HonorReward
2017: Shanghai Young Eastern Scholar
2018: Best Paper Award 2017, Faculty of Mathematics, Vienna University of Technology
Name: Dan Ma
|
|
2017: Shanghai Young Eastern Scholar
2018: Best Paper Award 2017, Faculty of Mathematics, Vienna University of Technology
My research area is convex geometric analysis. I am alao familiar with harmonic analysis. Publications [1] D. Ma, B. He, Estimates for the extremal sections of lp-balls, J. Math. Anal. Appl., 2011, 376(2): 725-731. [pdf] [2] A. Koldobsky, D. Ma, Stability and slicing inequalities for intersection bodies, Geom. Dedicata, 2013, 162(1): 325-335. [pdf] [3] D. Ma, Asymmetric anisotropic fractional Sobolev norms, Arch. Math., 2014, 103(2): 167-175. [pdf] [4] D. Ma, Real-valued valuations on Sobolev spaces, Sci. China Math., 2016, 59(5): 921-934. [pdf] [5] J. Li, D. Ma, Laplace transforms and valuations, J. Funct. Anal., 2017, 272(2): 738-758. [pdf] [6] C. Zeng, D. Ma, SL(n) covariant vector valuations on polytopes, Trans. Amer. Math. Soc., 2018, 370(12): 8999-9023. [pdf] [7] D. Ma, Moment matrices and SL(n) equivariant valuations on polytopes, Int. Math. Res. Not., 2021, 2021(14): 10469-10489. [pdf] [8] D. Ma, W. Wang, LYZ matrices and SL(n) contravariant valuations on polytopes, Canad. J. Math., 2021, 73(2): 383-398. [pdf] [9] J. Li, D. Ma, W. Wang, SL(n) contravariant vector valuations, Discrete Comput. Geom., 2022, 67(4), 1211-1228. [pdf] [10] D. Ma, S. Shi, W. Xu, Complex Lp mixed Petty projection inequalities, Journal of Shanghai Normal University (Natural Sciences), 2022, 51(3): 372-380. [pdf] [11] D. Ma, Y. Wang, The lower dimensional Busemann-Petty problem on entropy of log-concave functions, Journal of Shanghai Normal University (Natural Sciences), 2023, 52(3): 303-310. [pdf] |
Projects 1. May 2017 - April 2020: Shanghai Sailing Program Valuation theory in geometric functional analysis (Award number: 17YF1413800) |
Fall 2017: Mathematical Analysis I (exercise) Spring 2018: Mathematical Analysis II (exercise) Fall 2018: Mathematical Analysis I & Calculus I Spring 2019: Mathematical Analysis II (exercise) Fall 2019 & Spring 2020 : Research Leave Fall 2020: Mathematical Analysis I (exercise) & Differential Geometry Spring 2021: Mathematical Analysis II (exercise) Fall 2021: Mathematical Analysis I & Differential Geometry Spring 2022: Mathematical Analysis II Fall 2022: Mathematical Analysis I & Differential Geometry Spring 2023: Mathematical Analysis II Fall 2023: Mathematical Analysis I & Differential Geometry Spring 2024: Mathematical Analysis II Fall 2024: Mathematical Analysis I |