(0)

基本信息

  • 性别:
  • 聘任技术职务:教授
  • 学历:博士研究生毕业
  • 联系电话:
  • 电子邮箱:jpeng@shnu.edu.cn
  • 通讯地址:
  • 部门:数理学院
  • 学位:理学博士学位
  • 毕业院校:复旦大学
  • 办公地址:

研究方向

研究方向为密码函数,代数编码。主要研究有限域上具有良好密码学性质的布尔函数和向量布尔函数,以及有限环上各种最优码的构造等。


发表的部分论著:


[26] C. Chen, H. Kan, J. Peng, H. Wang, L. Zheng. The study on three classes of permutation quadrinomials over finite fields of odd characteristic, Finite Fields and Their Applications, 105:102626, 2025.

[25] Y. Li, H. Kan, S. Mesnager,J. Peng, L. Zheng. Direct Approaches for Generic Constructions of Plateaued Functions and Bent Functions Outside M#, IEEE Transactions on Information Theory, 71(2):1400-1418, 2025.

[24] C. Chen,H. Kan, J. Peng, L. Zheng,Y. Li.Three classes of permutation quadrinomials in odd characteristic, Cryptography and Communications, 16(2):351-365, 2024.

[23] C. Shi, J. Peng, H. Kan, L. Zheng. On CCZ-equivalence between the Bracken-Tan-Tan function and power functions, Finite Fields and Their Applications, 93:102340, 2024.

[22] C. Shi, J. Peng, L. Zheng, S. Lu. On the equivalence between a new family of APN quadrinomials and the power APN functions, Cryptography and Communications, 15(2):351-363, 2023.

[21] Y. Li, H. Kan, J. Peng, L. Zheng. Cryptographic functions with interesting properties from CCZ-equivalence, Cryptography and Communications, 15(4):831-844, 2023.

[20] Y. Li, J. Peng, H. Kan, L. Zheng. Minimal Binary Linear Codes From Vectorial Boolean Functions, IEEE Transactions on Information Theory, 69(5):2955-2968, 2023.

[19] L. Zhang, B. Liu, H. Kan, J. Peng, D. Tang. More classes of permutation quadrinomials from Niho exponents in characteristic two, Finite Fields and Their Applications, 78:101962, 2022.

[18] Y. Li, H. Kan, S. Mesnager, J. Peng, C.H. Tan, L. Zheng. Generic Constructions of (Boolean and Vectorial) Bent Functions and Their Consequences, IEEE Transactions on Information Theory, 68(4):2735-2751, 2022.

[17] L. Zheng, H. Kan, Y. Li, J. Peng, D. Tang. Constructing New APN Functions Through Relative Trace Functions, IEEE Transactions on Information Theory, 68(11):7528-7537, 2022.

[16] Y. Li, J. Peng, C.H. Tan, H. Kan, L. Zheng. Further constructions of bent functions and their duals, IET Information Security, 15(1):87-97, 2021. 

[15] L. Zheng, H. Kan, J. Peng, D. Tang. Two classes of permutation trinomials with Niho exponents, Finite Fields and Their Applications, 70:101790, 2021.

[14] L. Zheng, J. Peng, H. Kan, Y. Li. Several new infinite families of bent functions via second order derivatives, Cryptography and Communications, 12(6):1143-1160, 2020.

[13] L. Zheng, J. Peng, H. Kan, Y. Li, J. Luo. On constructions and properties of $(n, m)$-functions with maximal number of bent components, Designs, Codes and Cryptography, 88(10):2171-2186, 2020.

[12] J. Peng, J. Gao, H. Kan. Characterizing differential support of vectorial Boolean functions using the Walsh transform, Science China Information Sciences, 63(3), 2020.

[11] J. Peng, L. Zheng, C. Wu, H. Kan. Permutation polynomials of the form 

$x^{2^{k+1}+3}+ax^{2^k+2}+bx$ over  $F_{2^{2k}}$  and their differential uniformity, Science China Information Sciences, 63(10):1-3, 2020.

[10] P. Charpin, J. Peng. New links between differential uniformity and nonlinearity,  Finite Fields and Their Applications, 56:188-208, 2019.

[9] 彭杰, C.H. Tan, 阚海斌. 一类 $PS_{ ap } $向量Bent函数的存在性, 中国科学:数学, 47卷,995-1010, 2017.

[8] J. Peng, C.H. Tan, Q. Wang. New secondary construction of differentially 4-uniform permutations over $F_{2^{2k}}$, International Journal on Computer Mathematics, 94:1670-1693, 2017.

[7] J. Peng, C.H. Tan. New differentially 4-uniform permutations by modifying the inverse function on subfields, Cryptography and Communications, 9:363-378, 2017.

[6] J. Peng, C.H. Tan. New explicit constructions of differentially 4-uniform permutations via special partitions of $F_{2^{2k}}$,  Finite Fields and Their Applications, 60:73-89, 2016.

[5] J. Peng, C.H. Tan, Q. Wang. A new family of differentially 4-uniform permutations over $F_{2^{2k}}$ for odd $k$, Science China Mathematics, 58:1221-1234, 2016.

[4] 阚海斌, 彭杰, 王启春. 安全布尔函数的构造, 科学出版社, 2014.

[3] H. Wang, J. Peng, Y. Li, H. Kan. On $2k$-variable symmetric Boolean functions with maximum algebraic immunity $k$, IEEE Transactions on Information Theory, 58(8):5612-5624, 2012.

[2] J. Peng, Q. Wu, H. Kan. On symmetric Boolean functions with high algebraic immunity on even number of variables, IEEE Transactions on Information Theory, 57(10):7205-7220, 2011.

[1] Q. Wang, J. Peng, H. Kan, X. Xue. Constructions of cryptographically Significant Boolean functions using primitive polynomials, IEEE Transactions on Information Theory, 56(6):3048-3053, 2010.


学术成果(以下信息源于科研管理系统)

教学工作

教职工课程信息
开课学年开课学期课程名称
2023-20241高等代数与解析几何Ⅰ
2022-20232近世代数
2022-20231近世代数
2021-20222近世代数
2020-20212高等数学Ⅱ
2020-20211高等数学Ⅰ
2019-20202高等数学Ⅱ
2019-20201高等数学Ⅰ
2018-20192高等代数与解析几何Ⅱ
2018-20191高等代数与解析几何I
2023-20242近世代数
2021-20221高等代数与解析几何I
2017-20181高等数学Ⅰ
2024-20251近世代数
2025-20261近世代数

荣誉奖励

社会兼职