+M2: fi:

for j to L do Rht[j] :¼ Array (1..smx): Iht[j] :¼ Array (1..smx): od:

for m from 2 to min (s,N) do

sm :¼ s�m:
for mi to SizeIndex[m] do

kV :¼ Index[m,mi][1]: Iv :¼ Index[m,mi][2]: Qv :¼ Index[m,mi][3]:

jc :¼ Index[m,mi][4]: jr :¼ Index[m,mi][5]: ji :¼ Index[m,mi][6]:

slg :¼ jc+jr: l3mx :¼ binomial (sm+slg�1,slg�1):
l12 :¼ sm: p :¼ 1: S3 :¼ [seq (0,i=1..slg+1)]:

for l3 to l3mx do

Sv :¼ [l12+Qv[1],seq (S3[j]+Qv[j+1],j=1..slg�1)]:
q1r :¼ copy (Rh[Iv[1],kV[1],Sv[1]]):

q1i :¼ copy (Ih[Iv[1],kV[1],Sv[1]]):

sl :¼ Sv[1]:

for j from 2 to jc do

qp :¼ L3product (sl,Sv[j],

Rh[Iv[j],kV[j],Sv[j]],Ih[Iv[j],kV[j],Sv[j]]):

q1r :¼ copy (qp[1]): q1i :¼ copy (qp[2]): sl :¼ sl+Sv[j]:

od:

slmx :¼ binomial (sl+Mc�1,Mc�1):
if ji =2 then

if jc > 1 then

q3r :¼ Array ([seq (q1r[T[sl][i]],i=1..slmx)]):

q3i :¼ Array ([seq (�q1i[T[sl][i]],i=1..slmx)]):
else ivc :¼ Qc[Iv[1]]:

q3r :¼ copy (Rh[ivc,kV[1],Sv[1]]):

q3i :¼ copy (Ih[ivc,kV[1],Sv[1]]):

fi:

fi:

for i to ji do

slc :¼ sl:

for j from max (jc,1)+1 to slg do

qp :¼ L3product (slc,Sv[j],

Rh[Iv[j],kV[j],Sv[j]],Ih[Iv[j],kV[j],Sv[j]]):

q1r :¼ copy (qp[1]): q1i :¼ copy (qp[2]):

slc :¼ slc+Sv[j]:
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od:

lfa :¼ Coef[m, (�1)^(i�1)⁄mi]:
for l to nops (lfa[1]) do

jl :¼ lfa[1,l]:

if jl > L then break: fi:

Rht[jl] :¼ Array ([seq (Rht[jl][j]+lfa[2,l]⁄q1r[j]
�lfa[3,l]⁄q1i[j],j=1..smx)]):

Iht[jl] :¼ Array ([seq (Iht[jl][j]+lfa[2,l]⁄q1i[j]
+lfa[3,l]⁄q1r[j],j=1..smx)]):

od:

if ji =2 then q1r :¼ copy (q3r): q1i :¼ copy (q3i): fi:

od: L3seq ():

od:

od:

od:

for sl from 2 to s�1 do

l12 :¼ sl: sr :¼ s�sl: l3rmx :¼ binomial (sr+Mc�2,Mc�2):
S3 :¼ [seq (0,i=1..Mc�1)]: ctpo :¼ 1: p :¼ 1: ctl :¼ 1:

for l3 to binomial (sl+Mc�2,Mc�2) do

for j to Mc do

Lslr[j] :¼ [seq (Ren[j,sl][i],i=ctl..ctl+l12)]:

Lsli[j] :¼ [seq (Imn[j,sl][i],i=ctl..ctl+l12)]:

od:

S3r :¼ [seq (0,i=1..Mc�1)]:
l12r :¼ sr: ctp :¼ ctpo: pr :¼ 1: ctr :¼ 1:

for l3r to l3rmx do

for j to L do

for wri to Mc do

jw :¼ Qb[wri]:

Lsrr :¼ [seq (dRh[j,sr+1,wri][i],i=ctr..ctr+l12r)]:

Lsri :¼ [seq (dIh[j,sr+1,wri][i],i=ctr..ctr+l12r)]:

for jl to l12+l12r+1 do

sb :¼ max (1,jl�l12): sp :¼ min (l12r+1,jl):

Lsrt[wri][jl] :¼ add (Lsrr[i]⁄Lslr[jw][jl+1�i]
�Lsri[i]⁄Lsli[jw][jl+1�i],i=sb..sp):

Lsit[wri][jl] :¼ add (Lsrr[i]⁄Lsli[jw][jl+1�i]
+Lsri[i]⁄Lslr[jw][jl+1�i],i=sb..sp):

od:

od:

for i from ctp to ctp+l12+l12r do

Rht[j][i] :¼ Rht[j][i]�add (Lsrt[wri][i�ctp+1],wri=1..Mc):
Iht[j][i] :¼ Iht[j][i]�add (Lsit[wri][i�ctp+1],wri=1..Mc):

od:

od:

ctp :¼ i: ctr :¼ ctr+l12r+1:

if l12r =0 then

ctp :¼ ctp�binomial (S3r[pr]+1,2)�S3r[pr]⁄l12:
temp :¼ l12+S3[1]:

for i from 2 to pr do

ctp :¼ ctp+binomial (temp+i,1+i)

�binomial (temp+S3r[pr]+i�1,1+i):
temp :¼ temp+S3[i]:

od:

ctp :¼ ctp+binomial (temp+S3r[pr]+i�1,i):
S3r[pr+1] :¼ S3r[pr+1]+1: l12r :¼ S3r[pr]�1:
S3r[pr] :¼ 0: pr :¼ max (0,sign (�l12r))⁄pr+1:
else S3r[1] :¼ S3r[1]+1: l12r :¼ l12r�1: fi:

od:

(continued on next page)
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ctpo :¼ ctpo+binomial (sr+l12+p+max (0,sign (�l12)),sr+l12):
ctl :¼ ctl+l12+1: L3seq ():

od:

od:
lic :¼ Array (1..smx):

S3 :¼ [seq (0,i=1..Mc)]: p :¼ 1: l12 :¼ s:

for l5 to smx do

S5 :¼ [l12,op (S3)]:

lic[l5] :¼ add (IEf[i]⁄(S5[2⁄i�M1�1]�S5[2⁄i�M1]),i=M1+1..M1+M2):
L3seq ():

od:

for j to M1+M2 do

Ren[j,s] :¼ Array (1..smx): Imn[j,s] :¼ Array (1..smx):

Rh[j,1,s] :¼ Array (1..smx): Ih[j,1,s] :¼ Array (1..smx):

Iy :¼ �IEf[j]:
for l5 to smx do

Il :¼ Iy+lic[l5]:

if Il <> 0 then

Rh[j,1,s][l5] :¼ factor (Iht[j][l5]/Il):

Ih[j,1,s][l5] :¼ �factor (Rht[j][l5]/Il):

else Ren[j,s][l5] :¼ factor (Rht[j][l5]):

Imn[j,s][l5] :¼ factor (Iht[j][l5]): fi:

od:

od:

if s < Ord then

for j from M1+M2+1 to L do

Rh[j,1,s] :¼ Array (1..smx): Ih[j,1,s] :¼ Array (1..smx):

Ry :¼ �REf[j]: Iy :¼ �IEf[j]:
for l5 to smx do

Il :¼ Iy+lic[l5]: temp :¼ Ry⁄Ry+Il⁄Il:
Rh[j,1,s][l5] :¼ factor ((Rht[j][l5]⁄Ry+Iht[j][l5]⁄Il)/temp):
Ih[j,1,s][l5] :¼ factor ((Iht[j][l5]⁄Ry�Rht[j][l5]⁄Il)/temp):

od:

od:

for j from M1+1 to M1+M2 do

Ren[M2+j,s] :¼ Array ([seq (Ren[j,s][Tt[i]],i=1..smx)]):

Imn[M2+j,s] :¼ Array ([seq (�Imn[j,s][Tt[i]],i=1..smx)]):
Rh[L�M1+j,1,s] :¼ Array ([seq (Rh[j,1,s][Tt[i]],i=1..smx)]):

Ih[L�M1+j,1,s] :¼ Array ([seq (�Ih[j,1,s][Tt[i]],i=1..smx)]):
od:

for j from L�M4+1 to L do

Rh[M2+M4+j,1,s] :¼ Array ([seq (Rh[j,1,s][Tt[i]],i=1..smx)]):

Ih[M2+M4+j,1,s] :¼ Array ([seq (�Ih[j,1,s][Tt[i]],i=1..smx)]):
od:

qdemx :¼ binomial (s+Mc�2,Mc�1):
for wri to Mc do

for j to L do

dRh[j,s,wri] :¼ Array (1..qdemx):

dIh[j,s,wri] :¼ Array (1..qdemx):

od:

temp :¼ Mc�wri:
Si1 :¼ [seq (0,j=1..temp+2)]:

lsimx :¼ binomial (s+temp,temp);

l1i :¼ s: kst :¼ 1: oml :¼ 0: po :¼ 1:

for lsi from 1 to lsimx do

if wri > 1 then

oml :¼ oml+binomial (l1i+wri�2,wri�2):
for li from 1 to l1i do
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limx :¼ binomial (l1i�li+wri�2,wri�2):
for j from kst to kst+limx�1 do

for jl to L do

dRh[jl,s,wri][j] :¼ li⁄Rh[jl,1,s][j+oml]:
dIh[jl,s,wri][j] :¼ li⁄Ih[jl,1,s][j+oml]:

od:

od: kst :¼ kst+limx:

od:

else

for jl to L do

dRh[jl,s,wri][kst] :¼ l1i⁄Rh[jl,1,s][kst+oml]:
dIh[jl,s,wri][kst] :¼ l1i⁄Ih[jl,1,s][kst+oml]:

od: kst :¼ kst+1:

fi:

if l1i =1 then

oml :¼ oml+po: Si1[po+1] :¼ Si1[po+1]+1: l1i :¼ Si1[po]:

Si1[po] :¼ 0: lsi :¼ lsi+po: po :¼ max (0,sign (1�l1i)⁄po)+1:
else Si1[1] :¼ Si1[1]+1: l1i :¼ l1i�1: fi:

od:

od:

fi:

od:

ZC :¼ [seq (0,j=1..M1)]:

RC :¼ [seq (0,j=1..M2)]:

IC :¼ [seq (IEf[M1+j],j=1..M2)]:

for s from 2 to Ord do

l12 :¼ s: p :¼ 1: l3mx :¼ binomial (s+Mc�1,Mc�1):
S3 :¼ [seq (0,i=1..Mc)]:

for l3 to l3mx do

Sl :¼ [l12,op (S3)]: term :¼ 1:

for j from 1 to M1 do term :¼ term⁄y[j]^Sl[j]: od:
thetan :¼ 0:

for j from M1+1 to M1+M2 do

term :¼ term⁄r[j�M1]^(Sl[2⁄j�M1�1]+Sl[2⁄j�M1]):
thetan :¼ thetan+theta[j�M1]⁄(Sl[2⁄j�M1�1]�Sl[2⁄j�M1]):

od:

for j from 1 to M1 do

ZC[j] :¼ ZC[j]+term⁄(factor (Ren[j,s][l3])⁄cos (thetan)

�factor (Imn[j,s][l3])⁄sin (thetan)):

od:

for j from 1 to M2 do

RC[j] :¼ RC[j]+term⁄(factor (Ren[j+M1,s][l3])⁄cos (thetan�theta[j])
�factor (Imn[j+M1,s][l3])⁄sin (thetan�theta[j])):

IC[j] :¼ IC[j]+term/r[j]⁄(factor (Ren[j+M1,s][l3])⁄sin (thetan�theta[j])
+factor (Imn[j+M1,s][l3])⁄cos (thetan�theta[j])):

od:

L3seq ():

od:

od:

for i from 1 to M1 do

ZC[i] :¼ combine (ZC[i],trig): print (‘‘y",i,ZC[i]):

od:

for i from 1 to M2 do

RC[i] :¼ combine (RC[i],trig): print (‘‘r",i,RC[i]):

IC[i] :¼ combine (IC[i],trig): print (‘‘theta",i,IC[i]):

od:

save M1,M2,ZC,RC,IC, output:
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