部门:信息与机电工程学院
聘任技术职务:副教授
学位:理学硕士学位
学历:硕士研究生毕业
毕业院校:上海师范大学
联系电话:18917870411
电子邮箱:chenjh@shnu.edu.cn
办公地点:海思路100号
通讯地址:

研究方向

    数据信息处理技术及数据库信息系统方面的研究,重点在数据库理论、分布式数据库方面。主要从事教学及科研项目研究工作,熟悉软件的开发和组织流程。项目来源主要为企业 MIS 软件系统的委托开发及纵向科研项目,项目以信息系统设计、开发为主,目前主要从事物流货贷行业的软件研发工作;


科研成果:
主要从事计算机教学及信息处理技术的研发工作。在教书育人同时,参与了校内外的多项科研项目。
高教局项目:
《化妆品/木器物料及成本分析核算系统》,
《常用教育统计与测量软件包》,
《实用旅游网络业务管理系统》,
《多媒体酒店包房电脑管理系统》,
《AS通用帐务处理系统和报表系统》(“上海市财政局”鉴定、高教局鉴定)。
参与了上海市科委的《上海市科技城联网方案研究》项目的研究工作,该项目获上海市科学院科技成果三等奖。
参与了国家教育部项目《全国教育科学规划重点研究课题(中学校园网建设、利用)》的研究工作,该项目由教育部电教办公室鉴定通过。
上海市经委的产学研项目《SD空运物流进出口业务处理系统》(获得到软件著作权)。
主要的横向协作项目有:
《台湾华翰电脑公司:财务管理系统及进销存管理系统》,
上海宝屐皮鞋厂的《鞋业销售管理系统》。
上海郑明明化妆品有限公司的《化妆品行业MRPII系统》(订单、采购合同、仓库、车间、成品、成本核算分析、物料预测分析),
航天局的《SZ神舟推进分系统控制驱动器测试台》故障测试部分,
上海经贸国际物流有限公司的《空运物流业务管理及核算核销系统》。
研制了上海市社保中心的《上海市民信息服务网》。
上海瑞控信息技术有限公司的《RCIS数据采集及监控处理系统》,
软件著作权:
《SD空运物流出口业务处理系统V1.0》,登记号:2007SR07819
《SD空运物流进口业务处理系统V1.0》,登记号:2007SR07818
《SD物流行业客户来电业务管理系统》,登记号:2010SR039201
发表论文:
[1] 用软件生命期方法开发仓库管理系统上海师范大学学报 1992.9
[2] P2P技术构建信息交换平台的探索上海师范大学学报自然科学版 2002.12
[3] 基于P2P的数据库深度搜索引擎计算机应用与软件2003年12 期
[4] MIS 系统远程智能升级计算机应用与软件2004年21 期
[5] 分布式信息系统中用户权限的研究上海师范大学学报自然科学版 2004.12
[6] 信息处理系统间数据交换的研究计算机应用与软件2005年22 期
[7] MySQL数据库复制技术的研究计算机应用研究 2007.10
[8] java字符编码问题的研究上海师范大学学报(自然科学版)》,2007.12
[9] 基于未知数据源的数据信息抽取研究计算机工程与科学 2007 第30卷,第7期
[10] 提高数据检索效率的研究上海师范大学学报 2009.12
[11] 基于角色的权限与数据的控制策略计算机应用研究 2010(增刊)
[12] 数据库全文检索方案的研究上海师范大学学报(自然科学版)2010.2
[13] 提高基于.NET Web服务类库的信息交换平台的可靠性和安全性方案

学术成果

论文
  • [1] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [2] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [3] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [4] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [5] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [6] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [7] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [8] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [9] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [10] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [11] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [12] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [13] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [14] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [15] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [16] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [17] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [18] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [19] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [20] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [21] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [22] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [23] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [24] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [25] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [26] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [27] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [28] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [29] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [30] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [31] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [32] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [33] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [34] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [35] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [36] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [37] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [38] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [39] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [40] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [41] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [42] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [43] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [44] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [45] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [46] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [47] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [48] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [49] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [50] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [51] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [52] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [53] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [54] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [55] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [56] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [57] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [58] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [59] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [60] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [61] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [62] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [63] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [64] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [65] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [66] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [67] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [68] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [69] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [70] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [71] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [72] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [73] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [74] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [75] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [76] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [77] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [78] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [79] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [80] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [81] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [82] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [83] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [84] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [85] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [86] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [87] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [88] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [89] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [90] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [91] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [92] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [93] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [94] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [95] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [96] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [97] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [98] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [99] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [100] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [101] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [102] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [103] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [104] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [105] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [106] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [107] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [108] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [109] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [110] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [111] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [112] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [113] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [114] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [115] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [116] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [117] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [118] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [119] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [120] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [121] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [122] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [123] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [124] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [125] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [126] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [127] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [128] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [129] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [130] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [131] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [132] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [133] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [134] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [135] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [136] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [137] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [138] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [139] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [140] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [141] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [142] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [143] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [144] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [145] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [146] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [147] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [148] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [149] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [150] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [151] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [152] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [153] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [154] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [155] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [156] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [157] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [158] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [159] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [160] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [161] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [162] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [163] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [164] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [165] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [166] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [167] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [168] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [169] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [170] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [171] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [172] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [173] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [174] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [175] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [176] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [177] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [178] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [179] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [180] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [181] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [182] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [183] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [184] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [185] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [186] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [187] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [188] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [189] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [190] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [191] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [192] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [193] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [194] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [195] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [196] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [197] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [198] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [199] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [200] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [201] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [202] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [203] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [204] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [205] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [206] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [207] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [208] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [209] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [210] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [211] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [212] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [213] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [214] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [215] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [216] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [217] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [218] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [219] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [220] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [221] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [222] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [223] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [224] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [225] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [226] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [227] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [228] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [229] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [230] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [231] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [232] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [233] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [234] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [235] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [236] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [237] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [238] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [239] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [240] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [241] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [242] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [243] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [244] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [245] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [246] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [247] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [248] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [249] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [250] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [251] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [252] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [253] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [254] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [255] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [256] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [257] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [258] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [259] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [260] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [261] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [262] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [263] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [264] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [265] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [266] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [267] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [268] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [269] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [270] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [271] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [272] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [273] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [274] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [275] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [276] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [277] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [278] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [279] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [280] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [281] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [282] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [283] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [284] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [285] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [286] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [287] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [288] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [289] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [290] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [291] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [292] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [293] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [294] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [295] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [296] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [297] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [298] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [299] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [300] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [301] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [302] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [303] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [304] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [305] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [306] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [307] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [308] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [309] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [310] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [311] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [312] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [313] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [314] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [315] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [316] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [317] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [318] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [319] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [320] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [321] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [322] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [323] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [324] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [325] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [326] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [327] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [328] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [329] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [330] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [331] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [332] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [333] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [334] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [335] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [336] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [337] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [338] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [339] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [340] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [341] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [342] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [343] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [344] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [345] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [346] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [347] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [348] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [349] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [350] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [351] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [352] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [353] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [354] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [355] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [356] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [357] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [358] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [359] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [360] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [361] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [362] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [363] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [364] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [365] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [366] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [367] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [368] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [369] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [370] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [371] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [372] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [373] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [374] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [375] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [376] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [377] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [378] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [379] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [380] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [381] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [382] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [383] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [384] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [385] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [386] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [387] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [388] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [389] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [390] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [391] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [392] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [393] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [394] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [395] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [396] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [397] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [398] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [399] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [400] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [401] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [402] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [403] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [404] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [405] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [406] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [407] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [408] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [409] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [410] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [411] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [412] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [413] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [414] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [415] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [416] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [417] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [418] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [419] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [420] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [421] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [422] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [423] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [424] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [425] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [426] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [427] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [428] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [429] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [430] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [431] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [432] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [433] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [434] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [435] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [436] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [437] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [438] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [439] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [440] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [441] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [442] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [443] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [444] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [445] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [446] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [447] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [448] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [449] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [450] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [451] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [452] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [453] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [454] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [455] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [456] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [457] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [458] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [459] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [460] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [461] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [462] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [463] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [464] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [465] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [466] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [467] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [468] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [469] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [470] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [471] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [472] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [473] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [474] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [475] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [476] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [477] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [478] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [479] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [480] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [481] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [482] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [483] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [484] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [485] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [486] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [487] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [488] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [489] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [490] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [491] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [492] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [493] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [494] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [495] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [496] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [497] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [498] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [499] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [500] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [501] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [502] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [503] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [504] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [505] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [506] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [507] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [508] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [509] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [510] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [511] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [512] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [513] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [514] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [515] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [516] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [517] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [518] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [519] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [520] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [521] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [522] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [523] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [524] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [525] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [526] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [527] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [528] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [529] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [530] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [531] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [532] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [533] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [534] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [535] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [536] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [537] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [538] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [539] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [540] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [541] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [542] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [543] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [544] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [545] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [546] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [547] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [548] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [549] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [550] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [551] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [552] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [553] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [554] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [555] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [556] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [557] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [558] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [559] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [560] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [561] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [562] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [563] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [564] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [565] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [566] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [567] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [568] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [569] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [570] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [571] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [572] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [573] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [574] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [575] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [576] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [577] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [578] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [579] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [580] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [581] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [582] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [583] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [584] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [585] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [586] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [587] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [588] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [589] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [590] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [591] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [592] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [593] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [594] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [595] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [596] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [597] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [598] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [599] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [600] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [601] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [602] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [603] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [604] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [605] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [606] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [607] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [608] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [609] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [610] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [611] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [612] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [613] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [614] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [615] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [616] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [617] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [618] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [619] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [620] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [621] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [622] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [623] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [624] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [625] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [626] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [627] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [628] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [629] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [630] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [631] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [632] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [633] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [634] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [635] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [636] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [637] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [638] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [639] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [640] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [641] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [642] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [643] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [644] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [645] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [646] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [647] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [648] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [649] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [650] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [651] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [652] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [653] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [654] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [655] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [656] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [657] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [658] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [659] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [660] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [661] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [662] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [663] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [664] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [665] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [666] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [667] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [668] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [669] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [670] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [671] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [672] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [673] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [674] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [675] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [676] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [677] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [678] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [679] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [680] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [681] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [682] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [683] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [684] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [685] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [686] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [687] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [688] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [689] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [690] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [691] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [692] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [693] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [694] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [695] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [696] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [697] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [698] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [699] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [700] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [701] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [702] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [703] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [704] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [705] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [706] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [707] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [708] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [709] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [710] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [711] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [712] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [713] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [714] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [715] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [716] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [717] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [718] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [719] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [720] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [721] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [722] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [723] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [724] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [725] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [726] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [727] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [728] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [729] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [730] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [731] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [732] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [733] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [734] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [735] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [736] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [737] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [738] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [739] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [740] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [741] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [742] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [743] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [744] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [745] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [746] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [747] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [748] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [749] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [750] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [751] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [752] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [753] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [754] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [755] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [756] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [757] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [758] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [759] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [760] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [761] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [762] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [763] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [764] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [765] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [766] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [767] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [768] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [769] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [770] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [771] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [772] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [773] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [774] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [775] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [776] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [777] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [778] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [779] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [780] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [781] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [782] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [783] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [784] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [785] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [786] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [787] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [788] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [789] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [790] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [791] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [792] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [793] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [794] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [795] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [796] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [797] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [798] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [799] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [800] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [801] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [802] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [803] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [804] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [805] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [806] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [807] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [808] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [809] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [810] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [811] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [812] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [813] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [814] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [815] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [816] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [817] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [818] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [819] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [820] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [821] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [822] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [823] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [824] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [825] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [826] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [827] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [828] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [829] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [830] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [831] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [832] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [833] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [834] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [835] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [836] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [837] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [838] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [839] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [840] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [841] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [842] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [843] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [844] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [845] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [846] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [847] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [848] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [849] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [850] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [851] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [852] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [853] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [854] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [855] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [856] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [857] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [858] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [859] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [860] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [861] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [862] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [863] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [864] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [865] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [866] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [867] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [868] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [869] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [870] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [871] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [872] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [873] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [874] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [875] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [876] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [877] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [878] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [879] 常甜甜,陈军华,卢一枝. Deep Web 数据源的发现和分类. 上海师范大学学报自然科学版,2016,45(2016.8):422-426.
  • [880] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [881] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [882] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [883] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [884] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [885] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [886] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [887] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [888] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [889] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [890] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [891] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [892] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [893] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [894] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [895] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [896] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [897] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [898] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [899] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [900] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [901] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [902] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [903] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [904] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [905] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [906] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [907] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [908] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [909] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [910] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [911] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [912] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [913] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [914] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [915] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [916] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [917] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [918] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [919] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [920] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [921] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [922] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [923] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [924] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [925] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [926] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [927] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [928] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [929] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [930] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [931] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [932] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [933] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [934] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [935] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [936] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [937] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [938] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [939] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [940] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [941] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [942] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [943] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [944] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [945] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [946] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [947] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [948] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [949] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [950] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [951] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [952] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [953] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [954] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [955] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [956] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [957] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [958] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [959] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [960] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [961] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [962] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [963] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [964] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [965] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [966] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [967] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [968] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [969] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [970] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [971] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [972] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [973] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [974] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [975] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [976] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [977] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [978] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [979] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [980] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [981] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [982] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [983] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [984] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [985] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [986] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [987] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [988] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [989] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [990] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [991] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [992] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [993] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [994] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [995] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [996] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [997] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [998] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [999] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1000] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1001] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1002] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1003] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1004] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1005] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1006] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1007] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1008] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1009] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1010] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1011] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1012] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1013] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1014] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1015] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1016] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1017] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1018] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1019] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1020] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1021] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1022] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1023] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1024] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1025] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1026] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1027] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1028] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1029] 李大志,李鲁群,陈军华,刘建华,董鑫. Application-oriented cloud monitoring data distribution mechanism. Journal of shanghai jiaotong university(science),2015,20(2):149-155.
  • [1030] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1031] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1032] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1033] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1034] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1035] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1036] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1037] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1038] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1039] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1040] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1041] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1042] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1043] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1044] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1045] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1046] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1047] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1048] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1049] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1050] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1051] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1052] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1053] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1054] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1055] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1056] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1057] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1058] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1059] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1060] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1061] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1062] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1063] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1064] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1065] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1066] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1067] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1068] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1069] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1070] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1071] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1072] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1073] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1074] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1075] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1076] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1077] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1078] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1079] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1080] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1081] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1082] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1083] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1084] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1085] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1086] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1087] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1088] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1089] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1090] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1091] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1092] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1093] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1094] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1095] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1096] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1097] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1098] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1099] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1100] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1101] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1102] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1103] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1104] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1105] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1106] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1107] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1108] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1109] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1110] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1111] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1112] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1113] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1114] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1115] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1116] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1117] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1118] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1119] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1120] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1121] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1122] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1123] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1124] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1125] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1126] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1127] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1128] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1129] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1130] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1131] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1132] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1133] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1134] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1135] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1136] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1137] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1138] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1139] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1140] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1141] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1142] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1143] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1144] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1145] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1146] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1147] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1148] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1149] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1150] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1151] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1152] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1153] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1154] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1155] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1156] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1157] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1158] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1159] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1160] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1161] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1162] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1163] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1164] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1165] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1166] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1167] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1168] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1169] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1170] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1171] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1172] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1173] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1174] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1175] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1176] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1177] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1178] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1179] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1180] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1181] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1182] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1183] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1184] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1185] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1186] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1187] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1188] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1189] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1190] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1191] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1192] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1193] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1194] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1195] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1196] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1197] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1198] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1199] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1200] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1201] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1202] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1203] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1204] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1205] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1206] 王光磊,陈军华,高建华,黄之杰. Python Code Smell Refactoring Route Generation based on Association rule and Correlation. International Journal of Software Engineering and Knowledge Engineering,2021,31(9)(2021.10):1329-1347.
  • [1207] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1208] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1209] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1210] 张硕伟,陈军华. 基于降噪自编码和卷积神经网络的协同过滤算法. 计算机与数字工程,2020,2020(10):2441-2445,2457.
  • [1211] 窦清缘,陈军华,高建华,黄之杰. Class Change Prediction by Incorporating Community Smell: An Empirical Study. International Journal of Software Engineering and Knowledge Engineering,2022,32(9):1369-1388.
  • [1212] 郭书武,陈军华. 基于深度学习的教材德目分类方法. 计算机与现代化,2021,43(7):1897-1903.
  • [1213] 邓松,陈军华. 基于二部分图网络结构推荐的改进算法. 上海师范大学学报自然科学版,2017,46(2017 第四期):535-541页.
  • [1214] 夏海峰,陈军华. 基于语义相似度计算的Deep Web数据库查询. 微型机与应用,2014,33(8):64-67.
著作
  • [1] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [2] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [3] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [4] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [5] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [6] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [7] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [8] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [9] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [10] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [11] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [12] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [13] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [14] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [15] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [16] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [17] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [18] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [19] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [20] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [21] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [22] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [23] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [24] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [25] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [26] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [27] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [28] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [29] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [30] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [31] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [32] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [33] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [34] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [35] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [36] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [37] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [38] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [39] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [40] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [41] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [42] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [43] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [44] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [45] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [46] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [47] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [48] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [49] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [50] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [51] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [52] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [53] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [54] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [55] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [56] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [57] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [58] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [59] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [60] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [61] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [62] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [63] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [64] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [65] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [66] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [67] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [68] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [69] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [70] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [71] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [72] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [73] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [74] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [75] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [76] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [77] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [78] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [79] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [80] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [81] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [82] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [83] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [84] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [85] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [86] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [87] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [88] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [89] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [90] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [91] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [92] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [93] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [94] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [95] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [96] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [97] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [98] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [99] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [100] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [101] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [102] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [103] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [104] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [105] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [106] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [107] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [108] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [109] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [110] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [111] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [112] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [113] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [114] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [115] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [116] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [117] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [118] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [119] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [120] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [121] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [122] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [123] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [124] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [125] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [126] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [127] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [128] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [129] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [130] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [131] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [132] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [133] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [134] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [135] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [136] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [137] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [138] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [139] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [140] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [141] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [142] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [143] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [144] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [145] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [146] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [147] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [148] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [149] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [150] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [151] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [152] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [153] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [154] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [155] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [156] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [157] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [158] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [159] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [160] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [161] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [162] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [163] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [164] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [165] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [166] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [167] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [168] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [169] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [170] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [171] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [172] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [173] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [174] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [175] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [176] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [177] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [178] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [179] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [180] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [181] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [182] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [183] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [184] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [185] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [186] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [187] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [188] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [189] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [190] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [191] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [192] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [193] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [194] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [195] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [196] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [197] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [198] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [199] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [200] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [201] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [202] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [203] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [204] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [205] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [206] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [207] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [208] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [209] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [210] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [211] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [212] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [213] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [214] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [215] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [216] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [217] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [218] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [219] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [220] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [221] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [222] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [223] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [224] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [225] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [226] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [227] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [228] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [229] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [230] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [231] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [232] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [233] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [234] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [235] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [236] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [237] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [238] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [239] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [240] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [241] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [242] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [243] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [244] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [245] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [246] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [247] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [248] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [249] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [250] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [251] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [252] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [253] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [254] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [255] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [256] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [257] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [258] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [259] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [260] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [261] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [262] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [263] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [264] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [265] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [266] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [267] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [268] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [269] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [270] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [271] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [272] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [273] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [274] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [275] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [276] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [277] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [278] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [279] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [280] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [281] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [282] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [283] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [284] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [285] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [286] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [287] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [288] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [289] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [290] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [291] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [292] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [293] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [294] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [295] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [296] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [297] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [298] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [299] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [300] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [301] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [302] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [303] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [304] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [305] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [306] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [307] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [308] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [309] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [310] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [311] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [312] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [313] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [314] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [315] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [316] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [317] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [318] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [319] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [320] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [321] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [322] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [323] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [324] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [325] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [326] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [327] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [328] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [329] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [330] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [331] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [332] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [333] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [334] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [335] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [336] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [337] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [338] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [339] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [340] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [341] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [342] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [343] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [344] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [345] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [346] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [347] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [348] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [349] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [350] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [351] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [352] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [353] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [354] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [355] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [356] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [357] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [358] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [359] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [360] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [361] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [362] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [363] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [364] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [365] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [366] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [367] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [368] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [369] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [370] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [371] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [372] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [373] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [374] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [375] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [376] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [377] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [378] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [379] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [380] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [381] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [382] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [383] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [384] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [385] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [386] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [387] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [388] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [389] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [390] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [391] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [392] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [393] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [394] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [395] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [396] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [397] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [398] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [399] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [400] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [401] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [402] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [403] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [404] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [405] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [406] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [407] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [408] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [409] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [410] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [411] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [412] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [413] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [414] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [415] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [416] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [417] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [418] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [419] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [420] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [421] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [422] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [423] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [424] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [425] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [426] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [427] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [428] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [429] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [430] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [431] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [432] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [433] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [434] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [435] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [436] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [437] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [438] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [439] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [440] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [441] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [442] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [443] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [444] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [445] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [446] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [447] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [448] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [449] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [450] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [451] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [452] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [453] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [454] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [455] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [456] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [457] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [458] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [459] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [460] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [461] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [462] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [463] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [464] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [465] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [466] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [467] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [468] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [469] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [470] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [471] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [472] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [473] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [474] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [475] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [476] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [477] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [478] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [479] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [480] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [481] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [482] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [483] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [484] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [485] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [486] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [487] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
  • [488] 吴惠霞,刘洁,杨仕平. 无机化学实验(第二版). 科学出版社, 2021.
科研项目
  • [1] 陈军华.上海瑞控信息技术有限公司:RCIS数据采集及监控处理系统,结题.
  • [2] 陈军华.校一般科研项目:物流行业客户来电业务管理系统,在研.
  • [3] 陈军华.校一般科研项目:空运物流业务处理规范及实现,结题.
  • [4] 陈军华.上海良讯科技有限公司:大学生精准就业云聘系统,在研.
  • [5] 陈军华.复旦大学:问卷调查设计开发及项目实施,在研.
  • [6] 陈军华.上海市教育委员会科研创新项目(产学研类助推):SD空运物流进出口业务处理系统(助推),在研.
  • [7] 陈军华.上海牧月计算机系统工程有限公司:116设备运保管理信息平台开发,在研.
  • [8] 陈军华.校一般科研项目:基于语义相似度的深度万维网数据库搜索研究,结题.
  • [9] 陈军华.上海奕然国际货物运输代理有限公司:货运运输信息关管理系统,在研.
  • [10] 陈军华.上海五爱科技发展有限公司:SD空运物流进出口业务处理系统(二),在研.

教学工作

教职工课程信息
开课学年开课学期课程名称
2019-20202数据库系统概论
2025-20261数据库系统概论
2024-20251数据库系统概论
2023-20242数据库系统概论
2023-20242数据库系统概论
2017-20182数据库系统概论
2022-20232数据库系统概论
2024-20252数据库系统概论
2018-20192数据库系统概论
2016-20171数据库系统概论
2016-20172数据库系统概论
2023-20241数据库系统概论
2022-20231数据库系统概论
2021-20221数据库系统概论

荣誉奖励

社会兼职