董超平

我在李群表示、代数组合应用数学方面做过研究工作。以下是详细的论文目录,其中论文[A1]来自我在北京大学的硕士学位论文。2019年Springer出版的专著《Permutation Polynomial Interleavers for Turobo Codes》的两处章节标题中称[A1]中的算法为Weng and Dong algorithm.该专著的链接https://doi.org/10.1007/978-981-13-2625-7





(1) 李群表示


[L11] J. Ding, C.-P. Dong, L. Yang, Dirac series for some real exceptional Lie groups,

Journal of Algebra 559(2020),379-407. 


[L10]J. Ding,C.-P. Dong,Unitary representations with Dirac cohomology: a finiteness result for complex Lie groupsForum Mathematicum 32 (2020), 941-964. 


[L9C.-P. Dong,Unitary representations with Dirac cohomology: finiteness in the real caseInternational Mathematics Research Notices,https://academic.oup.com/imrn/advance-article/doi/10.1093/imrn/rny293/5289390


[L8]C.-P. Dong,Unitary representations with non-zero Dirac cohomology for complex E6Forum Mathematicum 31 (1) (2019), 69-82.


[L7] C.-P. Dong, H. Xue,On the nonvanishing hypothesis for Rankin-Selberg convolutions for GL_n(C)×GL_n(C)Representation Theory 21 (2017), 151-171.


[L6] J. Ding, C.-P. Dong, Spin norm, K-types, and tempered representations, Journal of Lie Theory 26 (2016), 651-658.


[L5] C.-P. Dong, Spin norm, pencils, and the u-small convex hull, Proceedings of the American Mathematical Society 144 (2016), 999-1013.


[L4] C.-P. Dong, On a conjecture of Barbasch and Pandzic, Communications in Algebra 43 (2015), 3382-3388.


[L3] C.-P. Dong, J.-S. Huang,Dirac cohomologyof cohomologically induced modules for reductive Lie groups, American Journal of Mathematics 137 (2015), 37-60.


[L2] C.-P. Dong, On the Dirac cohomology of complex Lie group representations, Transformation Group18 (2013), 61-79. Erratum: ibid, 595-597.


[L1] C.-P. Dong, J.-S. Huang,Jacquet modules and Dirac cohomology, Advances in Mathematics 226 (2011), 2911-2934.


(2) 代数组合


[C4C.-P. Dong,G. Weng,Minuscule representations and Panyushev conjecturesScience China Mathematics 61 (10) (2018), 1759-1744.


[C3C.-P. Dong, SWang,Orbits of antichains in certain root posetsElectronic Journal of Combinatorics 24 (4) (2017), #P4.25.


[C2] C.-P. DongFolded bump diagrams for partitions of classical typesAdvances in Applied Mathematics 62 (2015), 141-159.


[C1] C.-P. DongAd-nilpotent ideals and the Shi arrangementJournal of Combinatorial Theory, Series A 120 (2013), 2118-2136.




(3) 应用数学


[A3] D.Gao and C.-P. DongFast diffusion inhibits disease outbreaksProceedings of the American Mathematical Society 148 (2020), 1709–1722.


[A2] D.Gao, T.M.Lietman, C.-P. Dong and T.C.Porco, Mass drug administration: the importance of synchrony, Mathematical Medicine and Biology 34 (2017), 241-260.


[A1] G. Weng, C.-P. DongA note on permutation polynomials over Z_nIEEE Transactions on Information Theory 54 (2008),4388-4390.