(0)

基本信息

  • 性别:
  • 聘任技术职务:讲师(高校)
  • 学历:博士研究生毕业
  • 电子邮箱:zhang_hs@shnu.edu.cn
  • 部门:信息与机电工程学院
  • 学位:工学博士学位
  • 毕业院校:上海交通大学
  • 办公地址:奉贤校区科技楼A座705

研究方向

研究方向:

深度学习,计算机视觉,图像与视频处理。


学术成果

1. Zhang Y, Zhang H, Cheng Z, et al. SSP-IR: Semantic and Structure Priors for Diffusion-based Realistic Image Restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025.

2. Chai X, Cheng Z, Zhang H, et al. SemanticColorizer: Improving color semantic rationality for vivid automatic image colorization[J]. Displays, 2025, 90: 103172.

3. Zhang H, Chai X, Zhang Y, et al. Hdrtvformer: Efficient Sdrtv-to-Hdrtv via Affine Transformation and Spatial-Aware Transformer[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 2785-2789.

4. Zhang H, Song L, et al. EffiHDR: An Efficient Framework for HDRTV Reconstruction and Enhancement in UHD Systems[J]. IEEE Transactions on Broadcasting. 2024(2):70.

5. Zhang H, Song L, et al. Multi-scale-based joint super-resolution and inverse tone-mapping with data synthesis for UHD HDR video[J]. Displays, 2023: 102492.

6. Zhang H, Zou X, et al. A codec information assisted framework for efficient compressed video super-resolution[C]//European Conference on Computer Vision. 2022: 220-235.

7. Zhang Y, Zhang H, Song L, et al. Dual-Head Fusion Network for Image Enhancement[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.

8. Liu X, Chai X, Zhang H, et al. Old-Photo Restoration with Detail- and Structure-enhanced Cascaded Learning. ICMEW, 2023.

9. Chai X, Liu X, Zhang H, et al. MLS-GAN: Multi-Level Semantic Guided Image Colorization[C]//2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022: 1131-1135.

10. Chen J, Gan W, Zhang H, et al. Video Enhancement Based on Unpaired Learning[C]//2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2021: 1-6.


学术成果(以下信息源于科研管理系统)

教学工作

教学工作:
教职工课程信息
开课学年开课学期课程名称
2025-20261数字图像处理

荣誉奖励

社会兼职